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Abstract: A k-CEC graph is a graph G which has connected domination number

γc(G) = k and γc(G+uv) < k for every uv ∈ E(G). A k-CVC graph G is a 2-connected

graph with γc(G) = k and γc(G − v) < k for any v ∈ V (G). A graph is said to be
maximal k-CVC if it is both k-CEC and k-CVC. Let δ, κ, and α be the minimum

degree, connectivity, and independence number of G, respectively. In this work, we

prove that for a maximal 3-CVC graph, if α = κ, then κ = δ. We additionally consider
the class of maximal 3-CVC graphs with α < κ and κ < δ, and prove that every

3-connected maximal 3-CVC graph when κ < δ is Hamiltonian connected.
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AMS Subject classification: 05C69, 05C40

1. Introduction

The basic graph theoretic terminology throughout this paper follow that of Bondy

and Murty [3], and all graphs in this paper are simple and connected. Let G be a

finite graph with vertex set V (G) and edge set E(G). For S ⊆ V (G), G[S] denotes

the subgraph of G induced by S. The open neighborhood NG(v) of a vertex v in G is

the set of vertices that is adjacent to v. The closed neighborhood NG[v] of a vertex

v in G is {v} ∪ NG(v). The degree degG(v) of a vertex v in G is |NG(v)|. Let δ(G)
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186 Maximal connected domination vertex critical graphs

be the minimum degree of a graph G. NG(v) ∩ S is denoted by NS(v) where S is a

vertex subset of G. A connected graph without cycles is a tree. A tree with n vertices

of degree 1 and exactly one vertex of degree n is a star K1,n. An independent set is

a set whose all pairs of vertices are non-adjacent. The independence number of G,

α(G), is the maximum cardinality of an independent set of G.

For a connected graph G, a cut set is a vertex subset S ⊆ V (G) such that G − S
is disconnected. The connectivity κ(G) is the minimum cardinality of a vertex cut

set of a graph G. If S = {a} is a minimum cut set of G, then G has a cut vertex a

and κ(G) = 1. A graph G is said to be s-connected if κ(G) ≥ s. When there is no

ambiguity, we shorten δ(G), α(G), and κ(G) to δ, α, and κ, respectively.

A path that visits every vertex of a graph exactly once is called a Hamiltonian path.

If every pair of vertices of a graph are joined by a Hamiltonian path, then the graph

is Hamiltonian-connected. It is an exercise to check that Hamiltonian connectivity

exists only when the graphs are `-connected for ` ≥ 3. For a graph G, the Mycielskian

µ(G) of G is the graph with vertex set V (G) ∪ V ′ ∪ {x}, where V ′ = {u′|u ∈ V (G)}
and with edge set E(G) ∪ {uv′|uv ∈ E(G)} ∪ {v′x|v′ ∈ V ′}.

Let D and X be subsets of V (G), then we say that D dominates X, or D � X,

if every vertex in X \D is adjacent to a vertex in D. Furthermore, we write a � X

when D = {a}. In particular, if X = V (G), then D is called a dominating set of G

and we write D � G instead of D � V (G). A dominating set D of a graph G is called

a connected dominating set of G if G[D] is connected. A connected dominating set D

of G is denoted by D �c G. Let γc-set denote a smallest connected dominating set.

The connected domination number of G is the cardinality of a γc-set of G and it is

denoted by γc(G). Let D be a subset of V (G), then D is called a total dominating set

of a graph G if every vertex in G is adjacent to a vertex in D. The total domination

number is the minimum cardinality of a total dominating set of G and is denoted by

γt(G).

A graph G is k-connected domination edge critical, k-CEC, if γc(G) = k but γc(G+

xy) < k for any xy /∈ E(G). If γc(G) = k but γc(G− x) < k for any x ∈ V (G), then

G is k-connected domination vertex critical, k-CVC. A maximal k-CVC graph is a k-

CVC graph having largest possible number of edges. Thus, a maximal k-CVC graph is

both edge and vertex critical. It can be observed that connected domination is defined

on connected graph. From here on, we assume that k-CVC graphs are 2-connected.

A k-total domination edge critical, k-TEC, graph can be defined similarly.

The aim of this paper is to study how the connectivity and the independence number

are related if the graphs are maximal 3-CVC. For related results in the graphs whose

domination number decreases after adding any edge (k-DEC graphs), Zhang and Tian

[11] proved that every 3-DEC graph satisfies α ≤ κ+ 2 and proved further that κ = δ

if the equality holds. Kaemawichanurat [8] showed that every 3-CEC graph satisfies

α ≤ κ+ 2. Furthermore, for any 3-CEC graph, if κ+ 1 ≤ α ≤ κ+ 2, then κ = δ with

only one exception.

In this paper, we prove that if G is a maximal 3-CVC graph with the condition α = κ,

then κ = δ. We provide a class of maximal 3-CVC graphs with α < κ < δ so that

the condition α = κ is needed. We finish by showing that all 3-connected maximal
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3-CVC graphs are Hamiltonian-connected if κ < δ.

2. Preliminaries

We state the results that used in establishing our theorems. The first theorem was

proved by Chvátal and Erdös [5] which is Hamiltonian property of graphs when in-

dependence number and connectivity are given.

Theorem 1. [5] Let G be an `-connected graph with the independence number α. If
α < `, then G is Hamiltonian-connected.

Chen et al. [4] provided properties of 3-CEC graphs as detailed in Lemmas 1 and

2.

Lemma 1. [4] Let G be a 3-CEC graph and ab ∈ E(Ḡ). If Dab is a γc-set of G + ab.
Then

(1) |Dab| = 2,

(2) {a, b} ∩Dab 6= ∅,

(3) if a ∈ Dab and b /∈ Dab, then Dab ∩NG(b) = ∅.

Lemma 2. [4] Let G be a 3-CEC graph having A an independent set containing |A| =
m ≥ 3 vertices. Then we can rename the vertices in A as v1, v2, . . . , vm in which there is
a corresponding path u1, u2, . . . , um−1 in G − A so that, for all 1 ≤ i ≤ m − 1, {vi, ui} �c

G+ vivi+1.

In Lemma 3, Ananchuen et al. [2] gave basic properties of 3-CVC graphs.

Lemma 3. [2] Let G be a 3-CVC graph containing a vertex x. If Dx is a γc-set of G−x,
then

(1) |Dx| = 2 and

(2) Dx ∩NG[x] = ∅.

Simmons [10] showed that 3-TEC graphs have α ≤ δ + 2. Ananchuen [1] observed

that a 3-CEC graph is also 3-TEC and vice versa. Thus every 3-CEC graph satisfies

α ≤ δ + 2. For 3-CEC graphs, the result that α = δ + 2 was established by Kae-

mawichanurat et al. [9]. These results can be combined into the following theorem.

Theorem 2. [10] If G is a 3-CEC graph with δ ≥ 2, then α ≤ δ + 2. Furthermore, if
α = δ + 2, then there is the unique vertex a ∈ V (G) so that deg(a) = δ and the subgraph
G[N [a]] is complete.



188 Maximal connected domination vertex critical graphs

We previously established [7] some results on maximal 3-CVC graphs.

Lemma 4. [7] Suppose that G is a maximal 3-CVC graph having a cut set S ⊆ V (G) and
let C1, C2, . . . , Cr be the components that are obtained from G−S. Further, we let x ∈ V (G).
If x ∈ V (Ci) ∪ S which |V (Ci)| > 1 or r ≥ 3, then

(1) Dx ∩ S 6= ∅ and

(2) S is not dominated by x.

Lemma 5. [7] Suppose that G is a maximal 3-CVC graph having a cut set S ⊆ V (G)
and let C1, C2, . . . , Cr be the components that are obtained from G − S. Further, for some
i ∈ {1, 2, . . . , r}, we let x ∈ V (Ci). Then

(1) Let y ∈ V (Cj) for some j ∈ {1, 2, . . . , r} such that {x, y} does not dominate G. If
r ≥ 3 or |V (Ci)|, |V (Cj)| > 1, then |Dxy ∩ {x, y}| = 1 and |Dxy ∩ S| = 1.

(2) If c ∈ Dx is an isolated vertex in S, then r = 2 and {u} = V (Cj) for some j ∈ {1, 2},
where {u} = Dx − {c}.

In [7], we further characterized all maximal 3-CVC graphs whose smallest cut set

contains no edges.

Theorem 3. [7] If G is a maximal 3-CVC graph having a smallest cut set S. If S is
independent, then G is isomorphic to G3 = µ(Ks).

Figure 1. A graph G3 = µ(Ks)

In previous work [6], we established an upper bound for the independence number

of maximal 3-CVC graphs in terms of the minimum degree.

Theorem 4. [6] Let G be a maximal 3-CVC graph. Then α ≤ δ.
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3. Connectivity of Maximal 3-CVC Graphs

In this section, we use Theorem 4 to prove that every maximal 3-CVC graph satisfies

α ≤ κ. We further construct examples of such graphs for which α = κ. In [7],

we completely characterized all maximal 3-CVC graphs having connectivity at most

three. Thus, we focus on |S| = κ ≥ 4. Let C1, . . . , Cm be the component of G−S. In

particular, we let H1 = ∪b
m
2 c

i=1 V (Ci) and H2 = ∪mi=bm2 c+1V (Ci). Let I be a maximum

independent set of G, Ii = I∩Hi and |Ii| = αi for i ∈ {1, 2}. Then I = I1∪I2∪(S∩I).

Let |I1 ∪ I2| = p.

Theorem 5. If G is a 3-CVC graph having independence number α and connectivity κ,
then α ≤ κ

Proof. For contradiction, assume that κ + 1 ≤ α. So |S| + 1 ≤ α1 + α2 + |S ∩ I|.
Hence

|S − I|+ 1 = |S| − |S ∩ I|+ 1 ≤ α1 + α2 (3.1)

Claim 1. |V (Ci)| > 1 for all 1 ≤ i ≤ r, and |Hi| > 1.

Suppose that V (Ci) = {c} for some i ∈ {1, 2, . . . , r}. So by Theorem 4, NG(c) ⊆ S.

Then we have

δ ≤ degG(c) < |S|+ 1 = κ+ 1 ≤ α ≤ δ,

a contradiction, thus establishing Claim 1.

Let p = α1 +α2 and {a1, a2, . . . , ap} = ∪2i=1Ii. If p = 1, then, by (3.1), |S− I| = 0.

This implies that S ∩ I = S which implies that the set S is independent. Note that

G is G3 by Theorem 3. Hence, NG3
(x) in the graph G3 is a minimum cut set which

G3 − NG3(x) has a component containing exactly one vertex x. This contradicts

Claim 1. Thus, p > 1.

Claim 2. |Dab ∩ {a, b}| = 1 and |Dab ∩ (S − I)| = 1 for any a, b ∈ ∪2i=1Ii.

Since |S| ≥ 4 and 2 ≤ p = α1 + α2, if p ≥ 3, then ∪2i=1Ii − {a, b} 6= ∅. If p = 2,

then, by (3.1), |S| − |S ∩ I|+ 1 ≤ 2. Because |S| ≥ 4, we get |S ∩ I| ≥ 3, specifically,

S ∩ I 6= ∅. Thus (S ∩ I)∪ (∪2i=1Ii−{a, b}) 6= ∅ inplying that {a, b} does not dominate

G. By Lemma 5(1) and Claim 1, |Dab ∩ {a, b}| = 1 and |Dab ∩ S| = 1. Renaming

vertices if necessary, we let a ∈ Dab and {a′} = Dab ∩ S. Since (G + ab)[Dab] is

connected, a′ ∈ S − I. This proves Claim 2.

Assume that p = 2. We consider the graph G+a1a2. By Claim 2, |Da1a2∩(S−I)| =
1. Since Da1a2 ∩ (S − I) ⊆ S − I, by (3.1),

1 ≤ |S − I| ≤ α1 + α2 − 1 = p− 1 = 1.

Therefore, Da1a2 ∩ (S − I) = S − I. If p ≥ 3, then Lemma 2 yields that the vertices

a1, a2, . . . , ap can be renamed as x1, x2, . . . , xp and there is a corresponding path

y1, y2, . . . , yp−1 for which {xi, yi} �c G + xixi+1 for i ∈ {1, 2, . . . , p − 1}. Since
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{x1, x2, . . . , xp} ⊆ ∪2i=1Ii, it follows by Claim 2 that {y1, y2, . . . , yp−1} ⊆ S − I. So,

the equation (3.1) gives p − 1 ≤ |S − I| ≤ α1 + α2 − 1 = p − 1. In both cases p = 2

and p ≥ 3, we have that {y1, y2, . . . , yp−1} = S − I.

When p = 2, then it can be checked that the subgraph G[{y1}] is complete. When

p ≥ 3. Consider G + xixj for 2 ≤ i 6= j ≤ p. By Claim 2, |Dxixj ∩ {xi, xj}| =

1 and |Dxixj ∩ (S − I)| = 1. Renaming vertices if necessary, w let xi ∈ Dxixj .

As S − I = {y1, y2, . . . , yp−1}, by Lemma 1(3), Dxixj ∩ (S − I) = {yj−1}. Since

xiyi−1 /∈ E(G), yi−1yj−1 ∈ E(G). Therefore, G[{y1, y2, . . . , yp−1}] is a clique. Since

{x1, x2, . . . , xp} ⊆ I, yi � (S ∩ I) for 1 ≤ i ≤ p − 1. Hence yi � S. This contradicts

Lemma 4(2). Therefore, α ≤ κ.

By Theorem 3, the graph G3 = µ(Ks) has NG3
(x) as a minimum cut set as well

as a maximum independent set. Therefore α(G3) = κ(G3). Hence, the bound in

Theorem 5 is sharp. In particular, for maximal 3-CVC graphs satisfying α = κ, we

have that |S − I|+ |S ∩ I| = |S| = α1 + α2 + |S ∩ I|. So

|S − I| = α1 + α2 = p. (3.2)

Renaming if necessary, we let α1 ≤ α2. We will prove that if a maximal 3-CVC

graph G satisfies α = κ, then, any minimum cut set S, the graph G − S has a

component containing exactly one vertex. We may assume with a contradiction that

G− S has no singleton component. Thus, |Hi| > 1 for all 1 ≤ i ≤ 2.

Lemma 6. For a maximal 3-CVC graph G, if |V (Ci)| > 1 for all 1 ≤ i ≤ m and α = κ,
then p ≥ 3.

Proof. Suppose that |Hi| > 1 for all 1 ≤ i ≤ 2. Firstly, assume that p = 0. So

S = S ∩ I. Theorem 3 implies that G is G3. hence, G3 has NG3(x) as a minimum

cut set and G−NG3
(x) has x as a singleton component, a contradiction. We discuss

2 cases.

Case 1. p = 1.

By (3.2), |S − I| = 1. We let {a1} = ∪2i=1Ii, {v} = S − I, and {a2, a3, . . . , aα} =

S ∩ I. Therefore α1 = 0 and α2 = 1. Therefore a1 ∈ H2. As |S| ≥ 4, we have

that |S ∩ I| ≥ 3. By Lemma 2, we can rename the vertices in {a2, a3, . . . , aα} as

x1, x2, . . . , xα−1 for which there is a corresponding path P = y1, y2, . . . , yα−2 such

that {xi, yi} �c G + xixi+1 for i ∈ {1, . . . , α − 2}. Note that yi 6= a1 because every

vertex yi is adjacent to a vertex of I for 1 ≤ i ≤ α−2. To dominate a1, yi ∈ H2∪{v}.
We consider 2 subcases.

Subcase 1.1. The vertex v is not in the path P .

Thus V (P ) ⊆ H2, and hence xi � H1 for 1 ≤ i ≤ α − 2. Because NH1
(v) 6= ∅, it

follows that S is a minimum cut set. Let u ∈ NH1
(v). Thus u � {x1, x2, . . . , xα−2, v}.

By Lemma 4(2) we get that uxα−1 /∈ E(G). For G+uyα−2. Since uxα−1, yα−2xα−1 /∈
E(G). Lemma 5(1) implies that |Duyα−2

∩ {u, yα−2}| = 1 and |Duyα−2
∩ S| = 1.

Hence, yα−2 ∈ Duyα−2 or u ∈ Duyα−2 . When yα−2 ∈ Duyα−2 , by Lemma 1(3),
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{x1, x2, . . . , xα−2, v} ∩Duyα−2
= ∅. Hence xα−1 ∈ Duyα−2

. But note that G[Duyα−2
]

is not connected. Hence u ∈ Duyα−2 . Since (G+uyα−2)[Duyα−2 ] is connected, xα−1 /∈
Duyα−2

. If xi ∈ Duyα−2
for all 1 ≤ i ≤ α − 2, then no vertex in Duyα−2

is adjacent

to xα−1. Thus v ∈ Duyα−2 , and therefore va1 ∈ E(G). Consider G + ua1. Since

uxα−1, a1xα−1 /∈ E(G), by Lemma 5(1), |Dua1 ∩ {u, a1}| = 1 and |Dua1 ∩ S| = 1.

Hence either u ∈ Dua1 or a1 ∈ Dua1 . In the case u ∈ Dua1 , v /∈ Dua1 because

of Lemma 1(3). Since (G + ua1)[Dua1 ] is connected, xα−1 /∈ Dua1 . To dominate

xα−1, Dua1 ∩ {x1, x2, . . . , xα−2} 6= ∅. So Dua1 ∩ S = ∅, a contradiction. Hence

a1 ∈ Dua1 . Lemma 1(3) implies that v /∈ Dua1 . Since (G + ua1)[Dua1 ] is connected,

{x1, x2, . . . , xα−1} ∩Dua1 = ∅. Note that Dua1 ∩ S = ∅, a contradiction. Therefore,

Subcase 1.1 cannot occur.

Subcase 1.2. The vertex v is in the path P .

In this case, yj = v for some j ∈ {1, 2, . . . , α−2}. Hence xi � H1 for i 6= j, and α−1

and va1 ∈ E(G). Because a1, xα−1 ∈ I, it follows that a1 is not adjacent to xα−1. If

xα−1 is not adjacent to the vertex w ∈ H1, then consider G+wa1. Lemma 5(1) yields

that |Dwa1 ∩ {w, a1}| = 1 and |Dwa1 ∩ S| = 1. Thus either w ∈ Dwa1 or a1 ∈ Dwa1 .

In both cases, xα−1 /∈ Dwa1 because (G + wa1)[Dwa1 ] is connected. If w ∈ Dwa1 ,

then Lemma 1(3) gives v /∈ Dwa1 . To dominate xα−1, {x1, x2, . . . , xα−2} ∩Dwa1 = ∅.
So Dwa1 ∩ S = ∅, a contradiction. Hence a1 ∈ Dwa1 . By the connectedness of

(G + wa1)[Dwa1 ], Dwa1 ∩ {x1, x2, . . . , xα−1} = ∅. To dominate xj+1, v /∈ Dwa1 . We

then have Dwa1 ∩S = ∅, a contradiction. Thus xα−1 � H1. Clearly xi � H1 for i 6= j.

Note that S is a minimum cut set. Thus NH1
(v) 6= ∅. Let u′ ∈ NH1

(v). Lemma 4(2)

implies that u′ � S − {xj}. For G+ u′a1. By using the same arguments of G+ ua1,

we get a contradiction. Therefore Case 1 cannot exist.

Case 2. p = 2.

Suppose {a1, a2} = ∪2i=1Ii. By (3.2), we have that |S − I| = p = 2. As |S| ≥ 4, we

have |S ∩ I| ≥ 2, specifically, S ∩ I 6= ∅ and {a1, a2} does not dominate G. Consider

G+a1a2. Lemma 5(1) gives that |Da1a2 ∩{a1, a2}| = 1 and |Da1a2 ∩S| = 1. Without

loss of generality, assume a1 ∈ Da1a2 . By the connectedness of (G + a1a2)[Da1a2 ],

|(S− I)∩Da1a2 | = 1. Let {u} = (S− I)∩Da1a2 . Thus ua1 ∈ E(G), ua2 /∈ E(G), and

u � S ∩ I. If we let v ∈ S− (I ∪{u}), then by Lemma 4(2), we have that uv /∈ E(G).

Thus a1v ∈ E(G)

Subcase 2.1. α1 = 1 and α2 = 1.

Renaming vertices if necessary, suppose that a1 ∈ I1 and a2 ∈ I2. Since |S∩ I| ≥ 2,

there exist a3, a4 ∈ S ∩ I. Consider G + a3a4. Lemma 1(2) gives that Da3a4 ∩
{a3, a4} 6= ∅. To dominate a1, Da3a4 6= {a3, a4}. Without loss of generality, let

a3 ∈ Da3a4 . Lemma 1(1) implies that |Da3a4 − {a3}| = 1. Let y ∈ Da3a4 − {a3}.
To dominate {a1, a2}, y /∈ ∪2i=1Hi. By the connectedness of (G + a3a4)[Da3a4 ],

y ∈ {v, u}. Since uv /∈ E(G), then a3u, a3v ∈ E(G). Consider G− a3 . Lemma 3(2)

implies that Da3 ∩ {u, v} = ∅, and Lemma 4(1) yields that Da3 ∩ S 6= ∅. Hence there

exists z ∈ Da3 ∩ (S ∩ I). Lemma 3(1) implies that |Da3 − {z}| = 1. We may let

{z′} = Da3 − {z}. As z ∈ S ∩ I, we have z is not adjacent to a1. Hence z′ ∈ H1 to

dominate a1. Therefore Da3 does not dominate a2 contradicting Da3 is a dominating

set of G− a3. Subcase 2.1 cannot occur.
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Subcase 2.2. α1 = 0 and α2 = 2.

Hence u � H1. Let b1 ∈ H1. Clearly {a1, b1} does not dominate G. Consider

G+a1b1. Lemma 5(1) gives that |Da1b1 ∩S| = 1 and either b1 ∈ Da1b1 or a1 ∈ Da1b1 .

In the first case, {u, v}∩Da1b1 = ∅ by Lemma 1(3). To dominate a2, Da1b1∩(S∩I) = ∅.
Hence, Da1b1 ∩ S = ∅, a contradiction. Therefore, a1 ∈ Da1b1 . To dominate H1 − b1
and by the connectedness of (G+ a1b1)[Da1b1 ], (Da1b1 −{a1}) ⊆ {u, v}. Lemma 1(3)

implies that v ∈ Da1b1 . Thus v � H1− b1. Let b2 ∈ H1−{b1}. Therefore b2 � {u, v}.
Consider G + a1b2. Lemma 5(1) implies that we have |Da1b1 ∩ S| = 1 and either

a1 ∈ Da1b2 or b2 ∈ Da1b2 . In the first case, {u, v} ∩ Da1b2 = ∅ by Lemma 1(3). By

the connectedness of (G + a1b2)[Da1b2 ], (S ∩ I) ∩ Da1b2 = ∅. Thus Da1b2 ∩ S = ∅,
a contradiction. Therefore, b2 ∈ Da1b2 . To dominate a2, (S ∩ I) ∩ Da1b2 = ∅.
Lemma 1(3) yields that Da1b2 ∩ {u, v} = ∅. Therefore Da1b2 ∩ S = ∅, a contradiction

and so Case 2 cannot occur. Thus p ≥ 3.

By Lemma 6, we have that p ≥ 3. By Lemma 2, the vertices in ∪2i=1Ii can be ordered

as x1, x2, . . . , xp and there exists a path y1, y2, . . . , yp−1 with {xi, yi} �c G + xixi+1

for i = 1, 2, . . . , p− 1.

Lemma 7. yi � S ∩ I and yi ∈ S − I for all 1 ≤ i ≤ p− 1.

Proof. Since {xi, yi} �c G + xixi+1 for i = 1, 2, . . . , p − 1 and xi ∈ I, yi � S ∩ I.

By the connectedness of (G+ xixi+1)[Dxixi+1
] and by Lemma 5(1), yi ∈ S − I.

Lemma 7 implies that {y1, y2, ..., yp−1} ⊆ S − I. By (3.2), |(S − I) − {y1, y2,
. . . , yp−1}| = 1. Let {yp} = (S − I)− {y1, y2, . . . , yp−1}.

Lemma 8. For i, j ∈ {2, 3, . . . , p}, if ypxi, ypxj ∈ E(G), then yi−1yj−1 ∈ E(G).

Proof. Consider G + xixj . Lemma 5(1) yields that |Dxixj ∩ {xi, xj}| = 1 and

|Dxixj ∩ S| = 1. Without loss of generality, let xi ∈ Dxixj and {a} = Dxixj ∩ S. By

the connectedness of (G + xixj)[Dxixj ], a ∈ S − I. Since xj � (S − I) − {yj−1}, it

follows by Lemma 1(3) that a = yj−1. Since yi−1xi /∈ E(G), yj−1yi−1 ∈ E(G).

Lemma 9. α1, α2 > 0.

Proof. By the assumption that α1 ≤ α2, we can suppose for contradiction that

α1 = 0. Clearly {x1, x2, ..., xp} ⊆ H2 and yi � H1 for all 1 ≤ i ≤ p−1. Note that S is

a minimum cut set, so NH1(yp) 6= ∅. Let b ∈ NH1(yp). Therefore b � S− I. Consider

G + x1b. Lemma 5(1) yields that |Dx1b ∩ S| = 1 and either b ∈ Dx1b or x1 ∈ Dx1b.

Suppose that b ∈ Dx1b. To dominate x2, Dx1b ∩ (S − I) 6= ∅. Lemmas 2 and 1(3)

then imply that Dx1b ∩ (S − I) = {yp}. So yp � {x2, x3, . . . , xp}. Lemma 8 gives,

further, that G[y1, y2, . . . , yp−1] is a clique. Lemma 7 then yields that yi � S ∩ I for

i = 1, 2, . . . , p − 1. By Lemma 4(2), yiyp /∈ E(G) for i = 1, 2, ..., p − 1. Therefore
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y1yp /∈ E(G). Because {x1, y1} �c G+x1x2, x1yp ∈ E(G), contradicting Lemma 1(3).

Therefore x1 ∈ Dx1b. By the connectedness of (G + x1b)[Dx1b], Dx1b ∩ (S ∩ I) = ∅.
Lemma 1(3) implies that Dx1b ∩ (S − I) = ∅. Thus Dx1b ∩ S = ∅, contradicting

Lemma 5(1).

Theorem 6. Let G be a maximal 3-CVC graph having S a minimum cut set. If α = κ,
then G− S has at least one component with exactly one vertex.

Proof. Assume that G is a maximal 3-CVC graph with α = κ. By (3.2), |S − I| =
α1 + α2. Suppose that G − S has no singleton component, specifically |Hi| > 1 for

i = 1, 2. Let α1 + α2 = p. Lemma 6 implies that p ≥ 3, and Lemma 9 gives that

0 < α1 ≤ α2. We also define x1, x2, . . . , xp, a path y1, y2, . . . , yp−1 and a vertex yp as

in the previous lemmas.

We may assume that there exist xi, xj for i, j ∈ {2, 3, . . . , p} such that yp ∈ Dxixj .

Lemma 1(1) and 1(2) then imply that either Dxixj = {xi, yp} or Dxixj = {xj , yp}.
Without loss of generality, let Dxixj = {xj , yp}. Thus yp � {x1, x2, . . . , xp} − {xi}.
Since {xi, yi} �c G+xixi+1, yiyp ∈ E(G). Lemma 8 yields that G[{y1, y2, . . . , yp−1}−
{yi−1}] is a clique. Since yiyi−1 ∈ E(G), yi � S − I. Lemma 7 implies that yi �
S ∩ I. Therefore yi � S, contradicting Lemma 4(2). Hence, yp /∈ Dxixj for any

i, j ∈ {2, 3, . . . , p}. By using the same arguments as in the proof of Lemma 8, the

subgraph G[{y1, y2, . . . , yp−1}] is complete. As yi � S ∩ I, by Lemma 4(2), we must

have yiyp /∈ E(G) for i ∈ {1, 2, . . . , p − 1}. Since {xi, yi} �c G + xixi+1 for i ∈
{1, 2, . . . , p − 1}, xiyp ∈ E(G). So x1 � S − I. By Lemma 4(2), S ∩ I 6= ∅, since

otherwise x1 � S. Let x1 ∈ Hi for some i ∈ {1, 2}. Then, we consider G − x1.

Since |Hj | > 1 for j = 1, 2, neither Dx1
⊆ H1 nor Dx1

⊆ H2. Lemma 4(1) gives,

further, that Dx1 ∩ S 6= ∅. Lemma 3(2) implies that Dx1 ∩ (S − I) = ∅. Thus

Dx1
∩ (S ∩ I) 6= ∅. Let u1 ∈ Dx1

∩ (S ∩ I). By Lemma 3(1), |Dx1
− {u1}| = 1. Let

{w} = Dx1 −{u1}. If w ∈ Hi, then u1 � H3−i. Since u1 ∈ I, α3−i = 0, contradicting

Lemma 9. So w ∈ H3−i and u1 � Hi − x1. Since u1 ∈ I, Ii = {x1}. It follows that

{x2, x3, . . . , xp} ⊆ H3−i.

Claim 1. For all u ∈ S ∩ I, u does not dominate S − I.

Assume that u � S − I. For G − u, Lemma 4(1) implies that Du ∩ S 6= ∅. By

Lemma 3(2), we have that Du ∩ (S − I) = ∅. Hence there exists u′ ∈ Du ∩ (S ∩ I).

Lemma 3(1) gives that |Du − {u′}| = 1. Let {z} = Du − {u′}. To dominate x1,

z ∈ Hi. Clearly Du does not dominate I3−i, so we have a contradiction. This proves

Claim 1.

Claim 1 and Lemma 7 imply that yp is not adjacent to any vertex in S∩I. Therefore,

yp is an isolated vertex in S.

Claim 2. y1 � Hi.

Suppose y1 is not adjacent to b1 ∈ Hi. Consider G+ b1x2. We see that b1y1, x2y1 /∈
E(G). Lemma 5(1) gives that |Db1x2

∩ S| = 1 and either b1 ∈ Db1x2
or x2 ∈ Db1x2

.

If b1 ∈ Db1x2 , then (S − {y1, yp}) ∩ Db1x2 = ∅ to dominate I3−i. Since ypx2 ∈
E(G), by Lemma 1(3), yp /∈ Db1x2

. By the connectedness of (G + b1x2)[Db1x2
],
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y1 /∈ Db1x2
. Therefore Db1x2

∩S = ∅, a contradiction. Hence x2 ∈ Db1x2
. To dominate

I3−i∪ (S∩I), Db1x2 ∩{y2, y3, . . . , yp} = ∅. By the connectedness of (G+b1x2)[Db1x2 ],

((S ∩ I) ∪ {y1}) ∩Db1x2
= ∅. Therefore, Db1x2

∩ S = ∅, a contradiction, establishing

Claim 2.

Let b1 ∈ Hi − {x1}. Recall that u1 � Hi − x1. Clearly b1u1 ∈ E(G). By Claim 2

and Lemma 2, b1 � {y1, y2, . . . , yp−1} ∪ {u1}. Consider G− b1. Lemma 4(1) implies

that Db1 ∩ S 6= ∅. Lemma 3(2) gives that Db1 ∩ ({y1, y2, . . . , yp−1} ∪ {u1}) = ∅. If

there is u2 ∈ Db1 ∩ ((S ∩ I)−{u1}), then, by Lemma 3(1), let {y′} = Db1 −{u2}. To

dominate x1, y′ ∈ Hi. Thus Db1 does not dominate x2, a contradiction. Therefore,

{yp} = Db1 ∩ S. Note that yp is an isolated vertex in S, so by Lemma 5(2), at least

one of Ci is a singleton component, a contradiction.

Theorem 6 leads to the following corollary.

Corollary 1. If G is a maximal 3-CVC graph and α = κ, then κ = δ.

Proof. Theorem 6 implies that G − S has a component containning exactly one

vertex. Renaming if necessary, we let V (Ci) = {c}. Hence NG(c) ⊆ S. Thus,

δ ≤ degG(c) ≤ |S| = κ ≤ δ.

Now we give the construction of the class G4(s) of maximal 3-CVC graphs with

α < κ and κ < δ in order to show that the condition α = κ is needed in Corollary 1.

We may let R, T , W , and Z be disjoint sets of vertices where R = {r1, r2, . . . , rs},
T = {t1, t2, . . . , ts}, W = {w1, w2, . . . , ws}, Z = {z1, z2, . . . , zs}, and s ≥ 3. Note that

we can construct a graph G in the class G4(s) from R, T , W , and Z by adding edges

depending on the join operations:

• for 1 ≤ i ≤ s, ri ∨R ∪ T ∪W − {ri, ti},

• ti ∨R ∪W ∪ Z − {wi, ri},

• wi ∨R ∪ T ∪ Z − {ti, zi},

• zi ∨ Z ∪ T ∪W = {zi, wi} and

• adding edges so that the vertices in R and Z form cliques.

It can be checked that, for 1 ≤ i ≤ s, NG(ri) = R ∪ T ∪ W − {ri, ti}, NG(ti) =

R∪W∪Z−{wi, ri}, NG(wi) = R∪T∪Z−{ti, zi}, and NG(zi) = Z∪T∪W = {zi, wi}.
Note that the sets T and W are independent. Figure 2 shows a graph G, where the

double lines joining between two sets mean that every vertex in one set is joined to

all vertices in the other set.

Lemma 10. If G ∈ G4(s), then G is a maximal 3-CVC graph.
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Figure 2. A graph G in the class G4(s)

Proof. Note that {r1, t2, w2} �c G. Thus γc(G) ≤ 3. Let u, v ∈ V (G) such that

{u, v} �c G. Suppose that i ∈ {1, ..., s}, and let u = ri. To dominate the set Z, we

have that v /∈ R. For v ∈ T , we have, by connected, v 6= ti. Hence {u, v} does not

dominate ti. To dominate Z, we have that v /∈ W . Hence v ∈ Z implying that the

subgraph G[{u, v}] is disconnected, a contradiction. Thus, {u, v}∩R = ∅. Note that,

by symmetry, {u, v} ∩ Z = ∅. Thus {u, v} ⊆ T ∪W . Renaming vertices if necessary,

assume that u = ti. Then, by connected, v ∈ W − {wi}. Therefore {u, v} does not

dominate wi. Thus γc(G) = 3.

To consider the criticality, we let u, v ∈ V (G) such that uv /∈ E(G). For 1 ≤ i ≤ s,
if {u, v} = {ri, ti}, then Duv = {ri, ti}. If {u, v} = {ti, wi}, then Duv = {ti, wi}. If

{u, v} = {wi, zi}, then Duv = {wi, zi}. For 1 ≤ i 6= j ≤ s, if {u, v} = {ti, tj}, then

Duv = {ti, rj}. If {u, v} = {wi, wj}, then Duv = {wi, zj}. If {u, v} = {ri, zl} where

l ∈ {1, 2, . . . , s}, then Duv = {ri, zl}. Thus G is a 3-CEC graph. Let v ∈ V (G). For

1 ≤ i 6= j ≤ s, if u = ri, then Dv = {ti, zj}. If v = ti, then Dv = {tj , ri}. If v = wi,

then Dv = {zi, wj}. Finally, if v = zi, then Dv = {wi, rj}. Therefore G is a maximal

3-CVC graph.

Note that G has T as a maximum independent set and has T ∪W as a minimum

cut set. Hence α = s < 2s = κ. Furthermore, for all v ∈ V (G), G is a regular graph

with degG(v) = 3s − 2 . Because s ≥ 3, it follows that δ = 3s − 2 > 2s = κ. Thus,

α = κ is needed to prove Corollary 1.

Finally, we consider the Hamiltonian property of maximal 3-CVC graphs. Using

Theorem 1, we obtain that:

Corollary 2. Let G be a 3-connected maximal 3-CVC graph G. If κ < δ, then G is
Hamiltonian-connected.

Proof. Let κ < δ. Theorem 5 and Corollary 1 then yield that α < κ. Hence

Theorem 1 implies that G is Hamiltonian-connected.
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Therefore, to prove that every 3-connected maximal 3-CVC graph is Hamiltonian-

connected, we need only prove the following conjecture.

Conjecture 7. For any 3-connected maximal 3-CVC graph G, if α = κ = δ, then G is
Hamiltonian-connected.
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