Research Article

Independence number and connectivity of maximal connected domination vertex critical graphs

Norah Almalki¹ and Pawaton Kaemawicharnurat^{2,3,*}

¹Department of Mathematics and Statistics College of Science, Taif University, Saudi Arabia norah@tu.edu.sa

²Department of Mathematics, Faculty of Science King Mongkut's University of Technology Thonburi, Thailand

³Mathematics and Statistics with Applications (MaSA) Bangkok, Thailand pawaton.kae@kmutt.ac.th

Received: 3 May 2023; Accepted: 16 October 2023 Published Online: 20 October 2023

Abstract: A k-CEC graph is a graph G which has connected domination number $\gamma_c(G) = k$ and $\gamma_c(G+uv) < k$ for every $uv \in E(\overline{G})$. A k-CVC graph G is a 2-connected graph with $\gamma_c(G) = k$ and $\gamma_c(G-v) < k$ for any $v \in V(G)$. A graph is said to be maximal k-CVC if it is both k-CEC and k-CVC. Let δ , κ , and α be the minimum degree, connectivity, and independence number of G, respectively. In this work, we prove that for a maximal 3-CVC graph, if $\alpha = \kappa$, then $\kappa = \delta$. We additionally consider the class of maximal 3-CVC graphs with $\alpha < \kappa$ and $\kappa < \delta$, and prove that every 3-connected maximal 3-CVC graph when $\kappa < \delta$ is Hamiltonian connected.

Keywords: connected domination, independence number, connectivity.

AMS Subject classification: 05C69, 05C40

1. Introduction

The basic graph theoretic terminology throughout this paper follow that of Bondy and Murty [3], and all graphs in this paper are simple and connected. Let G be a finite graph with vertex set V(G) and edge set E(G). For $S \subseteq V(G)$, G[S] denotes the subgraph of G induced by S. The open neighborhood $N_G(v)$ of a vertex v in G is the set of vertices that is adjacent to v. The closed neighborhood $N_G[v]$ of a vertex v in G is $\{v\} \cup N_G(v)$. The degree $deg_G(v)$ of a vertex v in G is $|N_G(v)|$. Let $\delta(G)$

 $^{^{*}}$ Corresponding author

^{© 2024} Azarbaijan Shahid Madani University

be the minimum degree of a graph G. $N_G(v) \cap S$ is denoted by $N_S(v)$ where S is a vertex subset of G. A connected graph without cycles is a *tree*. A tree with n vertices of degree 1 and exactly one vertex of degree n is a *star* $K_{1,n}$. An *independent set* is a set whose all pairs of vertices are non-adjacent. The *independence number* of G, $\alpha(G)$, is the maximum cardinality of an independent set of G.

For a connected graph G, a *cut set* is a vertex subset $S \subseteq V(G)$ such that G - S is disconnected. The *connectivity* $\kappa(G)$ is the minimum cardinality of a vertex cut set of a graph G. If $S = \{a\}$ is a minimum cut set of G, then G has a *cut vertex a* and $\kappa(G) = 1$. A graph G is said to be *s*-connected if $\kappa(G) \geq s$. When there is no ambiguity, we shorten $\delta(G), \alpha(G)$, and $\kappa(G)$ to δ, α , and κ , respectively.

A path that visits every vertex of a graph exactly once is called a Hamiltonian path. If every pair of vertices of a graph are joined by a Hamiltonian path, then the graph is Hamiltonian-connected. It is an exercise to check that Hamiltonian connectivity exists only when the graphs are ℓ -connected for $\ell \geq 3$. For a graph G, the Mycielskian $\mu(G)$ of G is the graph with vertex set $V(G) \cup V' \cup \{x\}$, where $V' = \{u'|u \in V(G)\}$ and with edge set $E(G) \cup \{uv'|uv \in E(G)\} \cup \{v'x|v' \in V'\}$.

Let D and X be subsets of V(G), then we say that D dominates X, or $D \succ X$, if every vertex in $X \setminus D$ is adjacent to a vertex in D. Furthermore, we write $a \succ X$ when $D = \{a\}$. In particular, if X = V(G), then D is called a *dominating set* of Gand we write $D \succ G$ instead of $D \succ V(G)$. A dominating set D of a graph G is called a *connected dominating set* of G if G[D] is connected. A connected dominating set Dof G is denoted by $D \succ_c G$. Let γ_c -set denote a smallest connected dominating set. The *connected domination number* of G is the cardinality of a γ_c -set of G and it is denoted by $\gamma_c(G)$. Let D be a subset of V(G), then D is called a *total dominating set* of a graph G if every vertex in G is adjacent to a vertex in D. The *total domination number* is the minimum cardinality of a total dominating set of G and is denoted by $\gamma_t(G)$.

A graph G is k-connected domination edge critical, k-CEC, if $\gamma_c(G) = k$ but $\gamma_c(G + xy) < k$ for any $xy \notin E(G)$. If $\gamma_c(G) = k$ but $\gamma_c(G - x) < k$ for any $x \in V(G)$, then G is k-connected domination vertex critical, k-CVC. A maximal k-CVC graph is a k-CVC graph having largest possible number of edges. Thus, a maximal k-CVC graph is both edge and vertex critical. It can be observed that connected domination is defined on connected graph. From here on, we assume that k-CVC graphs are 2-connected. A k-total domination edge critical, k-TEC, graph can be defined similarly.

The aim of this paper is to study how the connectivity and the independence number are related if the graphs are maximal 3-CVC. For related results in the graphs whose domination number decreases after adding any edge (k-DEC graphs), Zhang and Tian [11] proved that every 3-DEC graph satisfies $\alpha \leq \kappa + 2$ and proved further that $\kappa = \delta$ if the equality holds. Kaemawichanurat [8] showed that every 3-CEC graph satisfies $\alpha \leq \kappa + 2$. Furthermore, for any 3-CEC graph, if $\kappa + 1 \leq \alpha \leq \kappa + 2$, then $\kappa = \delta$ with only one exception.

In this paper, we prove that if G is a maximal 3-CVC graph with the condition $\alpha = \kappa$, then $\kappa = \delta$. We provide a class of maximal 3-CVC graphs with $\alpha < \kappa < \delta$ so that the condition $\alpha = \kappa$ is needed. We finish by showing that all 3-connected maximal

3-CVC graphs are Hamiltonian-connected if $\kappa < \delta$.

2. Preliminaries

We state the results that used in establishing our theorems. The first theorem was proved by Chvátal and Erdös [5] which is Hamiltonian property of graphs when independence number and connectivity are given.

Theorem 1. [5] Let G be an ℓ -connected graph with the independence number α . If $\alpha < \ell$, then G is Hamiltonian-connected.

Chen et al. [4] provided properties of 3-CEC graphs as detailed in Lemmas 1 and 2.

Lemma 1. [4] Let G be a 3-CEC graph and $ab \in E(\overline{G})$. If D_{ab} is a γ_c -set of G + ab. Then

- (1) $|D_{ab}| = 2$,
- (2) $\{a,b\} \cap D_{ab} \neq \emptyset$,
- (3) if $a \in D_{ab}$ and $b \notin D_{ab}$, then $D_{ab} \cap N_G(b) = \emptyset$.

Lemma 2. [4] Let G be a 3-CEC graph having A an independent set containing $|A| = m \ge 3$ vertices. Then we can rename the vertices in A as v_1, v_2, \ldots, v_m in which there is a corresponding path $u_1, u_2, \ldots, u_{m-1}$ in G - A so that, for all $1 \le i \le m - 1$, $\{v_i, u_i\} \succ_c G + v_i v_{i+1}$.

In Lemma 3, Ananchuen et al. [2] gave basic properties of 3-CVC graphs.

Lemma 3. [2] Let G be a 3-CVC graph containing a vertex x. If D_x is a γ_c -set of G - x, then

- (1) $|D_x| = 2$ and
- (2) $D_x \cap N_G[x] = \emptyset$.

Simmons [10] showed that 3-TEC graphs have $\alpha \leq \delta + 2$. Ananchuen [1] observed that a 3-CEC graph is also 3-TEC and vice versa. Thus every 3-CEC graph satisfies $\alpha \leq \delta + 2$. For 3-CEC graphs, the result that $\alpha = \delta + 2$ was established by Kaemawichanurat et al. [9]. These results can be combined into the following theorem.

Theorem 2. [10] If G is a 3-CEC graph with $\delta \geq 2$, then $\alpha \leq \delta + 2$. Furthermore, if $\alpha = \delta + 2$, then there is the unique vertex $a \in V(G)$ so that $deg(a) = \delta$ and the subgraph G[N[a]] is complete.

We previously established [7] some results on maximal 3-CVC graphs.

Lemma 4. [7] Suppose that G is a maximal 3-CVC graph having a cut set $S \subseteq V(G)$ and let C_1, C_2, \ldots, C_r be the components that are obtained from G-S. Further, we let $x \in V(G)$. If $x \in V(C_i) \cup S$ which $|V(C_i)| > 1$ or $r \geq 3$, then

- (1) $D_x \cap S \neq \emptyset$ and
- (2) S is not dominated by x.

Lemma 5. [7] Suppose that G is a maximal 3-CVC graph having a cut set $S \subseteq V(G)$ and let C_1, C_2, \ldots, C_r be the components that are obtained from G - S. Further, for some $i \in \{1, 2, \ldots, r\}$, we let $x \in V(C_i)$. Then

- (1) Let $y \in V(C_j)$ for some $j \in \{1, 2, ..., r\}$ such that $\{x, y\}$ does not dominate G. If $r \geq 3$ or $|V(C_i)|, |V(C_j)| > 1$, then $|D_{xy} \cap \{x, y\}| = 1$ and $|D_{xy} \cap S| = 1$.
- (2) If $c \in D_x$ is an isolated vertex in S, then r = 2 and $\{u\} = V(C_j)$ for some $j \in \{1, 2\}$, where $\{u\} = D_x \{c\}$.

In [7], we further characterized all maximal 3-CVC graphs whose smallest cut set contains no edges.

Theorem 3. [7] If G is a maximal 3-CVC graph having a smallest cut set S. If S is independent, then G is isomorphic to $G_3 = \mu(K_s)$.

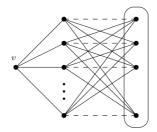


Figure 1. A graph $G_3 = \mu(K_s)$

In previous work [6], we established an upper bound for the independence number of maximal 3-CVC graphs in terms of the minimum degree.

Theorem 4. [6] Let G be a maximal 3-CVC graph. Then $\alpha \leq \delta$.

3. Connectivity of Maximal 3-CVC Graphs

In this section, we use Theorem 4 to prove that every maximal 3-CVC graph satisfies $\alpha \leq \kappa$. We further construct examples of such graphs for which $\alpha = \kappa$. In [7], we completely characterized all maximal 3-CVC graphs having connectivity at most three. Thus, we focus on $|S| = \kappa \geq 4$. Let C_1, \ldots, C_m be the component of G - S. In particular, we let $H_1 = \bigcup_{i=1}^{\lfloor \frac{m}{2} \rfloor} V(C_i)$ and $H_2 = \bigcup_{i=\lfloor \frac{m}{2} \rfloor + 1}^m V(C_i)$. Let I be a maximum independent set of G, $I_i = I \cap H_i$ and $|I_i| = \alpha_i$ for $i \in \{1, 2\}$. Then $I = I_1 \cup I_2 \cup (S \cap I)$. Let $|I_1 \cup I_2| = p$.

Theorem 5. If G is a 3-CVC graph having independence number α and connectivity κ , then $\alpha \leq \kappa$

Proof. For contradiction, assume that $\kappa + 1 \leq \alpha$. So $|S| + 1 \leq \alpha_1 + \alpha_2 + |S \cap I|$. Hence

$$|S - I| + 1 = |S| - |S \cap I| + 1 \le \alpha_1 + \alpha_2 \tag{3.1}$$

Claim 1. $|V(C_i)| > 1$ for all $1 \le i \le r$, and $|H_i| > 1$.

Suppose that $V(C_i) = \{c\}$ for some $i \in \{1, 2, ..., r\}$. So by Theorem 4, $N_G(c) \subseteq S$. Then we have

$$\delta \le \deg_G(c) < |S| + 1 = \kappa + 1 \le \alpha \le \delta,$$

a contradiction, thus establishing Claim 1.

Let $p = \alpha_1 + \alpha_2$ and $\{a_1, a_2, \ldots, a_p\} = \bigcup_{i=1}^2 I_i$. If p = 1, then, by (3.1), |S - I| = 0. This implies that $S \cap I = S$ which implies that the set S is independent. Note that G is G_3 by Theorem 3. Hence, $N_{G_3}(x)$ in the graph G_3 is a minimum cut set which $G_3 - N_{G_3}(x)$ has a component containing exactly one vertex x. This contradicts Claim 1. Thus, p > 1.

Claim 2. $|D_{ab} \cap \{a, b\}| = 1$ and $|D_{ab} \cap (S - I)| = 1$ for any $a, b \in \bigcup_{i=1}^{2} I_i$.

Since $|S| \ge 4$ and $2 \le p = \alpha_1 + \alpha_2$, if $p \ge 3$, then $\bigcup_{i=1}^2 I_i - \{a, b\} \ne \emptyset$. If p = 2, then, by (3.1), $|S| - |S \cap I| + 1 \le 2$. Because $|S| \ge 4$, we get $|S \cap I| \ge 3$, specifically, $S \cap I \ne \emptyset$. Thus $(S \cap I) \cup (\bigcup_{i=1}^2 I_i - \{a, b\}) \ne \emptyset$ inplying that $\{a, b\}$ does not dominate G. By Lemma 5(1) and Claim 1, $|D_{ab} \cap \{a, b\}| = 1$ and $|D_{ab} \cap S| = 1$. Renaming vertices if necessary, we let $a \in D_{ab}$ and $\{a'\} = D_{ab} \cap S$. Since $(G + ab)[D_{ab}]$ is connected, $a' \in S - I$. This proves Claim 2.

Assume that p = 2. We consider the graph $G + a_1 a_2$. By Claim 2, $|D_{a_1 a_2} \cap (S-I)| = 1$. Since $D_{a_1 a_2} \cap (S-I) \subseteq S - I$, by (3.1),

$$1 \le |S - I| \le \alpha_1 + \alpha_2 - 1 = p - 1 = 1.$$

Therefore, $D_{a_1a_2} \cap (S-I) = S-I$. If $p \ge 3$, then Lemma 2 yields that the vertices a_1, a_2, \ldots, a_p can be renamed as x_1, x_2, \ldots, x_p and there is a corresponding path $y_1, y_2, \ldots, y_{p-1}$ for which $\{x_i, y_i\} \succ_c G + x_i x_{i+1}$ for $i \in \{1, 2, \ldots, p-1\}$. Since

 $\{x_1, x_2, \ldots, x_p\} \subseteq \bigcup_{i=1}^2 I_i$, it follows by Claim 2 that $\{y_1, y_2, \ldots, y_{p-1}\} \subseteq S - I$. So, the equation (3.1) gives $p - 1 \leq |S - I| \leq \alpha_1 + \alpha_2 - 1 = p - 1$. In both cases p = 2 and $p \geq 3$, we have that $\{y_1, y_2, \ldots, y_{p-1}\} = S - I$.

When p = 2, then it can be checked that the subgraph $G[\{y_1\}]$ is complete. When $p \geq 3$. Consider $G + x_i x_j$ for $2 \leq i \neq j \leq p$. By Claim 2, $|D_{x_i x_j} \cap \{x_i, x_j\}| = 1$ and $|D_{x_i x_j} \cap (S - I)| = 1$. Renaming vertices if necessary, w let $x_i \in D_{x_i x_j}$. As $S - I = \{y_1, y_2, \ldots, y_{p-1}\}$, by Lemma 1(3), $D_{x_i x_j} \cap (S - I) = \{y_{j-1}\}$. Since $x_i y_{i-1} \notin E(G), y_{i-1} y_{j-1} \in E(G)$. Therefore, $G[\{y_1, y_2, \ldots, y_{p-1}\}]$ is a clique. Since $\{x_1, x_2, \ldots, x_p\} \subseteq I, y_i \succ (S \cap I)$ for $1 \leq i \leq p-1$. Hence $y_i \succ S$. This contradicts Lemma 4(2). Therefore, $\alpha \leq \kappa$.

By Theorem 3, the graph $G_3 = \mu(K_s)$ has $N_{G_3}(x)$ as a minimum cut set as well as a maximum independent set. Therefore $\alpha(G_3) = \kappa(G_3)$. Hence, the bound in Theorem 5 is sharp. In particular, for maximal 3-CVC graphs satisfying $\alpha = \kappa$, we have that $|S - I| + |S \cap I| = |S| = \alpha_1 + \alpha_2 + |S \cap I|$. So

$$|S - I| = \alpha_1 + \alpha_2 = p. (3.2)$$

Renaming if necessary, we let $\alpha_1 \leq \alpha_2$. We will prove that if a maximal 3-CVC graph G satisfies $\alpha = \kappa$, then, any minimum cut set S, the graph G - S has a component containing exactly one vertex. We may assume with a contradiction that G - S has no singleton component. Thus, $|H_i| > 1$ for all $1 \leq i \leq 2$.

Lemma 6. For a maximal 3-CVC graph G, if $|V(C_i)| > 1$ for all $1 \le i \le m$ and $\alpha = \kappa$, then $p \ge 3$.

Proof. Suppose that $|H_i| > 1$ for all $1 \le i \le 2$. Firstly, assume that p = 0. So $S = S \cap I$. Theorem 3 implies that G is G_3 . hence, G_3 has $N_{G_3}(x)$ as a minimum cut set and $G - N_{G_3}(x)$ has x as a singleton component, a contradiction. We discuss 2 cases.

Case 1. p = 1.

By (3.2), |S - I| = 1. We let $\{a_1\} = \bigcup_{i=1}^2 I_i, \{v\} = S - I$, and $\{a_2, a_3, \ldots, a_\alpha\} = S \cap I$. Therefore $\alpha_1 = 0$ and $\alpha_2 = 1$. Therefore $a_1 \in H_2$. As $|S| \ge 4$, we have that $|S \cap I| \ge 3$. By Lemma 2, we can rename the vertices in $\{a_2, a_3, \ldots, a_\alpha\}$ as $x_1, x_2, \ldots, x_{\alpha-1}$ for which there is a corresponding path $P = y_1, y_2, \ldots, y_{\alpha-2}$ such that $\{x_i, y_i\} \succ_c G + x_i x_{i+1}$ for $i \in \{1, \ldots, \alpha - 2\}$. Note that $y_i \ne a_1$ because every vertex y_i is adjacent to a vertex of I for $1 \le \alpha - 2$. To dominate $a_1, y_i \in H_2 \cup \{v\}$. We consider 2 subcases.

Subcase 1.1. The vertex v is not in the path P.

Thus $V(P) \subseteq H_2$, and hence $x_i \succ H_1$ for $1 \le i \le \alpha - 2$. Because $N_{H_1}(v) \ne \emptyset$, it follows that S is a minimum cut set. Let $u \in N_{H_1}(v)$. Thus $u \succ \{x_1, x_2, \ldots, x_{\alpha-2}, v\}$. By Lemma 4(2) we get that $ux_{\alpha-1} \notin E(G)$. For $G + uy_{\alpha-2}$. Since $ux_{\alpha-1}, y_{\alpha-2}x_{\alpha-1} \notin E(G)$. Lemma 5(1) implies that $|D_{uy_{\alpha-2}} \cap \{u, y_{\alpha-2}\}| = 1$ and $|D_{uy_{\alpha-2}} \cap S| = 1$. Hence, $y_{\alpha-2} \in D_{uy_{\alpha-2}}$ or $u \in D_{uy_{\alpha-2}}$. When $y_{\alpha-2} \in D_{uy_{\alpha-2}}$, by Lemma 1(3), $\{x_1, x_2, \dots, x_{\alpha-2}, v\} \cap D_{uy_{\alpha-2}} = \emptyset. \text{ Hence } x_{\alpha-1} \in D_{uy_{\alpha-2}}. \text{ But note that } G[D_{uy_{\alpha-2}}] \text{ is connected. Hence } u \in D_{uy_{\alpha-2}}. \text{ Since } (G+uy_{\alpha-2})[D_{uy_{\alpha-2}}] \text{ is connected, } x_{\alpha-1} \notin D_{uy_{\alpha-2}}. \text{ If } x_i \in D_{uy_{\alpha-2}} \text{ for all } 1 \leq i \leq \alpha-2, \text{ then no vertex in } D_{uy_{\alpha-2}} \text{ is adjacent to } x_{\alpha-1}. \text{ Thus } v \in D_{uy_{\alpha-2}}, \text{ and therefore } va_1 \in E(G). \text{ Consider } G+ua_1. \text{ Since } ux_{\alpha-1}, a_1x_{\alpha-1} \notin E(G), \text{ by Lemma } \mathbb{5}(1), |D_{ua_1} \cap \{u, a_1\}| = 1 \text{ and } |D_{ua_1} \cap S| = 1. \text{ Hence either } u \in D_{ua_1} \text{ or } a_1 \in D_{ua_1}. \text{ In the case } u \in D_{ua_1}, v \notin D_{ua_1} \text{ because of Lemma } 1(3). \text{ Since } (G+ua_1)[D_{ua_1}] \text{ is connected, } x_{\alpha-1} \notin D_{ua_1}. \text{ To dominate } x_{\alpha-1}, D_{ua_1} \cap \{x_1, x_2, \dots, x_{\alpha-2}\} \neq \emptyset. \text{ So } D_{ua_1} \cap S = \emptyset, \text{ a contradiction. Hence } a_1 \in D_{ua_1}. \text{ Lemma } 1(3) \text{ implies that } v \notin D_{ua_1}. \text{ Since } (G+ua_1)[D_{ua_1}] \text{ is connected, } x_{\alpha-1}\} \cap D_{ua_1} = \emptyset. \text{ Note that } D_{ua_1} \cap S = \emptyset, \text{ a contradiction. Therefore, Subcase } 1.1 \text{ cannot occur.}$

Subcase 1.2. The vertex v is in the path P.

In this case, $y_j = v$ for some $j \in \{1, 2, ..., \alpha - 2\}$. Hence $x_i \succ H_1$ for $i \neq j$, and $\alpha - 1$ and $va_1 \in E(G)$. Because $a_1, x_{\alpha-1} \in I$, it follows that a_1 is not adjacent to $x_{\alpha-1}$. If $x_{\alpha-1}$ is not adjacent to the vertex $w \in H_1$, then consider $G + wa_1$. Lemma 5(1) yields that $|D_{wa_1} \cap \{w, a_1\}| = 1$ and $|D_{wa_1} \cap S| = 1$. Thus either $w \in D_{wa_1}$ or $a_1 \in D_{wa_1}$. In both cases, $x_{\alpha-1} \notin D_{wa_1}$ because $(G + wa_1)[D_{wa_1}]$ is connected. If $w \in D_{wa_1}$, then Lemma 1(3) gives $v \notin D_{wa_1}$. To dominate $x_{\alpha-1}, \{x_1, x_2, \ldots, x_{\alpha-2}\} \cap D_{wa_1} = \emptyset$. So $D_{wa_1} \cap S = \emptyset$, a contradiction. Hence $a_1 \in D_{wa_1}$. By the connectedness of $(G + wa_1)[D_{wa_1}], D_{wa_1} \cap \{x_1, x_2, \ldots, x_{\alpha-1}\} = \emptyset$. To dominate $x_{j+1}, v \notin D_{wa_1}$. We then have $D_{wa_1} \cap S = \emptyset$, a contradiction. Thus $x_{\alpha-1} \succ H_1$. Clearly $x_i \succ H_1$ for $i \neq j$. Note that S is a minimum cut set. Thus $N_{H_1}(v) \neq \emptyset$. Let $u' \in N_{H_1}(v)$. Lemma 4(2) implies that $u' \succ S - \{x_j\}$. For $G + u'a_1$. By using the same arguments of $G + ua_1$, we get a contradiction. Therefore Case 1 cannot exist.

Case 2. p = 2. Suppose $\{a_1, a_2\} = \bigcup_{i=1}^2 I_i$

Suppose $\{a_1, a_2\} = \bigcup_{i=1}^2 I_i$. By (3.2), we have that |S - I| = p = 2. As $|S| \ge 4$, we have $|S \cap I| \ge 2$, specifically, $S \cap I \ne \emptyset$ and $\{a_1, a_2\}$ does not dominate G. Consider $G + a_1 a_2$. Lemma 5(1) gives that $|D_{a_1 a_2} \cap \{a_1, a_2\}| = 1$ and $|D_{a_1 a_2} \cap S| = 1$. Without loss of generality, assume $a_1 \in D_{a_1 a_2}$. By the connectedness of $(G + a_1 a_2)[D_{a_1 a_2}]$, $|(S - I) \cap D_{a_1 a_2}| = 1$. Let $\{u\} = (S - I) \cap D_{a_1 a_2}$. Thus $ua_1 \in E(G)$, $ua_2 \notin E(G)$, and $u \succ S \cap I$. If we let $v \in S - (I \cup \{u\})$, then by Lemma 4(2), we have that $uv \notin E(G)$. Thus $a_1v \in E(G)$

Subcase 2.1. $\alpha_1 = 1$ and $\alpha_2 = 1$.

Renaming vertices if necessary, suppose that $a_1 \in I_1$ and $a_2 \in I_2$. Since $|S \cap I| \ge 2$, there exist $a_3, a_4 \in S \cap I$. Consider $G + a_3 a_4$. Lemma 1(2) gives that $D_{a_3 a_4} \cap \{a_3, a_4\} \neq \emptyset$. To dominate $a_1, D_{a_3 a_4} \neq \{a_3, a_4\}$. Without loss of generality, let $a_3 \in D_{a_3 a_4}$. Lemma 1(1) implies that $|D_{a_3 a_4} - \{a_3\}| = 1$. Let $y \in D_{a_3 a_4} - \{a_3\}$. To dominate $\{a_1, a_2\}, y \notin \bigcup_{i=1}^2 H_i$. By the connectedness of $(G + a_3 a_4)[D_{a_3 a_4}], y \in \{v, u\}$. Since $uv \notin E(G)$, then $a_3 u, a_3 v \in E(G)$. Consider $G - a_3$. Lemma 3(2) implies that $D_{a_3} \cap \{u, v\} = \emptyset$, and Lemma 4(1) yields that $D_{a_3} \cap S \neq \emptyset$. Hence there exists $z \in D_{a_3} \cap (S \cap I)$. Lemma 3(1) implies that $|D_{a_3} - \{z\}| = 1$. We may let $\{z'\} = D_{a_3} - \{z\}$. As $z \in S \cap I$, we have z is not adjacent to a_1 . Hence $z' \in H_1$ to dominate a_1 . Therefore D_{a_3} does not dominate a_2 contradicting D_{a_3} is a dominating set of $G - a_3$. Subcase 2.1 cannot occur.

Subcase 2.2. $\alpha_1 = 0$ and $\alpha_2 = 2$.

Hence $u \succ H_1$. Let $b_1 \in H_1$. Clearly $\{a_1, b_1\}$ does not dominate G. Consider $G + a_1b_1$. Lemma 5(1) gives that $|D_{a_1b_1} \cap S| = 1$ and either $b_1 \in D_{a_1b_1}$ or $a_1 \in D_{a_1b_1}$. In the first case, $\{u, v\} \cap D_{a_1b_1} = \emptyset$ by Lemma 1(3). To dominate $a_2, D_{a_1b_1} \cap (S \cap I) = \emptyset$. Hence, $D_{a_1b_1} \cap S = \emptyset$, a contradiction. Therefore, $a_1 \in D_{a_1b_1}$. To dominate $H_1 - b_1$ and by the connectedness of $(G + a_1b_1)[D_{a_1b_1}]$, $(D_{a_1b_1} - \{a_1\}) \subseteq \{u, v\}$. Lemma 1(3) implies that $v \in D_{a_1b_1}$. Thus $v \succ H_1 - b_1$. Let $b_2 \in H_1 - \{b_1\}$. Therefore $b_2 \succ \{u, v\}$. Consider $G + a_1b_2$. Lemma 5(1) implies that we have $|D_{a_1b_1} \cap S| = 1$ and either $a_1 \in D_{a_1b_2}$ or $b_2 \in D_{a_1b_2}$. In the first case, $\{u, v\} \cap D_{a_1b_2} = \emptyset$ by Lemma 1(3). By the connectedness of $(G + a_1b_2)[D_{a_1b_2}], (S \cap I) \cap D_{a_1b_2} = \emptyset$. Thus $D_{a_1b_2} \cap S = \emptyset$, a contradiction. Therefore, $b_2 \in D_{a_1b_2}$. To dominate $a_2, (S \cap I) \cap D_{a_1b_2} = \emptyset$. Lemma 1(3) yields that $D_{a_1b_2} \cap \{u, v\} = \emptyset$. Therefore $D_{a_1b_2} \cap S = \emptyset$, a contradiction and so Case 2 cannot occur. Thus $p \ge 3$.

By Lemma 6, we have that $p \ge 3$. By Lemma 2, the vertices in $\bigcup_{i=1}^{2} I_i$ can be ordered as x_1, x_2, \ldots, x_p and there exists a path $y_1, y_2, \ldots, y_{p-1}$ with $\{x_i, y_i\} \succ_c G + x_i x_{i+1}$ for $i = 1, 2, \ldots, p-1$.

Lemma 7. $y_i \succ S \cap I$ and $y_i \in S - I$ for all $1 \le i \le p - 1$.

Proof. Since $\{x_i, y_i\} \succ_c G + x_i x_{i+1}$ for i = 1, 2, ..., p-1 and $x_i \in I, y_i \succ S \cap I$. By the connectedness of $(G + x_i x_{i+1})[D_{x_i x_{i+1}}]$ and by Lemma 5(1), $y_i \in S - I$. \Box

Lemma 7 implies that $\{y_1, y_2, ..., y_{p-1}\} \subseteq S - I$. By (3.2), $|(S - I) - \{y_1, y_2, ..., y_{p-1}\}| = 1$. Let $\{y_p\} = (S - I) - \{y_1, y_2, ..., y_{p-1}\}.$

Lemma 8. For $i, j \in \{2, 3, ..., p\}$, if $y_p x_i, y_p x_j \in E(G)$, then $y_{i-1}y_{j-1} \in E(G)$.

Proof. Consider $G + x_i x_j$. Lemma 5(1) yields that $|D_{x_i x_j} \cap \{x_i, x_j\}| = 1$ and $|D_{x_i x_j} \cap S| = 1$. Without loss of generality, let $x_i \in D_{x_i x_j}$ and $\{a\} = D_{x_i x_j} \cap S$. By the connectedness of $(G + x_i x_j)[D_{x_i x_j}]$, $a \in S - I$. Since $x_j \succ (S - I) - \{y_{j-1}\}$, it follows by Lemma 1(3) that $a = y_{j-1}$. Since $y_{i-1}x_i \notin E(G)$, $y_{j-1}y_{i-1} \in E(G)$.

Lemma 9. $\alpha_1, \alpha_2 > 0.$

Proof. By the assumption that $\alpha_1 \leq \alpha_2$, we can suppose for contradiction that $\alpha_1 = 0$. Clearly $\{x_1, x_2, ..., x_p\} \subseteq H_2$ and $y_i \succ H_1$ for all $1 \leq i \leq p-1$. Note that S is a minimum cut set, so $N_{H_1}(y_p) \neq \emptyset$. Let $b \in N_{H_1}(y_p)$. Therefore $b \succ S-I$. Consider $G + x_1b$. Lemma 5(1) yields that $|D_{x_1b} \cap S| = 1$ and either $b \in D_{x_1b}$ or $x_1 \in D_{x_1b}$. Suppose that $b \in D_{x_1b}$. To dominate $x_2, D_{x_1b} \cap (S-I) \neq \emptyset$. Lemmas 2 and 1(3) then imply that $D_{x_1b} \cap (S-I) = \{y_p\}$. So $y_p \succ \{x_2, x_3, \ldots, x_p\}$. Lemma 8 gives, further, that $G[y_1, y_2, \ldots, y_{p-1}]$ is a clique. Lemma 7 then yields that $y_i \succ S \cap I$ for $i = 1, 2, \ldots, p-1$. By Lemma 4(2), $y_i y_p \notin E(G)$ for $i = 1, 2, \ldots, p-1$.

 $y_1y_p \notin E(G)$. Because $\{x_1, y_1\} \succ_c G + x_1x_2, x_1y_p \in E(G)$, contradicting Lemma 1(3). Therefore $x_1 \in D_{x_1b}$. By the connectedness of $(G + x_1b)[D_{x_1b}], D_{x_1b} \cap (S \cap I) = \emptyset$. Lemma 1(3) implies that $D_{x_1b} \cap (S - I) = \emptyset$. Thus $D_{x_1b} \cap S = \emptyset$, contradicting Lemma 5(1).

Theorem 6. Let G be a maximal 3-CVC graph having S a minimum cut set. If $\alpha = \kappa$, then G - S has at least one component with exactly one vertex.

Proof. Assume that G is a maximal 3-CVC graph with $\alpha = \kappa$. By (3.2), $|S - I| = \alpha_1 + \alpha_2$. Suppose that G - S has no singleton component, specifically $|H_i| > 1$ for i = 1, 2. Let $\alpha_1 + \alpha_2 = p$. Lemma 6 implies that $p \geq 3$, and Lemma 9 gives that $0 < \alpha_1 \leq \alpha_2$. We also define x_1, x_2, \ldots, x_p , a path $y_1, y_2, \ldots, y_{p-1}$ and a vertex y_p as in the previous lemmas.

We may assume that there exist x_i, x_j for $i, j \in \{2, 3, ..., p\}$ such that $y_p \in D_{x_i x_j}$. Lemma 1(1) and 1(2) then imply that either $D_{x_ix_j} = \{x_i, y_p\}$ or $D_{x_ix_j} = \{x_j, y_p\}$. Without loss of generality, let $D_{x_i x_j} = \{x_j, y_p\}$. Thus $y_p \succ \{x_1, x_2, \dots, x_p\} - \{x_i\}$. Since $\{x_i, y_i\} \succ_c G + x_i x_{i+1}, y_i y_p \in E(G)$. Lemma 8 yields that $G[\{y_1, y_2, \dots, y_{p-1}\}]$ $\{y_{i-1}\}$ is a clique. Since $y_i y_{i-1} \in E(G), y_i \succ S - I$. Lemma 7 implies that $y_i \succ S$ $S \cap I$. Therefore $y_i \succ S$, contradicting Lemma 4(2). Hence, $y_p \notin D_{x_i x_j}$ for any $i, j \in \{2, 3, \dots, p\}$. By using the same arguments as in the proof of Lemma 8, the subgraph $G[\{y_1, y_2, \ldots, y_{p-1}\}]$ is complete. As $y_i \succ S \cap I$, by Lemma 4(2), we must have $y_i y_p \notin E(G)$ for $i \in \{1, 2, \dots, p-1\}$. Since $\{x_i, y_i\} \succ_c G + x_i x_{i+1}$ for $i \in \{1, 2, \dots, p-1\}$. $\{1, 2, \ldots, p-1\}, x_i y_p \in E(G)$. So $x_1 \succ S - I$. By Lemma 4(2), $S \cap I \neq \emptyset$, since otherwise $x_1 \succ S$. Let $x_1 \in H_i$ for some $i \in \{1,2\}$. Then, we consider $G - x_1$. Since $|H_j| > 1$ for j = 1, 2, neither $D_{x_1} \subseteq H_1$ nor $D_{x_1} \subseteq H_2$. Lemma 4(1) gives, further, that $D_{x_1} \cap S \neq \emptyset$. Lemma 3(2) implies that $D_{x_1} \cap (S - I) = \emptyset$. Thus $D_{x_1} \cap (S \cap I) \neq \emptyset$. Let $u_1 \in D_{x_1} \cap (S \cap I)$. By Lemma 3(1), $|D_{x_1} - \{u_1\}| = 1$. Let $\{w\} = D_{x_1} - \{u_1\}$. If $w \in H_i$, then $u_1 \succ H_{3-i}$. Since $u_1 \in I$, $\alpha_{3-i} = 0$, contradicting Lemma 9. So $w \in H_{3-i}$ and $u_1 \succ H_i - x_1$. Since $u_1 \in I$, $I_i = \{x_1\}$. It follows that $\{x_2, x_3, \ldots, x_p\} \subseteq H_{3-i}.$

Claim 1. For all
$$u \in S \cap I$$
, u does not dominate $S - I$.

Assume that $u \succ S - I$. For G - u, Lemma 4(1) implies that $D_u \cap S \neq \emptyset$. By Lemma 3(2), we have that $D_u \cap (S - I) = \emptyset$. Hence there exists $u' \in D_u \cap (S \cap I)$. Lemma 3(1) gives that $|D_u - \{u'\}| = 1$. Let $\{z\} = D_u - \{u'\}$. To dominate x_1 , $z \in H_i$. Clearly D_u does not dominate I_{3-i} , so we have a contradiction. This proves Claim 1.

Claim 1 and Lemma 7 imply that y_p is not adjacent to any vertex in $S \cap I$. Therefore, y_p is an isolated vertex in S.

Claim 2. $y_1 \succ H_i$.

Suppose y_1 is not adjacent to $b_1 \in H_i$. Consider $G + b_1 x_2$. We see that $b_1 y_1, x_2 y_1 \notin E(G)$. Lemma 5(1) gives that $|D_{b_1 x_2} \cap S| = 1$ and either $b_1 \in D_{b_1 x_2}$ or $x_2 \in D_{b_1 x_2}$. If $b_1 \in D_{b_1 x_2}$, then $(S - \{y_1, y_p\}) \cap D_{b_1 x_2} = \emptyset$ to dominate I_{3-i} . Since $y_p x_2 \in E(G)$, by Lemma 1(3), $y_p \notin D_{b_1 x_2}$. By the connectedness of $(G + b_1 x_2)[D_{b_1 x_2}]$, $y_1 \notin D_{b_1x_2}$. Therefore $D_{b_1x_2} \cap S = \emptyset$, a contradiction. Hence $x_2 \in D_{b_1x_2}$. To dominate $I_{3-i} \cup (S \cap I), D_{b_1x_2} \cap \{y_2, y_3, \dots, y_p\} = \emptyset$. By the connectedness of $(G+b_1x_2)[D_{b_1x_2}], ((S \cap I) \cup \{y_1\}) \cap D_{b_1x_2} = \emptyset$. Therefore, $D_{b_1x_2} \cap S = \emptyset$, a contradiction, establishing Claim 2.

Let $b_1 \in H_i - \{x_1\}$. Recall that $u_1 \succ H_i - x_1$. Clearly $b_1u_1 \in E(G)$. By Claim 2 and Lemma 2, $b_1 \succ \{y_1, y_2, \dots, y_{p-1}\} \cup \{u_1\}$. Consider $G - b_1$. Lemma 4(1) implies that $D_{b_1} \cap S \neq \emptyset$. Lemma 3(2) gives that $D_{b_1} \cap (\{y_1, y_2, \dots, y_{p-1}\} \cup \{u_1\}) = \emptyset$. If there is $u_2 \in D_{b_1} \cap ((S \cap I) - \{u_1\})$, then, by Lemma 3(1), let $\{y'\} = D_{b_1} - \{u_2\}$. To dominate $x_1, y' \in H_i$. Thus D_{b_1} does not dominate x_2 , a contradiction. Therefore, $\{y_p\} = D_{b_1} \cap S$. Note that y_p is an isolated vertex in S, so by Lemma 5(2), at least one of C_i is a singleton component, a contradiction. \Box

Theorem 6 leads to the following corollary.

Corollary 1. If G is a maximal 3-CVC graph and $\alpha = \kappa$, then $\kappa = \delta$.

Proof. Theorem 6 implies that G - S has a component containing exactly one vertex. Renaming if necessary, we let $V(C_i) = \{c\}$. Hence $N_G(c) \subseteq S$. Thus, $\delta \leq \deg_G(c) \leq |S| = \kappa \leq \delta$.

Now we give the construction of the class $\mathcal{G}_4(s)$ of maximal 3-CVC graphs with $\alpha < \kappa$ and $\kappa < \delta$ in order to show that the condition $\alpha = \kappa$ is needed in Corollary 1. We may let R, T, W, and Z be disjoint sets of vertices where $R = \{r_1, r_2, \ldots, r_s\}$, $T = \{t_1, t_2, \ldots, t_s\}$, $W = \{w_1, w_2, \ldots, w_s\}$, $Z = \{z_1, z_2, \ldots, z_s\}$, and $s \ge 3$. Note that we can construct a graph G in the class $\mathcal{G}_4(s)$ from R, T, W, and Z by adding edges depending on the join operations:

- for $1 \leq i \leq s$, $r_i \vee R \cup T \cup W \{r_i, t_i\}$,
- $t_i \vee R \cup W \cup Z \{w_i, r_i\},\$
- $w_i \vee R \cup T \cup Z \{t_i, z_i\},\$
- $z_i \vee Z \cup T \cup W = \{z_i, w_i\}$ and
- adding edges so that the vertices in R and Z form cliques.

It can be checked that, for $1 \leq i \leq s$, $N_G(r_i) = R \cup T \cup W - \{r_i, t_i\}$, $N_G(t_i) = R \cup W \cup Z - \{w_i, r_i\}$, $N_G(w_i) = R \cup T \cup Z - \{t_i, z_i\}$, and $N_G(z_i) = Z \cup T \cup W = \{z_i, w_i\}$. Note that the sets T and W are independent. Figure 2 shows a graph G, where the double lines joining between two sets mean that every vertex in one set is joined to all vertices in the other set.

Lemma 10. If $G \in \mathcal{G}_4(s)$, then G is a maximal 3-CVC graph.

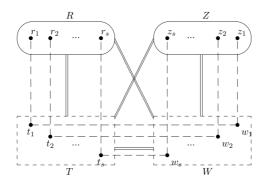


Figure 2. A graph G in the class $\mathcal{G}_4(s)$

Proof. Note that $\{r_1, t_2, w_2\} \succ_c G$. Thus $\gamma_c(G) \leq 3$. Let $u, v \in V(G)$ such that $\{u, v\} \succ_c G$. Suppose that $i \in \{1, ..., s\}$, and let $u = r_i$. To dominate the set Z, we have that $v \notin R$. For $v \in T$, we have, by connected, $v \neq t_i$. Hence $\{u, v\}$ does not dominate t_i . To dominate Z, we have that $v \notin W$. Hence $v \in Z$ implying that the subgraph $G[\{u, v\}]$ is disconnected, a contradiction. Thus, $\{u, v\} \cap R = \emptyset$. Note that, by symmetry, $\{u, v\} \cap Z = \emptyset$. Thus $\{u, v\} \subseteq T \cup W$. Renaming vertices if necessary, assume that $u = t_i$. Then, by connected, $v \in W - \{w_i\}$. Therefore $\{u, v\}$ does not dominate w_i . Thus $\gamma_c(G) = 3$.

To consider the criticality, we let $u, v \in V(G)$ such that $uv \notin E(G)$. For $1 \le i \le s$, if $\{u, v\} = \{r_i, t_i\}$, then $D_{uv} = \{r_i, t_i\}$. If $\{u, v\} = \{t_i, w_i\}$, then $D_{uv} = \{t_i, w_i\}$. If $\{u, v\} = \{w_i, z_i\}$, then $D_{uv} = \{w_i, z_i\}$. For $1 \le i \ne j \le s$, if $\{u, v\} = \{t_i, t_j\}$, then $D_{uv} = \{t_i, r_j\}$. If $\{u, v\} = \{w_i, w_j\}$, then $D_{uv} = \{w_i, z_j\}$. If $\{u, v\} = \{r_i, z_l\}$ where $l \in \{1, 2, \ldots, s\}$, then $D_{uv} = \{r_i, z_l\}$. Thus G is a 3-CEC graph. Let $v \in V(G)$. For $1 \le i \ne j \le s$, if $u = r_i$, then $D_v = \{t_i, z_j\}$. If $v = t_i$, then $D_v = \{t_j, r_i\}$. If $v = w_i$, then $D_v = \{z_i, w_j\}$. Finally, if $v = z_i$, then $D_v = \{w_i, r_j\}$. Therefore G is a maximal 3-CVC graph.

Note that G has T as a maximum independent set and has $T \cup W$ as a minimum cut set. Hence $\alpha = s < 2s = \kappa$. Furthermore, for all $v \in V(G)$, G is a regular graph with $\deg_G(v) = 3s - 2$. Because $s \ge 3$, it follows that $\delta = 3s - 2 > 2s = \kappa$. Thus, $\alpha = \kappa$ is needed to prove Corollary 1.

Finally, we consider the Hamiltonian property of maximal 3-CVC graphs. Using Theorem 1, we obtain that:

Corollary 2. Let G be a 3-connected maximal 3-CVC graph G. If $\kappa < \delta$, then G is Hamiltonian-connected.

Proof. Let $\kappa < \delta$. Theorem 5 and Corollary 1 then yield that $\alpha < \kappa$. Hence Theorem 1 implies that G is Hamiltonian-connected.

Therefore, to prove that every 3-connected maximal 3-CVC graph is Hamiltonianconnected, we need only prove the following conjecture.

Conjecture 7. For any 3-connected maximal 3-CVC graph G, if $\alpha = \kappa = \delta$, then G is Hamiltonian-connected.

Conflict of interest. The authors declare that they have no conflict of interest.

Data Availability. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

- N. Ananchuen, On domination critical graphs with cut vertices having connected domination number 3, 2 (2007), no. 61–64, 3041–3052.
- [2] W. Ananchuen, N. Ananchuen, and M.D. Plummer, Vertex criticality for connected domination, Util. Math. 86 (2011), 45–64.
- [3] J.A. Bondy and U.S.R. Murty, *Graph Theory*, Springer Publishing Company, Incorporated, 2008.
- [4] X. Chen, L. Sun, and D. Ma, Connected domination critical graphs, Appl. Math. Lett. 17 (2004), no. 5, 503–507. https://doi.org/10.1016/S0893-9659(04)90118-8.
- [5] V. Chvátal and P. Erdös, A note on hamiltonian circuits, Discrete Math. 2 (1972), no. 2, 111–113.
 - https://doi.org/10.1016/0012-365X(72)90079-9.
- [6] P. Kaemawichanurat, On the independence number of 3-cec graphs, Manuscript.
- [7] _____, Connected domination critical graphs, Ph.D. thesis, Curtin University, 2015.
- [8] P. Kaemawichanurat and L. Caccetta, Independence and connectivity of connected domination critical graphs, arXiv preprint arXiv:1911.04961 (2019).
- [9] P. Kaemawichanurat, L. Caccetta, and W. Ananchuen, Hamiltonicity of connected domination critical graphs, Ars Combin. 136 (2018), 127–151.
- [10] J. Simmons, Closure operations and hamiltonian properties of independent and total domination critical graphs, Ph.D. thesis, University of Victoria, 2005.
- [11] L. Zhang and F. Tian, Independence and connectivity in 3-domination-critical graphs, Discrete Math. 259 (2002), no. 1-3, 227–236. https://doi.org/10.1016/S0012-365X(02)00383-7.