Vector valued switching in the products of signed graphs

Albin Mathew* and K.A. Germina ${ }^{\dagger}$
Department of Mathematics, Central University of Kerala, Kasaragod - 671316, Kerala, India
*albinmathewamp@gmail.com
${ }^{\dagger}$ srgerminaka@gmail.com

Received: 16 June 2023; Accepted: 13 October 2023
Published Online: 20 October 2023

Abstract

A signed graph is a graph whose edges are labeled either as positive or negative. The concepts of vector valued switching and balancing dimension of signed graphs were introduced by S. Hameed et al. In this paper, we deal with the balancing dimension of various products of signed graphs, namely the Cartesian product, the lexicographic product, the tensor product, and the strong product.

Keywords: Signed graph, vector valued switching, balancing dimension, product of signed graphs.

AMS Subject classification: 05C22, 05C76

1. Introduction

Throughout this paper, unless otherwise mentioned, we consider only finite, simple, connected, and undirected signed graphs. For the standard notation and terminology in graphs and signed graphs, not given here, the reader may refer to [6] and [10, 11] respectively.
A signed graph $\Sigma=(G, \sigma)$ is a graph G, together with a function σ that assigns a sign +1 or -1 to each of its edges. The sign of a cycle in Σ is defined as the product of the signs of its edges, and Σ is balanced if it does not contain any negative cycles. A signed graph $\Sigma=(G, \sigma)$ is said to be "antibalanced" if the signed graph $-\Sigma=(G,-\sigma)$ is balanced. A switching function for Σ is a function $\zeta: V(\Sigma) \rightarrow\{-1,1\}$. For an edge $e=u v$ in Σ, the switched signature σ^{ζ} is defined as $\sigma^{\zeta}(e)=\zeta(u) \sigma(e) \zeta(v)$, and the switched signed graph is $\Sigma^{\zeta}=\left(G, \sigma^{\zeta}\right)$. The signs of cycles are unchanged by switching and every balanced (antibalanced) signed graph can be switched to an

[^0]all-positive (all-negative) signed graph. We call Σ_{1} and Σ_{2} switching equivalent, and write $\Sigma_{1} \sim \Sigma_{2}$, if there is a switching function ζ such that $\Sigma_{2}=\Sigma_{1}^{\zeta}$ (see [10, Section $3]$).
The notions of vector valued switching and balancing dimension of signed graphs were defined by Hameed et al. in [5]. In this paper, we focus on computing the balancing dimensions of various products of signed graphs such as the Cartesian product, the lexicographic product, the tensor product, and the strong product.
To begin with, we recall some notations, definitions and fundamental results from [5]. In what follows, $\Omega=\{-1,0,1\}$ and the inner product used is the same as that on \mathbb{R}^{k} restricted to Ω^{k}.

Definition 1. (Vector Valued Switching or k-switching) [5] Let $\Sigma=(G, \sigma)$ be a given signed graph where $G=(V, E)$. A vector valued switching function is a function $\zeta: V \rightarrow$ $\Omega^{k} \subset \mathbb{R}^{k}$ such that $\langle\zeta(u), \zeta(v)\rangle \neq 0$ for all edges $u v \in E$. The switched signed graph $\Sigma^{\zeta}=\left(G, \sigma^{\zeta}\right)$ has the signing

$$
\sigma^{\zeta}(u v)=\sigma(u v) \operatorname{sgn}(\langle\zeta(u), \zeta(v)\rangle) .
$$

Note that the switching that has been discussed so far in literature [10] can be considered as 1 -switching. Using vector valued switching, the balancing dimension for a signed graph is defined as follows.

Definition 2. (Balancing Dimension) [5] Let $\Sigma=(G, \sigma)$ be a given signed graph where $G=(V, E)$. We say that the balancing dimension of Σ is k, and write it as $\operatorname{bdim}(\Sigma)$, if $k \geq 1$ is the least integer such that a vector-valued switching function $\zeta: V \rightarrow \Omega^{k} \subset \mathbb{R}^{k}$ switches Σ to an all positive signed graph.
Such a k-switching function ζ is called a positive k-switching function (briefly a k-positive function) for Σ.

One may note that $\operatorname{bdim}(\Sigma)=1$ if and only if Σ is balanced. Also, the balancing dimension of a subgraph of Σ cannot exceed the balancing dimension of Σ. We will also make use of the fact that the balancing dimension is 1 -switching invariant (see [5]).

2. Balancing dimension of the product of signed graphs

In this section, we establish some results regarding the balancing dimension of the Cartesian product, the lexicographic product, the tensor product, and the strong product of signed graphs.

2.1. Balancing dimension of the Cartesian product

The Cartesian product of two signed graphs is defined by Germina et al. in [3].

Definition 3. [3] The Cartesian product $\Sigma_{1} \square \Sigma_{2}$ of two signed graphs $\Sigma_{1}=\left(G_{1}, \sigma_{1}\right)$ and $\Sigma_{2}=\left(G_{2}, \sigma_{2}\right)$ is defined as the Cartesian product of the underlying unsigned graphs with the signature function σ for the labeling of the edges defined by

$$
\sigma\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right)=\left\{\begin{array}{l}
\sigma_{1}\left(u_{i} u_{k}\right), \text { if } j=l \\
\sigma_{2}\left(v_{j} v_{l}\right), \text { if } i=k
\end{array}\right.
$$

If Σ_{1} and Σ_{2} are balanced, then their Cartesian product $\Sigma_{1} \square \Sigma_{2}$ is also balanced (see [3]) and hence $\operatorname{bdim}\left(\Sigma_{1} \square \Sigma_{2}\right)=1$. We now consider the case where one of the factors is balanced.

Theorem 1. Let $\Sigma_{1}=\left(G_{1}, \sigma_{1}\right)$ and $\Sigma_{2}=\left(G_{2}, \sigma_{2}\right)$ be two signed graphs and let $\Sigma_{1} \square \Sigma_{2}$ be their Cartesian product. Then

$$
\operatorname{bdim}\left(\Sigma_{1} \square \Sigma_{2}\right)=\left\{\begin{array}{l}
\operatorname{bdim}\left(\Sigma_{1}\right), \text { if } \Sigma_{2} \text { is balanced } \\
\operatorname{bdim}\left(\Sigma_{2}\right), \text { if } \Sigma_{1} \text { is balanced. }
\end{array}\right.
$$

Proof. Suppose $\operatorname{bdim}\left(\Sigma_{1}\right)=k$ and Σ_{2} is balanced. Let $\zeta_{1}: V\left(\Sigma_{1}\right) \rightarrow \Omega^{k}$ and $\zeta_{2}: V\left(\Sigma_{2}\right) \rightarrow\{-1,1\}$ be the corresponding switching functions. We now define $\zeta: V\left(\Sigma_{1} \times \Sigma_{2}\right) \rightarrow \Omega^{k}$ by $\zeta\left(\left(u_{i}, v_{j}\right)\right)=\zeta_{1}\left(u_{i}\right) \zeta_{2}\left(v_{j}\right)$ for $1 \leq i \leq\left|V\left(\Sigma_{1}\right)\right|$ and $1 \leq j \leq$ $\left|V\left(\Sigma_{2}\right)\right|$.
Now for any edge $e=\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)$ in $\Sigma_{1} \square \Sigma_{2}$, we have,

$$
\begin{equation*}
\sigma^{\zeta}\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right)=\sigma\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right) \operatorname{sgn}\left(\left\langle\zeta\left(\left(u_{i}, v_{j}\right)\right), \zeta\left(\left(u_{k}, v_{l}\right)\right)\right\rangle\right) . \tag{2.1}
\end{equation*}
$$

If $j=l$, Equation 2.1 becomes

$$
\begin{aligned}
\sigma^{\zeta}\left(\left(u_{i}, v_{l}\right)\left(u_{k}, v_{j}\right)\right) & =\sigma_{1}\left(u_{i} u_{k}\right) \operatorname{sgn}\left(\left\langle\zeta\left(\left(u_{i}, v_{j}\right)\right), \zeta\left(\left(u_{k}, v_{l}\right)\right)\right\rangle\right) \\
& =\sigma_{1}\left(u_{i} u_{k}\right) \operatorname{sgn}\left(\left\langle\zeta_{1}\left(u_{i}\right) \zeta_{2}\left(v_{l}\right), \zeta_{1}\left(u_{k}\right) \zeta_{2}\left(v_{l}\right)\right\rangle\right) \\
& =\left(\zeta_{2}\left(v_{l}\right)\right)^{2} \sigma_{1}\left(u_{i} u_{k}\right) \operatorname{sgn}\left(\left\langle\zeta_{1}\left(u_{i}\right), \zeta_{1}\left(u_{k}\right)\right\rangle\right) \\
& =\left(\zeta_{2}\left(v_{l}\right)\right)^{2} \sigma_{1}^{\zeta_{1}}\left(u_{i} u_{k}\right) \\
& =+1 .
\end{aligned}
$$

Similarly, if $i=k$, Equation 2.1 becomes

$$
\begin{aligned}
\sigma^{\zeta}\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right) & =\sigma_{2}\left(v_{j} v_{l}\right) \operatorname{sgn}\left(\left\langle\zeta\left(\left(u_{k}, v_{j}\right)\right), \zeta\left(\left(u_{k}, v_{l}\right)\right)\right\rangle\right) \\
& =\sigma_{2}\left(v_{j} v_{l}\right) \operatorname{sgn}\left(\left\langle\zeta_{1}\left(u_{k}\right) \zeta_{2}\left(v_{j}\right), \zeta_{1}\left(u_{k}\right) \zeta_{2}\left(v_{l}\right)\right\rangle\right) \\
& =\sigma_{2}\left(v_{j} v_{l}\right) \zeta_{2}\left(v_{j}\right) \zeta_{2}\left(v_{l}\right) \operatorname{sgn}\left(\left\langle\zeta_{1}\left(u_{k}\right), \zeta_{1}\left(u_{k}\right)\right\rangle\right) \\
& =\sigma_{2}^{\zeta_{2}}\left(v_{j} v_{l}\right) \operatorname{sgn}\left(\left\|\zeta_{1}\left(u_{k}\right)\right\|^{2}\right) \\
& =+1
\end{aligned}
$$

Thus, ζ switches $\Sigma_{1} \square \Sigma_{2}$ to all-positive, and hence $\operatorname{bdim}\left(\Sigma_{1} \square \Sigma_{2}\right) \leq k$. However, since Σ_{1} is a subgraph of $\Sigma_{1} \square \Sigma_{2}$, we must have $\operatorname{bdim}\left(\Sigma_{1} \square \Sigma_{2}\right)=k=\operatorname{bdim}\left(\Sigma_{1}\right)$.
Similar is the proof of the next part.

Theorem 2. [7] Let Σ_{1} and Σ_{2} be two signed graphs and let $\Sigma_{1} \square \Sigma_{2}$ be their Cartesian product. If $\Sigma_{1} \sim \Sigma_{1}^{\prime}$ and $\Sigma_{2} \sim \Sigma_{2}^{\prime}$, then $\Sigma_{1} \square \Sigma_{2} \sim \Sigma_{1}^{\prime} \square \Sigma_{2}^{\prime}$.

Theorem 3. [5] If Σ contains a negative triangle, then $\operatorname{bdim}(\Sigma) \geq 3$.

We now compute the balancing dimension of the Cartesian product of two unbalanced signed graphs. To begin with, we consider the Cartesian product of two unbalanced cycles.

Proposition 1. Let C_{m}^{-}and $C_{n}^{-}, m, n \geq 3$ be two unbalanced cycles, and let $C_{m}^{-} \square C_{n}^{-}$be their Cartesian product. Then,

$$
\operatorname{bdim}\left(C_{m}^{-} \square C_{n}^{-}\right)=\left\{\begin{array}{l}
2, \text { if } m, n>3 \\
3, \text { otherwise } .
\end{array}\right.
$$

Proof. Since balancing dimension is 1 - switching invariant, by using Theorem 2, we can consider $C_{m}^{-}=u_{1} u_{2} \cdots u_{m}$ and $C_{n}^{-}=v_{1} v_{2} \cdots v_{n}$, where $u_{1} u_{2}$ and $v_{1} v_{2}$ are the only negative edges of C_{m}^{-}and C_{n}^{-}respectively. Since the Cartesian product is commutative, it suffices to consider three cases: $m, n>3, m=3$ and $n>3$, and $n=m=3$.
In the first case, since $C_{m}^{-} \square C_{n}^{-}$is unbalanced, we have $\operatorname{bdim}\left(C_{m}^{-} \square C_{n}^{-}\right) \geq 2$. Now, the function $\zeta_{1}: V\left(C_{m}^{-} \square C_{n}^{-}\right) \rightarrow \Omega^{2}$ given in Table 1 switches $C_{m}^{-} \square C_{n}^{-}$to all-positive. Hence, $\operatorname{bdim}\left(C_{m}^{-} \square C_{n}^{-}\right)=2$. In the remaining two cases, $C_{m}^{-} \square C_{n}^{-}$contains a negative triangle and hence $\operatorname{bdim}\left(C_{m}^{-} \square C_{n}^{-}\right) \geq 3$. Now, the functions $\zeta_{i}: V\left(C_{m}^{-} \square C_{n}^{-}\right) \rightarrow \Omega^{3}$, where $i \in\{2,3\}$, given in Tables 2 and 3 respectively, switches $C_{m}^{-} \square C_{n}^{-}$to all-positive. Hence $\operatorname{bdim}\left(C_{m}^{-} \square C_{n}^{-}\right)=3$ in each of these cases.

$\zeta_{1}\left(\left(u_{i}, v_{j}\right)\right)$	v_{1}	v_{2}	$v_{3}, v_{4}, \cdots, v_{n-1}$	v_{n}
u_{1}	$(-1,1)$	$(1,0)$	$(1,1)$	$(0,1)$
u_{2}	$(1,0)$	$(-1,-1)$	$(0,-1)$	$(1,-1)$
$u_{3}, u_{4}, \cdots, u_{m-1}$	$(1,1)$	$(0,-1)$	$(1,-1)$	$(1,0)$
u_{m}	$(0,1)$	$(1,-1)$	$(1,0)$	$(1,1)$

Table 1. A $2-$ positive function for $C_{m}^{-} \square C_{n}^{-}$for $m, n>3$.

$\zeta_{2}\left(\left(u_{i}, v_{j}\right)\right)$	v_{1}	$v_{2}, v_{3}, \cdots, v_{n-1}$	v_{n}
u_{1}	$(-1,-1,1)$	$(1,-1,-1)$	$(-1,-1,-1)$
u_{2}	$(1,-1,-1)$	$(1,1,1)$	$(1,0,0)$
u_{3}	$(-1,-1,-1)$	$(1,0,0)$	$(1,-1,-1)$

Table 2. A 3-positive function for $C_{3}^{-} \square C_{n}^{-}$for $n>3$.

$\zeta_{3}\left(\left(u_{i}, v_{j}\right)\right)$	v_{1}	v_{2}	v_{3}
u_{1}	$(-1,-1,1)$	$(1,-1,-1)$	$(-1,-1,-1)$
u_{2}	$(1,-1,-1)$	$(1,1,1)$	$(1,0,0)$
u_{3}	$(-1,-1,-1)$	$(1,0,0)$	$(1,-1,-1)$

Table 3. A $3-$ positive function for $C_{3}^{-} \square C_{3}^{-}$.

Next, we consider antibalanced signed complete graphs. We denote the antibalanced signed complete graph on n vertices by K_{n}^{-}, and the balancing dimension of K_{n}^{-}is defined as $\bar{\nu}(n)$ [5].

Proposition 2. Let K_{m}^{-}and K_{n}^{-}be antibalanced signed complete graphs of order m and n respectively, and let $K_{m}^{-} \square K_{n}^{-}$be their Cartesian product. Then $\operatorname{bdim}\left(K_{m}^{-} \square K_{n}^{-}\right)=\bar{\nu}(h)$, where, $h=\max \{m, n\}$.

Proof. By adequate 1-switching, we can consider K_{m}^{-}and K_{n}^{-}as all-negative. Then, the Cartesian product $K_{m}^{-} \square K_{n}^{-}$is also all-negative.
Without loss of generality, assume that $m \geq n$. Suppose $\operatorname{bdim}\left(K_{m}^{-}\right)=k$ and let $\zeta^{\prime}: V\left(K_{m}^{-}\right) \rightarrow \Omega^{k}$ be the k - positive function. Since K_{m}^{-}is a subgraph of $K_{m}^{-} \square K_{n}^{-}$, we have $\operatorname{bdim}\left(K_{m}^{-} \square K_{n}^{-}\right) \geq k$. Now, the function $\zeta: V\left(K_{m}^{-} \square K_{n}^{-}\right) \rightarrow \Omega^{k}$ given in Table 4 switches $K_{m}^{-} \square K_{n}^{-}$to all-positive. Hence, $\operatorname{bdim}\left(K_{m}^{-} \square K_{n}^{-}\right)=k=\bar{\nu}(m)$.
Similar is the proof of the next part.

$\zeta\left(\left(u_{i}, v_{j}\right)\right)$	v_{1}	v_{2}	v_{3}	\cdots	v_{n}
u_{1}	$\zeta^{\prime}\left(u_{1}\right)$	$\zeta^{\prime}\left(u_{2}\right)$	$\zeta^{\prime}\left(u_{3}\right)$	\cdots	$\zeta^{\prime}\left(u_{n}\right)$
u_{2}	$\zeta^{\prime}\left(u_{2}\right)$	$\zeta^{\prime}\left(u_{3}\right)$	$\zeta^{\prime}\left(u_{4}\right)$	\cdots	$\zeta^{\prime}\left(u_{n+1}\right)$
u_{3}	$\zeta^{\prime}\left(u_{3}\right)$	$\zeta^{\prime}\left(u_{4}\right)$	$\zeta^{\prime}\left(u_{5}\right)$	\cdots	$\zeta^{\prime}\left(u_{n+2}\right)$
\vdots	\vdots	\vdots	\vdots	\cdots	\vdots
u_{m}	$\zeta^{\prime}\left(u_{m}\right)$	$\zeta^{\prime}\left(u_{1}\right)$	$\zeta^{\prime}\left(u_{2}\right)$	\cdots	\vdots

Table 4. A k - positive function for $K_{m}^{-} \square K_{n}^{-}$

Corollary 1. For any antibalanced signed graph Σ on n vertices, $\operatorname{bdim}\left(\Sigma \square K_{n}^{-}\right)=$ $\operatorname{bdim}\left(K_{n}^{-}\right)$.

2.2. Balancing dimension of the lexicographic product

We now focus on the lexicographic product (also called composition) of signed graphs. Two definitions for the lexicographic product of signed graphs are available in the literature. We call the definition given by Hameed et al. [4] the HG-lexicographic product and the definition given by Brunetti et al. [2] the BCD-lexicographic product.

Definition 4. [4] The $H G$-lexicographic product of two signed graphs $\Sigma_{1}=\left(G_{1}, \sigma_{1}\right)$ and $\Sigma_{2}=\left(G_{2}, \sigma_{2}\right)$ is the signed graph whose underlying graph is the lexicographic product of
the underlying unsigned graphs and whose signature function σ for the labeling of the edges is defined by

$$
\sigma\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right)= \begin{cases}\sigma_{1}\left(u_{i} u_{k}\right) & \text { if } i \neq k \\ \sigma_{2}\left(v_{j} v_{l}\right) & \text { if } i=k\end{cases}
$$

We denote the $H G$-lexicographic product of Σ_{1} and Σ_{2} by $\Sigma_{1}\left[\Sigma_{2}\right]$.

Definition 5. [2] The BCD-lexicographic product of two signed graphs $\Sigma_{1}=\left(G_{1}, \sigma_{1}\right)$ and $\Sigma_{2}=\left(G_{2}, \sigma_{2}\right)$ as the signed graph whose underlying graph is the lexicographic product of the underlying unsigned graphs and whose signature function σ for the labeling of the edges is defined by

$$
\sigma\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right)= \begin{cases}\sigma_{1}\left(u_{i} u_{k}\right) & \text { if } u_{i} \sim u_{k} \text { and } v_{j} \nsim v_{l}, \\ \sigma_{1}\left(u_{i} u_{k}\right) \sigma_{2}\left(v_{j} v_{l}\right) & \text { if } u_{i} \sim u_{k} \text { and } v_{j} \sim v_{l}, \\ \sigma_{2}\left(v_{j} v_{l}\right) & \text { if } u_{i}=u_{k} \text { and } v_{j} \sim v_{l} .\end{cases}
$$

We denote the BCD-lexicographic product of Σ_{1} and Σ_{2} by $\Sigma_{1} * \Sigma_{2}$.

The HG-lexicographic product and BCD-lexicographic product of two balanced signed graphs need not be balanced. However, a criterion for the balance of HG-lexicographic product of two signed graphs is proved in [4] .

Theorem 4. [4] If Σ_{1} and Σ_{2} are two signed graphs with at least one edge for each, then their $H G$-lexicographic product is balanced if and only if Σ_{1} is balanced and Σ_{2} is all-positive.

Theorem 5. Let Σ_{1} and Σ_{2} be two signed graphs, with Σ_{2} having at least one negative edge. Then $\operatorname{bdim}\left(\Sigma_{1}\left[\Sigma_{2}\right]\right) \geq 3$.

Proof. Let $v_{j} v_{j+1}$ be a negative edge of Σ_{2}. Then for any edge $u_{i} u_{i+1}$ of Σ_{1}, $\left(u_{i}, v_{j}\right)\left(u_{i}, v_{j+1}\right)\left(u_{i+1}, v_{j}\right)\left(u_{i}, v_{j}\right)$ forms a negative triangle in $\Sigma_{1}\left[\Sigma_{2}\right]$. Hence, by Theorem $3, \operatorname{bdim}\left(\Sigma_{1}\left[\Sigma_{2}\right]\right) \geq 3$.

Proposition 3. For any signed graph Σ, $\operatorname{bdim}\left(N_{k}[\Sigma]\right)=\operatorname{bdim}\left(\Sigma\left[N_{k}\right]\right)=\operatorname{bdim}(\Sigma)$, where N_{k} is the graph on k vertices without edges.

Proof. Suppose $\operatorname{bdim}(\Sigma)=k$ and $\zeta: V(\Sigma) \rightarrow \Omega^{k}$ be the k-positive function. Then, $\zeta^{\prime}: V\left(N_{k}[\Sigma]\right) \rightarrow \Omega^{k}$, defined by $\zeta^{\prime}\left(\left(w_{i}, u_{j}\right)\right)=\zeta\left(u_{j}\right)$ for $1 \leq i \leq k$ and $1 \leq j \leq|V(\Sigma)|$, switches $N_{k}[\Sigma]$ to all-positive. Hence, $\operatorname{bdim}\left(N_{k}[\Sigma]\right) \leq k$. However, since Σ is a subgraph of $N_{k}[\Sigma]$, we must have $\operatorname{bdim}\left(N_{k}[\Sigma]\right)=k=\operatorname{bdim}(\Sigma)$.
Similarly, $\zeta^{\prime \prime}: V\left(\Sigma\left[N_{k}\right]\right) \rightarrow \Omega^{k}$, defined by $\zeta^{\prime \prime}\left(\left(u_{i}, w_{j}\right)\right)=\zeta\left(u_{i}\right)$ for $1 \leq i \leq|V(\Sigma)|$ and $1 \leq j \leq k$, switches $\Sigma\left[N_{k}\right]$ to all-positive, and hence $\operatorname{bdim}\left(\Sigma\left[N_{k}\right]\right)=k$.

Remark 1. The above results show that, even though the lexicographic product is not commutative, there exist signed graphs satisfying $\operatorname{bdim}\left(\Sigma_{1}\left[\Sigma_{2}\right]\right)=\operatorname{bdim}\left(\Sigma_{2}\left[\Sigma_{1}\right]\right)$. However, in general, $\operatorname{bdim}\left(\Sigma_{1}\left[\Sigma_{2}\right]\right) \neq \operatorname{bdim}\left(\Sigma_{2}\left[\Sigma_{1}\right]\right)$. As an example, consider Σ_{1} as the balanced triangle having two negative edges and Σ_{2} as the all-positive K_{2}. Then, Theorem 4 and Theorem 5 respectively shows that $\operatorname{bdim}\left(\Sigma_{1}\left[\Sigma_{2}\right]\right)=1$ and $\operatorname{bdim}\left(\Sigma_{2}\left[\Sigma_{1}\right]\right) \geq 3$.

Theorem 6. Let Σ_{1} and Σ_{2} be two signed graphs and let $\Sigma_{1}\left[\Sigma_{2}\right]$ be their $H G$-lexicographic product. If $\Sigma_{1} \sim \Sigma_{1}^{\prime}$, then $\Sigma_{1}\left[\Sigma_{2}\right] \sim \Sigma_{1}^{\prime}\left[\Sigma_{2}\right]$.

Proof. Let $\sigma_{1}, \sigma_{1}^{\prime}, \sigma_{2}, \sigma$ and σ^{\prime} denote the signatures of $\Sigma_{1}, \Sigma_{1}^{\prime}, \Sigma_{2}, \Sigma_{1}\left[\Sigma_{2}\right]$ and $\Sigma_{1}^{\prime}\left[\Sigma_{2}\right]$ respectively. Since $\Sigma_{1} \sim \Sigma_{1}^{\prime}$, there exists a switching function $\eta: V\left(\Sigma_{1}\right) \rightarrow$ $\{-1,1\}$ such that $\Sigma_{1}^{\eta}=\Sigma_{1}^{\prime}$. Define the map $\eta^{\prime}: V\left(\Sigma_{1}\left[\Sigma_{2}\right]\right) \rightarrow\{-1,1\}$ as $\eta^{\prime}\left(\left(u_{i}, v_{j}\right)\right)=$ $\eta\left(u_{i}\right)$ for $1 \leq i \leq\left|V\left(\Sigma_{1}\right)\right|$ and $1 \leq j \leq\left|V\left(\Sigma_{2}\right)\right|$. Then, for any edge $\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)$ in $\Sigma_{1}\left[\Sigma_{2}\right]$, we have,

$$
\begin{aligned}
\sigma^{\eta^{\prime}}\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right) & =\eta^{\prime}\left(\left(u_{i}, v_{j}\right)\right) \sigma\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right) \eta^{\prime}\left(\left(u_{k}, v_{l}\right)\right) \\
& =\eta\left(u_{i}\right) \sigma\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right) \eta\left(u_{k}\right) \\
& = \begin{cases}\eta\left(u_{i}\right) \sigma_{1}\left(u_{i} u_{k}\right) \eta\left(u_{k}\right) & \text { if } i \neq k, \\
\eta\left(u_{k}\right) \sigma_{2}\left(v_{j} v_{l}\right) \eta\left(u_{k}\right) & \text { if } i=k .\end{cases} \\
& = \begin{cases}\sigma_{1}^{\eta}\left(u_{i} u_{k}\right) & \text { if } i \neq k, \\
\sigma_{2}\left(v_{j} v_{l}\right) & \text { if } i=k .\end{cases} \\
& = \begin{cases}\sigma_{1}^{\prime}\left(u_{i} u_{k}\right) & \text { if } i \neq k, \\
\sigma_{2}\left(v_{j} v_{l}\right) & \text { if } i=k .\end{cases} \\
& =\sigma^{\prime}\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right) .
\end{aligned}
$$

Thus, $\left(\Sigma_{1}\left[\Sigma_{2}\right]\right)^{\eta^{\prime}}=\Sigma_{1}^{\prime}\left[\Sigma_{2}\right]$ and hence, $\Sigma_{1}\left[\Sigma_{2}\right] \sim \Sigma_{1}^{\prime}\left[\Sigma_{2}\right]$.
Since the balancing dimension is 1 -switching invariant, we have the following result.
Corollary 2. If Σ_{1} and Σ_{2} are any two signed graphs and if $\Sigma_{1} \sim \Sigma_{1}^{\prime}$, then $\operatorname{bdim}\left(\Sigma_{1}\left[\Sigma_{2}\right]\right)=\operatorname{bdim}\left(\Sigma_{1}^{\prime}\left[\Sigma_{2}\right]\right)$.

Corollary 3. If Σ_{1} is antibalanced and Σ_{2} is all-negative, then $\Sigma_{1}\left[\Sigma_{2}\right]$ is antibalanced.

Proof. Since Σ_{1} is antibalanced, we have $\Sigma_{1} \sim \Sigma_{1}^{\prime}$, where Σ_{1}^{\prime} is all- negative. Now, since Σ_{2} is all-negative, $\Sigma_{1}^{\prime}\left[\Sigma_{2}\right]$ is all-negative, and hence antibalanced. Thus, by Theorem 6, $\Sigma_{1}\left[\Sigma_{2}\right]$ is antibalanced .

We now consider complete graphs. To begin with, observe that the lexicographic product of two complete graphs, say K_{m} and K_{n} is the complete graph $K_{m n}$. To see this, consider any two vertices $u=\left(u_{i}, v_{j}\right)$ and $v=\left(u_{k}, v_{l}\right)$ in $K_{m}\left[K_{n}\right]$. Then u_{i}, u_{k} are adjacent in K_{m} and v_{j}, v_{l} are adjacent in K_{n}. Therefore, if $u_{i} \neq u_{k}$, then since u_{i}
and u_{k} are adjacent in K_{m}, u and v are adjacent in $K_{m}\left[K_{n}\right]$. On the other hand, if $u_{i}=u_{k}$, then since v_{j}, v_{l} are adjacent in K_{n}, u and v are adjacent in $K_{m}\left[K_{n}\right]$. Thus, any two of the $m n$ vertices of $K_{m}\left[K_{n}\right]$ are adjacent.
The next result follows immediately from Corollary 3.

Proposition 4. If Σ_{1} and Σ_{2} denote the antibalanced signed complete graph K_{m}^{-}and the all-negative signed complete graph $-K_{n}$ respectively, then $\operatorname{bdim}\left(\Sigma_{1}\left[\Sigma_{2}\right]\right)=\bar{\nu}(m n)$, where $\bar{\nu}(m n)$ is the balancing dimension of the antibalanced signed complete graph $K_{m n}^{-}$.

Theorem 7. Let $\Sigma_{1}=\left(G_{1}, \sigma_{1}\right)$ and $\Sigma_{2}=\left(G_{2}, \sigma_{2}\right)$ be two signed graphs, where Σ_{2} is all-positive. Then $\operatorname{bdim}\left(\Sigma_{1}\left[\Sigma_{2}\right]\right)=\operatorname{bdim}\left(\Sigma_{1}\right)$.

Proof. Suppose Σ_{2} is all positive. Let $\operatorname{bdim}\left(\Sigma_{1}\right)=k$ and $\zeta_{1}: V\left(\Sigma_{1}\right) \rightarrow \Omega^{k}$ be the k-positive function. Now, the function $\zeta: V\left(\Sigma_{1}\left[\Sigma_{2}\right]\right) \rightarrow \Omega^{k}$, defined by $\zeta\left(\left(u_{i}, v_{j}\right)\right)=$ $\zeta_{1}\left(u_{i}\right)$ for $1 \leq i \leq\left|V\left(\Sigma_{1}\right)\right|$ and $1 \leq j \leq\left|V\left(\Sigma_{2}\right)\right|$, switches $\Sigma_{1}\left[\Sigma_{2}\right]$ to all-positive, and hence $\operatorname{bdim}\left(\Sigma_{1}\left[\Sigma_{2}\right]\right) \leq k$. However, since Σ_{1} is a subgraph of $\Sigma_{1}\left[\Sigma_{2}\right]$, we must have $\operatorname{bdim}\left(\Sigma_{1}\left[\Sigma_{2}\right]\right)=k=\operatorname{bdim}\left(\Sigma_{1}\right)$.

Remark 2. Let $\Sigma_{1}=+K_{2}$ and $\Sigma_{2}=-K_{2}$. Then $\Sigma_{1}\left[\Sigma_{2}\right]$ is the antibalanced signed complete graph K_{4}^{-}and hence $\operatorname{bdim}\left(\Sigma_{1}\left[\Sigma_{2}\right]\right)=\bar{\nu}(4)=3 \neq \operatorname{bdim}\left(\Sigma_{2}\right)$. Thus, $\operatorname{bdim}\left(\Sigma_{1}\left[\Sigma_{2}\right]\right)$ and $\operatorname{bdim}\left(\Sigma_{2}\right)$ need not be equal if Σ_{1} is all-positive.

We now focus on the BCD-lexicographic product of two signed graphs. To begin with, we restate Theorem 2.3 from [2], by removing the incorrect part (see [1]) and provide an alternate proof for it.

Theorem 8. Let Σ_{1} and Σ_{2} be two signed graphs and let $\Sigma_{1} * \Sigma_{2}$ be their BCD lexicographic product. If $\Sigma_{1} \sim \Sigma_{1}^{\prime}$, then $\Sigma_{1} * \Sigma_{2} \sim \Sigma_{1}^{\prime} * \Sigma_{2}$.

Proof. Let $\sigma_{1}, \sigma_{1}^{\prime}, \sigma_{2}, \sigma$ and σ^{\prime} denote the signatures of $\Sigma_{1}, \Sigma_{1}^{\prime}, \Sigma_{2}, \Sigma_{1} * \Sigma_{2}$ and $\Sigma_{1}^{\prime} *$ Σ_{2} respectively. Since $\Sigma_{1} \sim \Sigma_{1}^{\prime}$, there exists a switching function $\eta: V\left(\Sigma_{1}\right) \rightarrow\{-1,1\}$ such that $\Sigma_{1}^{\eta}=\Sigma_{1}^{\prime}$. Define the map $\eta^{\prime}: V\left(\Sigma_{1} * \Sigma_{2}\right) \rightarrow\{-1,1\}$ as $\eta^{\prime}\left(\left(u_{i}, v_{j}\right)\right)=\eta\left(u_{i}\right)$ for $1 \leq i \leq\left|V\left(\Sigma_{1}\right)\right|$ and $1 \leq j \leq\left|V\left(\Sigma_{2}\right)\right|$. Then, for any edge $\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)$ in $\Sigma_{1} * \Sigma_{2}$, we have, $\sigma^{\eta^{\prime}}\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right)=\sigma^{\prime}\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right)$. Thus, $\left(\Sigma_{1} * \Sigma_{2}\right)^{\eta^{\prime}}=\Sigma_{1}^{\prime} * \Sigma_{2}$ and hence $\Sigma_{1} * \Sigma_{2} \sim \Sigma_{1}^{\prime} * \Sigma_{2}$.

Since the balancing dimension is 1 -switching invariant, we have the following result.

Corollary 4. If Σ_{1} and Σ_{2} are any two signed graphs and if $\Sigma_{1} \sim \Sigma_{1}^{\prime}$, then $\operatorname{bdim}\left(\Sigma_{1} *\right.$ $\left.\Sigma_{2}\right)=\operatorname{bdim}\left(\Sigma_{1}^{\prime} * \Sigma_{2}\right)$.

Remark 3. Note that Corollary 3 does not hold in the case of BCD-lexicographic product. To illustrate this consider $\Sigma_{1}=\left(P_{3}, \sigma\right)$ and $\Sigma_{2}=-P_{2}$ depicted in Figure 1. Then,
$\left(u_{1}, v_{1}\right)\left(u_{2}, v_{1}\right)\left(u_{2}, v_{2}\right)\left(u_{1}, v_{1}\right)$ forms a negative triangle in $-\left(\Sigma_{1} * \Sigma_{2}\right)$, making it unbalanced. Thus, $\Sigma_{1} * \Sigma_{2}$ is not antibalanced, though Σ_{1} is antibalanced and Σ_{2} is all-negative.

Figure 1. The BCD-lexicographic product $\Sigma_{1} * \Sigma_{2}$ is not antibalanced

Theorem 9. Let $\Sigma_{1}=\left(G_{1}, \sigma_{1}\right)$ and $\Sigma_{2}=\left(G_{2}, \sigma_{2}\right)$ be two signed graphs, where Σ_{2} is all-positive. Then $\operatorname{bdim}\left(\Sigma_{1} * \Sigma_{2}\right)=\operatorname{bdim}\left(\Sigma_{1}\right)$.

Proof. Suppose Σ_{2} is all positive and let bdim $\left(\Sigma_{1}\right)=k$. Then the function $\zeta: V\left(\Sigma_{1} *\right.$ $\left.\Sigma_{2}\right) \rightarrow \Omega^{k}$, defined by $\zeta\left(\left(u_{i}, v_{j}\right)\right)=\zeta_{1}\left(u_{i}\right)$ for $1 \leq i \leq\left|V\left(\Sigma_{1}\right)\right|$ and $1 \leq j \leq\left|V\left(\Sigma_{2}\right)\right|$, where $\zeta_{1}: V\left(\Sigma_{1}\right) \rightarrow \Omega^{k}$ is the k-positive function for Σ_{1}, switches $\Sigma_{1} * \Sigma_{2}$ to allpositive, and hence $\operatorname{bdim}\left(\Sigma_{1} * \Sigma_{2}\right) \leq k$. However, since Σ_{1} is a subgraph of $\Sigma_{1} * \Sigma_{2}$, we must have $\operatorname{bdim}\left(\Sigma_{1} * \Sigma_{2}\right)=k=\operatorname{bdim}\left(\Sigma_{1}\right)$.

Theorem 10. Let $\Sigma_{1}=\left(G_{1}, \sigma_{1}\right)$ be a balanced signed graph and $\Sigma_{2}=\left(K_{n}, \sigma_{2}\right)$ be a signed complete graph. Then $\operatorname{bdim}\left(\Sigma_{1} * \Sigma_{2}\right)=\operatorname{bdim}\left(\Sigma_{2}\right)$.

Proof. Since, Σ_{1} is balanced, by Theorem 8, we can consider it as all-positive. Let $\operatorname{bdim}\left(\Sigma_{2}\right)=k$ and let $\zeta_{2}: V\left(\Sigma_{2}\right) \rightarrow \Omega^{k}$ be the corresponding k-positive function. Then the vector valued switching function $\zeta: V\left(\Sigma_{1} * \Sigma_{2}\right) \rightarrow \Omega^{k}$, defined by $\zeta\left(\left(u_{i}, v_{j}\right)\right)=\zeta_{2}\left(v_{j}\right)$ for $1 \leq i \leq\left|V\left(\Sigma_{1}\right)\right|$ and $1 \leq j \leq n$, switches $\Sigma_{1} * \Sigma_{2}$ to allpositive, and hence $\operatorname{bdim}\left(\Sigma_{1} * \Sigma_{2}\right) \leq k$. However, since Σ_{2} is a subgraph of $\Sigma_{1} * \Sigma_{2}$, we must have $\operatorname{bdim}\left(\Sigma_{1} * \Sigma_{2}\right)=k=\operatorname{bdim}\left(\Sigma_{2}\right)$.

Remark 4. Theorem 10 does not hold for the $H G$-lexicographic product of signed graphs. As an example, let $\Sigma_{1}=+K_{2}$ and $\Sigma_{2}=-K_{2}$. Then the $H G$-lexicographic product $\Sigma_{1}\left[\Sigma_{2}\right]$ is the antibalanced signed complete graph $\left(K_{4}, \sigma\right)$ and hence $\operatorname{bdim}\left(\Sigma_{1}\left[\Sigma_{2}\right]\right)=\bar{\nu}(4)=3 \neq$ $\operatorname{bdim}\left(\Sigma_{2}\right)$. Thus, $\operatorname{bdim}\left(\Sigma_{1}\left[\Sigma_{2}\right]\right)$ and $\operatorname{bdim}\left(\Sigma_{2}\right)$ need not be equal if Σ_{1} is balanced and Σ_{2} is a signed complete graph.

2.3. Balancing dimension of the tensor product

We now focus on the tensor product of signed graphs. The tensor product of two signed graphs is given in [8] as follows.

Definition 6. The tensor product of two signed graphs $\Sigma_{1}=\left(G_{1}, \sigma_{1}\right)$ and $\Sigma_{2}=\left(G_{2}, \sigma_{2}\right)$ is the signed graph $\Sigma=\Sigma_{1} \times \Sigma_{2}$ whose underlying graph is $G=G_{1} \times G_{2}$ and with the sign of an edge $\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)$ of G given by

$$
\sigma\left(\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right)=\sigma_{1}\left(u_{1} u_{k}\right) \sigma_{2}\left(v_{j} v_{l}\right) .\right.
$$

Theorem 11. [9] Let Σ_{1} and Σ_{2} be two connected signed graphs of order at least 2. Then, the tensor product $\Sigma_{1} \times \Sigma_{2}$ is balanced if and only if Σ_{1} and Σ_{2} are both balanced or both antibalanced.

Theorem 12. Let $\Sigma_{1}=\left(G_{1}, \sigma_{1}\right)$ and $\Sigma_{2}=\left(G_{2}, \sigma_{2}\right)$ be two signed graphs and $\Sigma_{1} \times \Sigma_{2}$ be their tensor product. Then
(i) $\operatorname{bdim}\left(\Sigma_{1} \times \Sigma_{2}\right) \leq \operatorname{bdim}\left(\Sigma_{1}\right)$, if Σ_{2} is balanced.
(ii) $\operatorname{bdim}\left(\Sigma_{1} \times \Sigma_{2}\right) \leq \operatorname{bdim}\left(\Sigma_{2}\right)$, if Σ_{1} is balanced

Proof. Suppose $\operatorname{bdim}\left(\Sigma_{1}\right)=k$ and Σ_{2} is balanced. Let $\zeta_{1}: V\left(\Sigma_{1}\right) \rightarrow \Omega^{k}$ and ζ_{2} : $V\left(\Sigma_{2}\right) \rightarrow\{-1,+1\}$ be the corresponding switching functions. Then $\zeta: V\left(\Sigma_{1} \times \Sigma_{2}\right) \rightarrow$ Ω^{k}, defined by $\zeta\left(\left(u_{i}, v_{j}\right)\right)=\zeta_{1}\left(u_{i}\right) \zeta_{2}\left(v_{j}\right)$ for $1 \leq i \leq\left|V\left(\Sigma_{1}\right)\right|$ and $1 \leq j \leq\left|V\left(\Sigma_{2}\right)\right|$, switches $\Sigma_{1} \times \Sigma_{2}$ to all-positive, and hence $\operatorname{bdim}\left(\Sigma_{1} \times \Sigma_{2}\right) \leq k$.
Similar is the proof of the next part.

Remark 5. Let $\Sigma_{1}=-K_{3}$ and $\Sigma_{2}=-K_{2}$ denote the all-negative signed complete graphs. Then by Theorem 11, $\operatorname{bdim}\left(\Sigma_{1} \times \Sigma_{2}\right)=1$. However, $\operatorname{bdim}\left(\Sigma_{1}\right)=\bar{\nu}(3)=3$. Hence, unlike the Cartesian product and the lexicographic products, there exist cases in which the balancing dimension of the tensor product is strictly less than the balancing dimension of its factor(s).
As an example for the case where equality holds, consider $\Sigma_{3}=u_{1} u_{2} u_{3}$ and $\Sigma_{4}=v_{1} v_{2} v_{3}$ as the all-negative and all-positive signed complete graphs on three vertices respectively. Then $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\left(u_{3}, v_{3}\right)$ forms a negative triangle in $\Sigma_{3} \times \Sigma_{4}$. Thus, $\operatorname{bdim}\left(\Sigma_{3} \times \Sigma_{4}\right)=$ $\operatorname{bdim}\left(\Sigma_{4}\right)$.

2.4. Balancing dimension of the strong product

Finally, we consider the strong product of signed graphs.
Definition 7. [2] The strong product of two signed graphs $\Sigma_{1}=\left(G_{1}, \sigma_{1}\right)$ and $\Sigma_{2}=$ $\left(G_{2}, \sigma_{2}\right)$ is the signed graph $\Sigma=\Sigma_{1} \boxtimes \Sigma_{2}$ whose underlying graph is $G=G_{1} \boxtimes G_{2}$ and with the sign of an edge $\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)$ of G given by

$$
\sigma\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right)= \begin{cases}\sigma_{1}\left(u_{i} u_{k}\right) & \text { if } u_{i} \sim u_{k} \text { and } v_{j}=v_{l}, \\ \sigma_{2}\left(v_{j} v_{l}\right) & \text { if } u_{i}=u_{k} \text { and } v_{j} \sim v_{l}, \\ \sigma_{1}\left(u_{i} u_{k}\right) \sigma_{2}\left(v_{j} v_{l}\right) & \text { if } u_{i} \sim u_{k} \text { and } v_{j} \sim v_{l} .\end{cases}
$$

Lemma 1. Let Σ_{1} and Σ_{2} be two signed graphs and let $\Sigma_{1} \boxtimes \Sigma_{2}$ be their strong product.
(i) If $\Sigma_{1} \sim \Sigma_{1}^{\prime}$, then $\Sigma_{1} \boxtimes \Sigma_{2} \sim \Sigma_{1}^{\prime} \boxtimes \Sigma_{2}$.
(ii) If $\Sigma_{2} \sim \Sigma_{2}^{\prime}$, then $\Sigma_{1} \boxtimes \Sigma_{2} \sim \Sigma_{1} \boxtimes \Sigma_{2}^{\prime}$.

Proof. Let $\sigma_{1}, \sigma_{1}^{\prime}, \sigma_{2}, \sigma_{2}^{\prime}, \sigma, \sigma^{\prime}$ and $\sigma^{\prime \prime}$ denote the signatures of $\Sigma_{1}, \Sigma_{1}^{\prime}, \Sigma_{2}, \Sigma_{2}^{\prime}$, $\Sigma_{1} \boxtimes \Sigma_{2}, \Sigma_{1}^{\prime} \boxtimes \Sigma_{2}$, and $\Sigma_{1} \boxtimes \Sigma_{2}^{\prime}$ respectively.
Since $\Sigma_{1} \sim \Sigma_{1}^{\prime}$, there exists a switching function $\eta: V\left(\Sigma_{1}\right) \rightarrow\{-1,1\}$ such that $\Sigma_{1}^{\eta}=\Sigma_{1}^{\prime}$. Define the map $\eta^{\prime}: V\left(\Sigma_{1} \boxtimes \Sigma_{2}\right) \rightarrow\{-1,1\}$ as $\eta^{\prime}\left(\left(u_{i}, v_{j}\right)\right)=\eta\left(u_{i}\right)$ for $1 \leq i \leq\left|V\left(\Sigma_{1}\right)\right|$ and $1 \leq j \leq\left|V\left(\Sigma_{2}\right)\right|$. Then, for any edge $\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)$ in $\Sigma_{1} \boxtimes \Sigma_{2}$, we have, $\sigma^{\eta^{\prime}}\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right)=\sigma^{\prime}\left(\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)\right)$. Thus, $\left(\Sigma_{1} \boxtimes \Sigma_{2}\right)^{\eta^{\prime}}=\Sigma_{1}^{\prime} \boxtimes \Sigma_{2}$ and hence $\Sigma_{1} \boxtimes \Sigma_{2} \sim \Sigma_{1}^{\prime} \boxtimes \Sigma_{2}$.
To prove (ii), consider the map $\mu^{\prime}: V\left(\Sigma_{1} \boxtimes \Sigma_{2}\right) \rightarrow\{-1,1\}$ defined by $\mu^{\prime}\left(\left(u_{i}, v_{j}\right)\right)=$ $\mu\left(v_{j}\right)$ for $1 \leq i \leq\left|V\left(\Sigma_{1}\right)\right|$ and $1 \leq j \leq\left|V\left(\Sigma_{2}\right)\right|$, where μ is the switching function that switches Σ_{2} to Σ_{2}^{\prime}.

Using Lemma 1 we arrive at the following theorem.

Theorem 13. Let Σ_{1} and Σ_{2} be two signed graphs and let $\Sigma_{1} \boxtimes \Sigma_{2}$ be their strong product. If $\Sigma_{1} \sim \Sigma_{1}^{\prime}$ and $\Sigma_{2} \sim \Sigma_{2}^{\prime}$, then $\Sigma_{1} \boxtimes \Sigma_{2} \sim \Sigma_{1}^{\prime} \boxtimes \Sigma_{2}^{\prime}$.

Corollary 5. If Σ_{1} and Σ_{2} are balanced, then so is $\Sigma_{1} \boxtimes \Sigma_{2}$.

Remark 6. If Σ_{1} and Σ_{2} are antibalanced, it need not imply that their strong product $\Sigma_{1} \boxtimes \Sigma_{2}$ is antibalanced. As an example, consider $\Sigma_{1}=\Sigma_{2}=-K_{2}$. Then their strong product is the balanced signed graph $\Sigma_{1} \boxtimes \Sigma_{2}=\left(K_{4}, \sigma\right)$. Hence the signed graph $-\left(\Sigma_{1} \boxtimes \Sigma_{2}\right)=$ $\left(K_{4},-\sigma\right)$ contains an unbalanced triangle, making it unbalanced. Thus, $\Sigma_{1} \boxtimes \Sigma_{2}$ is not antibalanced.

Theorem 14. Let $\Sigma_{1}=\left(G_{1}, \sigma_{1}\right)$ and $\Sigma_{2}=\left(G_{2}, \sigma_{2}\right)$ be two signed graphs and $\Sigma_{1} \boxtimes \Sigma_{2}$ be their strong product. Then

$$
\operatorname{bdim}\left(\Sigma_{1} \boxtimes \Sigma_{2}\right)= \begin{cases}\operatorname{bdim}\left(\Sigma_{1}\right), & \text { if } \Sigma_{2} \text { is balanced } \\ \operatorname{bdim}\left(\Sigma_{2}\right), & \text { if } \Sigma_{1} \text { is balanced. }\end{cases}
$$

Proof. Suppose $\operatorname{bdim}\left(\Sigma_{1}\right)=k$ and Σ_{2} is balanced. Let $\zeta_{1}: V\left(\Sigma_{1}\right) \rightarrow \Omega^{k}$ and $\zeta_{2}: V\left(\Sigma_{2}\right) \rightarrow\{-1,1\}$ be the corresponding switching functions. Now, the function $\zeta: V\left(\Sigma_{1} \boxtimes \Sigma_{2}\right) \rightarrow \Omega^{k}$, defined by $\zeta\left(\left(u_{i}, v_{j}\right)\right)=\zeta_{1}\left(u_{i}\right) \zeta_{2}\left(v_{j}\right)$, switches $\Sigma_{1} \boxtimes \Sigma_{2}$ to allpositive, and hence $\operatorname{bdim}\left(\Sigma_{1} \boxtimes \Sigma_{2}\right) \leq k$. However, since Σ_{1} is a subgraph of $\Sigma_{1} \boxtimes \Sigma_{2}$, we must have $\operatorname{bdim}\left(\Sigma_{1} \boxtimes \Sigma_{2}\right)=k=\operatorname{bdim}\left(\Sigma_{1}\right)$.
Similar is the proof of the next part.

3. Conclusion and Scope

In this paper, we have studied the properties of balancing dimension of various products of signed graphs, namely, the Cartesian product, the lexicographic product, the tensor product, and the strong product. We found the relationship between the balancing dimensions of various signed graph products and their factors, provided one of them is balanced or all-positive. We also computed the balancing dimensions of the Cartesian product of unbalanced cycles, the Cartesian product of antibalanced signed complete graphs, and the lexicographic product of antibalanced signed complete graphs. We also proved some results on switching equivalence in the case of the lexicographic products and the strong product. Finding the balancing dimensions of products of general unbalanced signed graphs, finding the relation between balancing dimensions of signed graph products and their factors, and studying properties of balancing dimensions of other existing products of signed graphs are some exciting areas for further investigation.

Acknowledgements. The first author would like to acknowledge his gratitude to the University Grants Commission (UGC), India, for providing financial support in the form of Junior Research fellowship (NTA Ref. No.: 191620039346). The authors express their sincere gratitude to Professor Thomas Zaslavsky, Binghamton University (SUNY), Binghamton, and Prof. Shahul Hameed K, K M M Government Women's College, Kannur, for their valuable suggestions.

Conflict of interest. The authors declare that they have no conflict of interest.

Data Availability. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] M. Brunetti, M. Cavaleri, and A. Donno, Erratum to the article'a lexicographic product for signed graphs'., Australas. J. Combin. 75 (2019), 256-258.
[2] _, A lexicographic product for signed graphs., Australas. J. Combin. 74 (2019), 332-343.
[3] K.A. Germina, T. Zaslavsky, and S.K. Hameed, On products and line graphs of signed graphs, their eigenvalues and energy, Linear Algebra Appl. 435 (2011), no. 10, 2432-2450 https://doi.org/10.1016/j.laa.2010.10.026.
[4] S.K. Hameed and K.A. Germina, On composition of signed graphs, Discuss. Math. Graph Theory 32 (2012), no. 3, 507-516
http://doi.org/10.7151/dmgt. 1615.
[5] S.K. Hameed, A. Mathew, K.A. Germina, and T. Zaslavsky, Vector valued switching in signed graphs, Commun. Comb. Optim., (In press)
https://doi.org/10.22049/cco.2023.28591.1624.
[6] F. Harary, Graph Theory, Addison Wesley, Reading, Mass., 1969.
[7] D. Lajou, On Cartesian products of signed graphs, Discrete Appl. Math. 319 (2022), 533-555 https://doi.org/10.1016/j.dam.2021.03.023.
[8] V. Mishra, Graphs associated with $(0,1)$ and $(0,1,-1)$ matrices, Phd thesis, IIT Bombay, 1974.
[9] D. Sinha and P. Garg, Balance and antibalance of the tensor product of two signed graphs, Thai J. Math. 12 (2013), no. 2, 303-311.
[10] T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982), no. 1, 47-74 https://doi.org/10.1016/0166-218X(82)90033-6.
[11] _ A mathematical bibliography of signed and gain graphs and allied areas, Electron. J. Comb. (2018), Article ID: DS8 https://doi.org/10.37236/29.

[^0]: * Corresponding author

