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Abstract: Yuan, Shao and Liu proved that the H-shape tree H′n = P 1,n−6
1,2;n−3 mini-

mizes the spectral radius among all graphs with order n > 9 and diameter n−4. In this

paper, we achieve the spectral characterization of all graphs in the set H ′ = {H′n}n>8.

More precisely we show that H′n is determined by its spectrum if and only if n 6= 8, 9, 12,
and detect all cospectral mates of H′8, H

′
9 and H′12. Divisibility between characteristic

polynomials of graphs turns out to be an important tool to reach our goals.
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1. Introduction

All graphs in this paper are intended to be simple: no loops, multiple or half edges

are allowed. We respectively denote by νG, εG and A(G), the order, the size and

the adjacency matrix of a graph G = (VG, EG). The spectrum sp(G) of G is the

multiset of eigenvalues of A(G), i.e. the roots of the characteristic polynomial of

G φ(G) = φ(G,λ) := det(λI − A(G)). Since A(G) is symmetric, its eigenvalues
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2 Spectral determination of trees

are real and we denote them by ρ(G) = λ1(G) > λ2(G) > · · · > λνG(G). The

maximum eigenvalue ρ(G) of G is called the index of G. The Perron-Froebenius

theorem ensures that ρ(G) is also equal to the spectral radius of G, i.e. the number

max{|λi(G)| | 1 6 i 6 νG}.
Two graphs G and H are said to be cospectral if φ(G) = φ(H) (or, equivalently,

sp(G) = sp(H)). If this is the case we write G ∼ H. By [G] we denote the cospectral

class determined by G under the equivalence relation ∼. A cospectral mate of G is

a graph H ∈ [G] nonisomorphic to G. A graph G is said to be determined by its

spectrum (or DS for short) when G has no cospectral mates or, equivalently, when

sp(G) = sp(H) only if G and H are isomorphic. Spectrally characterizing a graph G

tantamounts to detect all graphs in [G].

Understanding the ‘distinguishing power’ of the spectrum is a well-established topic in

spectral graph theory [17, 22]: in fact, taking up the challenge launched by Haemers

and van Dam in [21], many scholars tried to study [G], for G belonging to specific

families of graphs. For instance, the spectral characterization has been performed for

the T-shaped trees [24], the starlike trees [8, 14], the daggers [16] and the trees with

spectral radius at most h :=
√

2 +
√

5 [7, 19]. Few partial results have been obtained

for the H-shape graphs [10, 15] (see the next paragraph for the definitions).

We now fix some notation. G∪H denotes the disjoint union of the graphs G and H,

and kG stands for the disjoint union of k copies of G. For any vertex u ∈ G, G − u
is the graph obtained from G by deleting v and its incident edges.

Let Pn and Cn respectively denote the path and the cycle with n vertices. We

label their vertices by 0, 1, . . . , n − 1 assuming that consecutive integers correspond

to adjacent vertices. For 0 < m1 < · · · < mt < r − 1, we denote by Pm1,m2,...,mt
n1,n2,...,nt;r

the graph obtained from Pr by attaching at its vertex mi a pendant path of ni edges

for each i = 1, 2, . . . , t. Similarly, for 0 6 m1 < · · · < mt 6 r − 1, we denote by

Cm1,m2,...,mt
n1,n2,...,nt;r the graph obtained from Cr by attaching at its vertex mi a pendant

path of ni edges for each i = 1, 2, . . . , t (see Fig. 1). After [25], the graphs of type

Pm1,m2,...,mt
n1,n2,...,nt;r and Cm1,m2,...,mt

n1,n2,...,nt;r are respectively known as open and closed quipus,

and they can be structurally characterized as the trees (resp., unicyclic graphs) with

maximum vertex degree 3 such that the vertices of degree 3 all lie on a path (resp.,

a cycle). Open quipus with t = 1 are also known as T-shape graphs; whereas open

quipus with t = 2 are sometimes called H-shape or Π-shape trees (see Fig. 2). Closed

quipus with just one pendant path are called lollipops or tadpole graphs.

In this paper we carry out the spectral determination of the graphs in the family

H ′ := {H ′n}n>8, where H ′n = P 1,n−6
1,2;n−3 (see Fig. 2).

Our works is part of a larger project concerning the spectral determinations of the

graphs Gn,D’s minimizing the spectral radius in the set of graphs with n vertices and

diameter D. Van Dam and Kooij [23] conjectured that the open quipu

OQn,e = P
b e−1

2 c,n−e−d
e−1
2 e

b e−1
2 c,d

e−1
2 e;n−e+1
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is one of those minimizer for D = n − e and n large enough, identifying Gn,D when

D ∈ {1, 2, bn2 c, n− 3, n− 2, n− 1}.
After [3, 23, 26], we know that the van Dam-Kooji conjecture holds for 1 ≤ e ≤ 5,

whereas it fails for e > 6 (see [3, 11–13]).

The spectral determination of Gn,D with D ∈ {n−1, n−2, n−3} has been performed

in [7]: the path Gn,n−1 = Pn, and the snake Gn,n−2 = P 1
1;n−1 (n > 4) are DS,

whereas the double snake Gn,n−3 = P 1,n−4
1,1,n−2 is not (see [7, Theorem 3]). Cioaba et

al. [3] proved that for n sufficiently large, the graph Gn,n−5 belongs to the family

H =
{
Hn := P 2,n−7

2,2;n−4 | n > 10
}
.

In [2], it has been proved that all graphs in H are DS apart from H10, H13 and H15.

The search for Gn,n−4 was carried out by Yuan, Shao and Liu [26]: for n > 9, the

only graph attaining the minimimal spectral radius among the graphs with n vertices

and diameter n − 4 is the H-shape tree H ′n (note that 2 = ρ(C8) < ρ(H ′8)). In the

statement of Theorem 1, which is our main result, and throughout the paper, N>a

denotes the set {n ∈ N | n > a}.

Theorem 1. For n > 8, let H ′n be the graph P 1,n−6
1,2;n−3. Then, up to isomorphism,

[H ′8] =
{
H ′8, P1 ∪ C0

1;6

}
, [H ′9] =

{
H ′9, P

1,2
1,1;7

}
, [H ′12] =

{
H ′12, P

2,6
1,1;10

}
,

and [H ′n] = {H ′n} for n ∈ N>8 \ {8, 9, 12}.

From Theorem 1, we realize that all graphs in H ′ are DS apart from three exceptions,

exactly as it happens for the family H (see [2]).

As in [2], a graph G is said to be divisible by a graph H if φ(H) divides φ(G). The

proof of Theorem 1, performed in Section 4, allows to appreciate how useful divisibility

between graphs can be in order to establish whether a graph is DS or not. In fact,

Theorem 2 turns out to be one of the key-tools for carrying out the required case

analysis.

Figure 1. Open quipus, closed quipus and daggers
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2. Preliminaries and basic tools

We start by recalling a result from [21], the seminal paper for all subsequent works

on spectral characterizations.

Proposition 1. [21, Proposition 1] The path Pn is DS for every positive integer n.

In order to prove that a graph is DS, it is useful to have at hand as many as possible

algebraic invariants shared by cospectral graphs. We summarize few of them in the

following proposition.

Proposition 2. [21, Lemma 4] Let G and H be two cospectral graphs. Then,

(i) νG = νH and εG = εH .

(ii) G is bipartite if and only if H is bipartite.

(iii) G is k-regular if and only if H is k-regular.

(iv) G is k-regular with girth g if and only if H is k-regular with girth g.

(v) G and H have the same number of closed walks of any fixed length.

Proposition 3. [5, 20] Let G<2 be the set of connected graphs whose index is less than
2. Then,

G<2 =
{
Pn(n ≥ 1), P 1

1;n−1(n ≥ 4)} ∪ {P 1
2;k−1 | k = 5, 6, 7

}
.

Proposition 4. [5, 20] Let G2 be the set of connected graphs whose index is 2. Then,

G2 =
{
Cn (n ≥ 3), P 1,n−4

1,1;n−2 (n ≥ 6), K1,4, P
2
2;5, P

2
1;8, P

3
1;7

}
,

where K1,4 is the star graph with 4 pendant vertices.

Throughout the paper we denote by h the number
√

2 +
√

5, known in literature as

the (adjacency)-Hoffman limit value.

Proposition 5. [1, 4] The set G(2,h) of connected graphs whose index is in the interval
(2, h) only contains T-shape and H-shape graphs. More precisely, G(2,h) = T ∪ H, where

T =
{
P 1
c;4

∣∣ c > 5
}
∪
{
P 1
c;b+2

∣∣ b > 2, c > 3
}
∪
{
P 2
c;5

∣∣ c > 2
}
∪
{
P 2
3;6

}
and

H =
{
P 1,2
1,1;5, P

2,6
1,1;9, P

2,7
1,1;11, P

3,10
1,1;14, P

3,11
1,1;16

}
∪
{
P a,a+b1,1;a+b+c+1

∣∣∣ a > 0, c > 0, b ≥ b∗(a, c)
}
,

with b∗(a, c) =


c for a = 1,

c+ 3 for a = 2,

a+ c+ 2 for a > 2.
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Proposition 6. [25, Theorem 1] The connected graphs with spectral radii in the interval(
h, 3
√

2/2
]

are either open quipus or closed quipus or daggers (see Fig. 1).

We write H ⊆ G (resp., H ⊂ G) if H is a subgraph (resp., proper subgraph) of the

graph G.

Figure 2. T-shape and H-shape graphs

Proposition 7. [5, Theorems 0.6 and 0.7] Let G be a connected graph and H ⊂ G.
Then, ρ(H) < ρ(G).

For v ∈ VG, let G − v be the graph obtained from G by deleting v and its incident

edges. The following proposition describes the phenomenon known as ‘interlacing’.

Proposition 8. [5, Theorem 0.10] Let λ1 > λ2 > · · · > λn and µ1 > µ2 > · · · > µn−1 be
the eigenvalues of the graphs G and G − v respectively. Then, λ1 > µ1 > λ2 > µ2 > · · · >
µn−1 > λn.

Denoted by d(v) the vertex degree of v ∈ VG in G, an internal path of G is a (possibly

closed) walk v1 . . . vk such the min{d(v1), d(vk)} > 3 and d(vi) = 2 for 2 6 i 6 k − 1.

We also recall that subdividing an edge uv ∈ EG means inserting a new vertex z in VG
and replacing uv with uz and zw. The two parts of the following proposition come

from Proposition 7 and [9] respectively.

Proposition 9. Let uv be an edge of a connected graph G and let Guv be the graph
obtained from G by subdividing the edge uv ∈ EG. Then,

(i) if uv is not in an internal path of G and G is not a cycle, then ρ(Guv) > ρ(G);

(ii) if uv belongs to an internal path of G and G 6∈
{
P 1,n−4
1,1;n−2 | n > 6

}
, then ρ(Guv) < ρ(G).
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For h > k > 8 the graph H ′h is obtained from H ′k by subdividing h−k times an edge in

an internal path. Thus, the following corollary immediately comes from Proposition 9

Corollary 1. ρ(Hh) > ρ(Hk) for all h > k > 8.

Let v be a vertex of a graph G. As it is usual, we denote by NG(v) the neighborhood

of v, i.e. the set {w ∈ VG | vw ∈ EG}.

Proposition 10. [18, Theorems 2 and 3] Let C (v) (resp., C (e)) be the set of all cycles
of a graph G containing the vertex v ∈ VG (resp., the edge e = uw ∈ EG). The following
identities of polynomials

φ(G) = λφ(G− v)−
∑

v′∈NG(v)

φ(G− v − v′)− 2
∑

C∈C(v)

φ(G− V (C)) (1)

and

φ(G) = φ(G− e)− φ(G− u− w)− 2
∑

C∈C(e)

φ(G− V (C)) (2)

hold for every v ∈ VG and for every e = uw ∈ EG (note that φ(H) = 1 if H is the null graph
P0).

Equations (1) and (2) are usually called Schwenk formulæ.

Let k be a positive integer. We recall that a k-matching in a graph G is a set of k

independent edges. We denote by Mk(G) the number of k-matchings in a graph G,

and by ∆G its maximum vertex degree. The following result follows from the Sachs’s

Coefficient Theorem for characteristic polynomials of graphs (see [5, Theorem 1.3]).

Proposition 11. Let G and H be two cospectral graphs.

(i) If neither G nor H contains quadrangles as subgraphs, then M2(G) = M2(H).

(ii) If neither G nor H contains quadrangles or hexagons as subgraphs, then M3(G) = M3(H).

In the following statement, kG denotes the number of vertices with degree 3 in a fixed

graph G.

Proposition 12. Let G be a graph with N triangles and degree sequence (d1, d2, . . . , dνG).

(i) The number of 2-matchings in G is M2(G) =

(
εG
2

)
−

νG∑
i=1

(
di
2

)
.

(ii) If T is a tree with maximal degree ∆T = 3, then M2(T ) =
ν2T − 5νT

2
+ 3− kT .

If, instead, G is a closed quipu, then M2(G) =
ν2G − 3νG

2
− kG.
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(iii) The number of 3-matchings in G is

M3(G) =

(
εG
3

)
− (εG − 2)

νG∑
i=1

(
di
2

)
+ 2

∑
i

(
di
3

)
+

∑
ij∈E(G)

(di − 1)(dj − 1)−N.

Proof. Part (i) is elementary: the number M2(G) is obtained by subtracting the

number of pairs of dependent edges from the total number of pairs of edges. Part (ii)

is essentially Lemma 2.10 in [24]. For Part (iii), see [6, Theorem 1].

The several types of H-shape trees are depicted in Fig. 3, where dotted lines corre-

spond to paths with at least two edges. In other words, the set of the H-shape trees

is the disjoint union
⊔12
i=1 Ti where, for instance,

T4 =
{
P 1,c
1,a;a+b

∣∣ a > 2, b > 2, c > 2
}

and T9 =
{
P 1,c
1,2;b+2

∣∣ b > 2, c > 2
}
.

Proposition 12 and some calculations allow to classify the H-shape trees by means of

the number of their 3-matchings.

Corollary 2. Let T be an H-shape tree with n vertices, and let f(n) = (n3−12n2+35n)/6.
Then,

M3(T ) =



f(n), for T ∈ T1;

f(n) + 1, for T ∈ T2 ∪ T3;

f(n) + 2, for T ∈ T4 ∪ T5 ∪ T6;

f(n) + 3, for T ∈ T7 ∪ T8 ∪ T9;

f(n) + 4, for T ∈ T10 ∪ T11;

f(n) + 5, for T ∈ T12.

Figure 3. The several types of H-shape trees

In [2] the authors called a graph G recursive if G belongs to a sequence of graphs

{Gn}n>h such that νGn
= n and

φ(Gn+2) = λφ(Gn+1)− φ(Gn).
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The following proposition provides the algebraic machinery to understand which

items, in a sequence of recursive graphs, is divided by a path of fixed length. In

fact, Proposition 13 is one of the main tools to prove our Theorem 2.

Proposition 13. [2, Lemma 3.3] Let {gn(λ)}n>0 be a sequence of polynomials, whose
elements satisfy

gn+2(λ) = λgn+1(λ)− gn(λ) for all n > 0.

Then,

(i) gn(λ) = φ(Pk) gn−k(λ)− φ(Pk−1) gn−k−1(λ) for 1 6 k 6 n− 1;

(ii) for each positive i, φ(Pn) | gn+1+i(λ) if and only if φ(Pn) | gi(λ).

3. Spectral properties of the H-shape tree H ′n

Let n > 8. For sake of conciseness, we set ρ′n := ρ(H ′n) and G<h = G<2 ∪ G2 ∪ G(2,h).
The elements of the three sets G<2, G2 and G(2,h) are listed in Propositions 3, 4 and

5.

Proposition 14. For each n > 8, the number ρ′n belongs to the interval
(
h, 3/
√

2
)
.

Proof. By definition, the number ρ′8 is the largest root of φ(H ′8) = x2(x2 − 1)(x4 −
6x2 + 7). Thus, ρ′8 =

√
3 +
√

2 ≈ 2.10100. Applying Corollary 1, we see that

ρ′n 6 ρ′8 < 3/
√

2 ≈ 2.1213.

In order to see that ρ′n > h for all n > 8 we just note that the intersection H ′∩G<h is

empty; moreover, no simple graph has h in its spectrum since the minimal polynomial

of h, i.e. x4 − 4x2 − 1, has nonreal roots.

We now list the approximated values of the first few ρ′n’s. As expected from Propo-

sition 14, they all lie in the interval
(
h, 3/
√

2
)
.

ρ′8 ≈ 2, 10100 ρ′11 ≈ 2.06843 ρ′14 ≈ 2.06082

ρ′9 ≈ 2.08397 ρ′12 ≈ 2.06472 ρ′15 ≈ 2.05984 (3)

ρ′10 ≈ 2.07431 ρ′13 ≈ 2.06235 ρ′16 ≈ 2.05922.

Curiously enough, all values appearing in (3) are also spectral radii of suitable H-shape

trees in H , the family of graphs including the minimizers of the spectral radius for

the sets Gn,n−5 with n sufficiently large (see [2, (16)]). However, despite its intrinsic

interest, the apparently large intersection between sp(H ′n) and sp(H2n−3) is beyond

the scope of this article.

Proposition 15. Among all trees in T4 with n vertices, only H ′n attains the minimum
index.
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Proof. Let G be a graph with n vertices in T4 \ {H ′n}. Since G is a tree, then

εG = εH′n = n − 1. Recall that the length of each dotted line in Fig. 3 is at least 2.

Let `1 and `2 be the lengths of the two longest pendant paths in G. By G 6= H ′n we

deduce that at least one of the two inequalities `1 > 2 and `2 > 2 is strict.

Let G′ be the graph obtained from G by leaving exactly two edges on the two longest

pendant paths, and let G′′ be the the graph obtained from G′ by inserting the deleted

edges (and vertices) in the internal path of G′. Clearly G′′ = Hn, and ρ(G) > ρ(G′) >

ρn. The former inequality comes from Proposition 7, the latter from Proposition 9.

Proposition 16. λ2(H ′n) < 2 for all H ′n ∈H ′.

Proof. By a direct computation, λ2(H ′8) = 1.52023 < 2. Let now n > 9, and let

u be the vertex of H ′n labelled n − 6 in Fig. 2. By interlacing and Proposition 3,

λ2(H ′n) ≤ ρ(H ′n − u) = ρ(2P2 ∪ P 1
1;n−6) < 2.

Proposition 17. For each n > 8, let Ln be the H-shape tree P 1,2
1,1;n−2. Then, ρ(H ′n) =

ρ(Ln) if and only if n = 9.

Proof. First of all, note that H ′9 and L9 are cospectral. In fact,

φ(H ′9) = φ(L9) = (x2 − 1)(x6 − 7x4 + 12x2 − 2).

By a direct computation, ρ(L8) = ρ′10 > ρ′8, and ρ(L10) ≈ 2.08862 > ρ′10; thus,

ρ(Ln) 6= ρ′n for n ∈ {8, 10}.
Now, let n > 11. By Proposition 7 and Corollary 1 it follows that

ρ′n < ρ′10 = ρ(L8) < ρ(Ln).

Proposition 18. Let g be the girth of a closed quipu CQ. If 3 6 g 6 5 then ρ(CQ) > ρ′n
for all n > 8.

Proof. Since C0
1,g ⊆ CQ, we use interlacing, Proposition 9(ii) and Corollary 1, to

obtain

ρ(CQ) > min{ρ(C0
1,3), ρ(C0

1,4), ρ(C0
1,5)} = ρ(C0

1,5) ≈ 2.11491 > ρ′8 > ρ′n

for every n > 8.

We now achieve the recursivity of the graphs in H ′ through the same technique used

to prove [2, Lemma 4.6].
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Proposition 19. All graphs in the family H ′ are recursive. In fact,

φ(H ′n+2) = λφ(H ′n+1)− φ(H ′n) for all n > 8. (4)

Proof. We shall make use of the T-shape graph T ′h := P 1
1;h−1 (see Fig. 2), defined

for all h > 3. By plugging in (4) the polynomials

φ(H ′8) = λ8− 7λ6 + 13λ4− 7λ2, φ(H ′9) = λ9− 8λ7 + 19λ5− 14λ3 + 2λ,

and φ(H ′10) = λ10 − 9λ8 + 26x6 − 27λ4 + 9λ2.

we see that the claimed equality holds for n = 8.

Let now n > 9. Applying (1) with respect to the vertex with label n− 6 in Fig. 2, we

obtain

φ(H ′n+2) =
(
λφ(P2)2 − 2φ(P1)φ(P2)

)
φ(T ′n−3)− φ(P2)2φ(T ′n−4)

=
(
λφ(P2)2 − 2φ(P1)φ(P2)

) (
λφ(T ′n−4)− φ(T ′n−5)

)
− φ(P2)2

(
λφ(T ′n−5)− φ(T ′n−6)

)
= λ

(
(λφ(P2)2 − 2φ(P1)φ(P2))φ(T ′n−4)− φ(P2)2φ(T ′n−5)

)
−
(
(λφ(P2)2 − 2φ(P1)φ(P2))φ(T ′n−5)− φ(P2)2φ(T ′n−6)

)
= λφ(H ′n+1)− φ(H ′n).

Thus, (4) is proved.

Theorem 2. The path Pm (m > 1) divides H ′n if and only if

(m,n) ∈ {(1, h), (2, h) | h ∈ N8} ∪ {(5, 6s+ 4) | s ∈ N} .

Proof. We consider the sequence of polynomials {gi(λ)}i∈N, where

g0(λ) = −λ10 + 7λ8 − 14λ6 + 7λ4 + λ2 = −λ2(λ2 − 1)(λ6 − 6λ4 + 8λ2 + 1),

g1(λ) = −λ9 + 6λ7 − 9λ5 + 2λ3 + 2λ = −λ (λ2 − 1) (λ6 − 5λ4 + 4λ2 + 2),

g2(λ) = −λ8 + 5λ6 − 5λ4 + λ2 = −λ2(λ2 − 1)(λ4 − 4λ2 + 1),

g3(λ) = −λ7 + 4λ5 − λ3 − 2λ = −λ (λ2 − 1) (λ4 − 3λ2 − 2),

g4(λ) = −λ6 + 4λ4 − 3λ2 = −λ2(λ2 − 1)(λ2 − 3),

g5(λ) = −2λ3 + 2λ = −2λ(λ2 − 1)

g6(λ) = λ6 − 6λ4 + 5λ2 = λ2(λ2 − 1)(λ2 − 5),

g7(λ) = λ7 − 6λ5 + 7λ3 − 2λ = λ(λ2 − 1)(λ4 − 5λ2 + 2),

(5)

and

gn(λ) = φ(H ′n) for n > 7.
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The equality

gn+2(λ) = λgn+1(λ)− gn(λ) (6)

holds for every n > 0. This can be proved by a direct inspection if 0 6 n 6 7, and by

Proposition 19 if n > 7.

Since 0 and ±1 are roots of both g0(λ) and g1(λ), an easy inductive argument using

(6) shows that φ(P1) = λ and φ(P2) = λ2 − 1 divide φ(H ′n) for all n ∈ N>8.

Let now m > 3. There exists a unique integral pair (s, i) with s > 0 and 0 6 i 6 m

such that n = (m+ 1)s+ i. From Proposition 13 it follows that φ(Pm) | gn(λ) if and

only if φ(Pm) | gi(λ), where 0 6 i 6 m. We now distinguish two cases.

Case 1. 3 6 m 6 7. The polynomials after the second equalities in (5) cannot be

further decomposed in the ring Z [λ]. Moreover, it is obvious that φ(Pm) can possibly

divide gi(λ) only if m 6 deg gi(λ). Taking into account these two facts, one quickly

realizes that, in the considered range, φ(Pm) | gi(λ) if and only if (m, i) = (5, 4). In

fact, g4(λ) = −λφ(P5).

Case 2. m > 8. For degree reasons, when 0 6 i 6 7, φ(Pm) could possibly divide

gi(λ) only for (i,m) ∈ {(0, 8), (1, 8), (2, 8), (1, 9), (2, 9), (0, 10)}. A direct check shows

that no divisibility occurs in any of those six cases. Finally, assume (m >)i > 8.

Since deg gi(λ) = |VH′i | = i, φ(Pm) could possibly a factor of φ(H ′i) only for m = i

and, if this were the case, φ(Pi) = φ(H ′i). This equality cannot be true since, by

Proposition 1, every path is DS.

We end this section by recalling a proposition by Liu and Huang useful to detect

cospectral mates of H-shape trees.

Proposition 20. [15, Equation (2) and Lemma 3.1] Let n4(G) be the number of quad-
rangles in a graph G. If G is cospectral to an H-shape graph with n vertices, then n4(G) 6 1.
Moreover, the degree sequence of G is (12, 2n−2) if n4(G) = 1, whereas it belongs to{

(01, 11, 2n−3, 31), (14, 2n−6, 32)
}

if n4(G) = 0.

4. Proof of Theorem 1

The proof of Theorem 1 still requires three additional lemmas.

Lemma 1. [7, Lemma 4] For a, b, c > 1 the following equalities hold.

(i) φ(P ac,a+b+1, 2) = a+ b+ c+ 2− abc;

(ii) φ(P a−1,a+b−1
1,1,a+b+c−1, 2) = 4(a+ b+ c)− 4ac− 2bc− 2ab+ abc.

Lemma 2. Let H = P a−1,a+b−1
1,1,a+b+c−1 with c > a > 3 and b > 2. The equality φ(H, 2) = −12

only holds if (a, b, c) belongs to the set

S := {(3, 4, 4), (3, 6, 6), (3, 7, 10), (4, 5, 4), (7, 5, 10), (8, 5, 8)}. (7)
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Proof. By Lemma 1, the condition φ(H, 2) = −12 is equivalent to b q1 = q2, where

q1 := ac− 2(a+ c) + 4 and q2 := 4ac− 4(a+ c)− 12.

The numbers q1 and q2 are both zero or both nonzero. Now, (q1, q2) = (0, 0) is

equivalent to (ac, a+ c) = (10, 7) which is impossible, since c > a > 3. Thus, q1 6= 0,

and bq1 = q2 is equivalent to

b = 4 +
4(a+ c− 7)

q1
. (8)

If a > 12, then a+ c > 7 and q1 > 10(c− 2) > 0. Therefore, (8) yields

0 < b− 4 =
4(a+ c− 7)

q1
6

4(2c− 7)

10(c− 2)
<

4

5
< 1

which is false. Therefore, if (8) holds, then a < 12. The possible cases are listed

below. Equation (8) becomes:

(i) b = 8− 8

c− 2
for a = 3; thus, (a, b, c) ∈ {(3, 4, 4), (3, 6, 6), (3, 7, 10)};

(ii) b = 6− 2

c− 2
for a = 4, leading to (a, b, c) = (4, 5, 4);

(iii) b =
24

5
+

8

5(c− 2)
for a = 7, having (a, b, c) = (7, 5, 10) as admissible solution;

(iv) =
14

3
+

2

(c− 2)
for a = 8, resulting in (a, b, c) = (8, 5, 8).

For a respectively equal to 5, 6, 9, 10 and 11, Equation 8 becomes

b =
16

3
; b = 5+

1

c− 2
b =

32

7
+

16

7(c− 2)
; b =

9

2
+

5

2(c− 2)
, b =

40

9
+

8

3(c− 2)
,

and none of these five equations have admissible solutions. This ends the proof.

Lemma 3. φ(H ′n, 2) = −12 for all n > 8.

Proof. Let {gi(λ)}i>0 be the sequence of polynomials defined along the proof of

Theorem 2. The statement is proved through an inductive argument using (10) and

the equalities g0(2) = g1(2) = −12.
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Let G be a graph cospectral to H ′n. Then, νG = n and εG = n − 1. From Proposi-

tion 20, we deduce in particular that ∆G 6 3.

By Propositions 14 and 16, ρ(G) ∈
(
h, 3/
√

2
)

and λ2(G) < 2. Since G<2 only contains

trees (see Proposition 3), and the component of G having ρ(G) among its eigenvalues

is a quipu (by Proposition 6), there are just two possibilities: if G is connected,

then G is an open quipu; otherwise G = CQ ∪ T , where CQ is a closed quipu with

ρ(CQ) = ρ′n = ρ(G) and T ∈ G<2 (the graph G has at most one acyclic component

since, for instance, G has at most 4 pendant vertices by Proposition 20).

Case 1: G is connected. In this case G is an open quipu. By Proposition 20, the

degree sequence of G is (14, 2n−6, 32). This means that G is an H-shape tree. From

Proposition 11 and Corollary 2 we deduce that G necessarily belongs to T4 ∪ T5 ∪ T6
(see Fig. 3).

Case 1.1: G ∈ T4. By Proposition 15 we know that the only graph with n vertices

in T4 whose spectral radius is ρ(G) = ρ′n is Hn. Thus, G = H ′n.

Case 1.2: G ∈ T5. By looking at Fig. 3, we see that there exists a triple of positive

integers (a, b, c) with min{a, c} > 3 and b > 2 such that

G = P a−1,a+b−11,1;a+b+c−1.

By symmetry, it is not restrictive to assume a 6 c. Note that n = νH′n = νG =

a + b + c + 1. From Lemmas 2 and 3 we deduce that (a, b, c) belongs to the set S
defined in (7). Now, a direct calculation shows that φ(G) = φ(H ′a+b+c+1) only for

(a, b, c) = (3, 4, 4). Thus, G = P 2,6
1,1;10 and n = 12.

Case 1.3: G ∈ T6. The only graph with n vertices in T6 is P 1,2
1,1,n−2. By Proposi-

tion 17, ρ(G) = ρ(H ′n) occurs only for n = 9. The graphs P 1,2
1,1,n−2 and H ′9 are, indeed,

cospectral.

Case 2: G = CQ ∪ T , where CQ is a closed quipu with ρ(CQ) = ρ′n = ρ(G) and

T ∈ G<2. By Proposition 2(ii) and Proposition 18, the girth g of CQ is even and larger

than 5. Thus, the degree sequence of G is either (01, 11, 2n−3, 31) or (14, 2n−6, 32) by

Proposition 20.

Case 2.1: T is a path. By Theorem 2, necessarily νT ∈ {1, 2, 5}.

Case 2.1.1: T = P1. In this case the degree sequence of the closed quipu CQ is

(11, 2n−3, 31). In other words, CQ is a lollipop of type C0
t,2s where t = n− 1− 2s and

2 < s 6 (n− 2)/2.

By applying (2) to CQ with respect to an edge incident to the vertex of degree 3, we

obtain the identity

φ(C0
t,2s) = φ(P2s+t)− φ(P2s−2)− φ(Pt)− 2φ(Pt). (9)
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Since φ(Pk, 2) = k + 1, Lemma 3 and (9) yield

−12 = φ(H ′n, 2) = φ(G, 2) = φ(P1, 2)φ(CQ, 2) = −4st,

which holds only for (s, t) = (3, 1). In other words, the case T = P1 occurs only if

n = 8 and G = P1 ∪ C0
1,6. A direct computation shows that H ′8 and G are indeed

cospectral, their characteristic polynomial being λ2(λ2 − 1)(λ4 − 6λ2 + 7).

Case 2.1.2: T = P2. The degree sequence of CQ is (12, 2n−6, 32), i.e. CQ is a closed

quipu with two pendant paths, and we can write

G = P2 ∪ C0,m
a,b;2s with s > 2 and 2(s+ 1) + a+ b = n.

We first note that s 6= 3, since, by interlacing and Corollary 1,

ρ(C0,m
a,b;6) > ρ(C0,m

1,1;6) > min
{
ρ(C0,1

1,1;6), ρ(C0,2
1,1;6), ρ(C0,3

1,1;6)
}
≈ 2.17009 > ρ′8 > ρ′n.

Let e
i,j

denote the number of the edges e = uv with d(u) = i and d(v) = j in the

graph CQ. In particular, we set (x, y) := (e
3,3
, e

1,2
). Obviously, 0 6 x 6 1 and

0 6 y 6 2, and it is straightforward to check the equalities

e
1,3

= 2− y, e
2,3

= 4− 2x+ y and e
2,2

= εCQ + x− y − 6. (10)

Recall that f(n) = (n3 − 12n2 + 35n)/6. With the aid of (10) and Proposition 12 we

compute

M3(G) = M3(CQ) +M2(CQ) = f(n) + x+ y + 3.

This number, by Lemma 2 and Proposition 11, should be equal to f(n) + 2, implying

x+ y = −1, against the intrinsic nonnegative nature of x and y. Thus, this case does

not occur.

Case 2.1.3: T = P5. Since P5 divides H ′n, the integer n is even. In fact, we

have n = νG ≡ 4 mod 6 by Theorem 2. This time, the degree sequence of CQ is

(12, 2n−9, 32). Thus, we can write

G = P5 ∪ C0,m
a,b;2s with s > 3 and 2s+ a+ b = n− 5.

For the very same reason explained in Case 2.1.2, the girth of CQ cannot be 6 and,

once again, by Proposition 11, M3(G) = M3(H ′n). Let x := e
3,3

, y := e
1,2

, e
1,3

, e
2,2

and e
2,3

be the numbers defined in Case 2.1.2. Relations (10) hold with εCQ = n− 5.

Therefore, by a counting argument and Proposition 12,

M3(G) = M3(CQ) + 4M2(CQ) + 3εCQ = f(n) + x+ y + 2.
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Hence, M3(G) = M3(H ′n) if and only if x+ y = 0, i.e. CQ = C0,k
1,1,2s with 2 6 k 6 s.

So far, we have proved that νCQ is even. Consequently n = νG should be odd against

Theorem 2. In other words, this case does not occur.

Case 2.2: T ∈ {P 1
1;h−1, P

1
2;k | h > 4; 4 6 k 6 6}. In this case, the closed quipu

CQ is a (bipartite) lollipop, since it must have exactly one pendant vertex and only

one vertex of degree 3. Thus, CQ = C0
t,2s. In Case 2.1.1, we already explained why

φ(CQ, 2) = −2st. With this information at hand, using Lemma 1(i) we arrive at

φ(G, 2) =



−8st if T ∼= P 1
1;h−1;

−6st if T ∼= P 1
2;4;

−4st if T ∼= P 1
2;5;

−2st if T ∼= P 1
2;6.

(11)

From (11) we see that φ(G, 2) = φ(H ′n, 2) = −12 only for

(G,H ′n) ∈ U =
{ (
P 1
2;5 ∪ C0

1;6, H
′
14

)
,
(
P 1
2;6 ∪ C0

2;6, H
′
16

)
,
(
P 1
2;6 ∪ C0

1;12, H
′
21

) }
.

Yet, each pair in U contains graphs which are not cospectral, their spectral radius

being different. Hence, even this final case does not occur, and the proof of Theorem 1

is over.
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