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Abstract: For any graph, Weisfeiler and Leman assigned the smallest matrix algebra

which contains the adjacency matrix of the graph. The coherent configuration underly-
ing this algebra for a graph Γ is called the coherent configuration of Γ, denoted by X (Γ).

In this paper, we study the coherent configuration of circular-arc graphs. We give a

characterization of the circular-arc graphs Γ, where X (Γ) is a homogeneous coherent
configuration. Moreover, all homogeneous coherent configurations which are obtained

in this way are characterized as a subclass of Schurian coherent configurations.
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1. Introduction

The theory of coherent configuration was started by Higman in [7] as a tool for

studying permutation groups, and it was independently started by Weisfeiler and

Leman in [13] as the theory of stationary graphs for studying graph isomorphism

problem. For each graph, Weisfeiler and Leman assigned the smallest matrix algebra

which contains the adjacency matrix of the graph. The importance of this algebra

lies in the well-known fact that the automorphism group of each graph is equal to the

automorphism group of its matrix algebra. The coherent configuration underlying

this algebra for a graph Γ is called the coherent configuration of Γ or the scheme of

Γ, and denoted by X (Γ). In other words, X (Γ) is the smallest coherent configuration
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2 On coherent configuration of circular-arc graphs

on the vertex set of Γ such that the edge set of Γ is the union of some basic relations

of X (Γ) [5].

For any finite permutation group G one can associate a coherent configuration de-

noted by Inv(G). One of the most important concepts in the theory of coherent

configurations is to characterize Schurian coherent configurations. A coherent config-

uration X is said to be Schurian if X = Inv(G) for some permutation group G, see

[14]. In general, the Schurity problem (even for a class consisting of only one coherent

configuration) is quite difficult [5]. But there are non-trivial classes of coherent config-

urations such that the Schurity problem is completely solved for them, e.g. 1-regular

coherent configurations and the coherent configurations of algebraic forests includes

cographs, trees, interval graphs and rooted-directed path graphs [6].

In this paper, we study the Schurity problem for the coherent configurations of other

interesting family of intersection graphs, namely, circular-arc graphs which are the

intersection graphs of a family of arcs of a circle. Circular-arc graphs received consid-

erable attention by Tucker [10–12], and Durán, Lin and McConnel [4, 8, 9]. Several

characterizations and recognition algorithms have been formulated for circular-arc

graphs [2, 8]. In this paper, we are interested in an algebraic description of circular-

arc graphs.

Our main results give a characterization of circular-arc graphs Γ, where X (Γ) is a

homogeneous coherent configuration, or in other words, an association scheme. The

characterization is established in the terms of wreath product of graphs, also called

the lexicographic product. The rest of this section is to state our results.

Theorem 1. Let Γ be a circular-arc graph. X (Γ) is homogeneous if and only if Γ is
isomorphic to the wreath product of a complete graph and an elementary circular-arc graph.

Let n be a positive integer and let S be a subset of Zn such that S = {±1, . . . ,±k}
for 0 ≤ 2k + 1 < n. Then the Cayley graph Cay(Zn, S) is circular-arc (see Sec.

5), and we call it elementary circular-arc graph. For k = 0 it is empty graph and

for k = 1 it is an undirected cycle. In fact, analysis duplicating the vertices of an

elementary circular-arc graph shows that the wreath product of a complete graph and

an elementary circular-arc graph is a circular-arc graph.

In the following theorem we give a characterization of homogeneous coherent config-

urations which are the coherent configuration of circular-arc graphs.

Theorem 2. Let X = X (Γ), where Γ is a circular-arc graph. Then X is homogeneous if
and only if it is isomorphic to the wreath product of a rank 2 coherent configuration and X0,
where X0 is one of the following:

(i) a rank 2 coherent configuration,

(ii) the wreath product of two rank 2 coherent configurations,

(iii) the coherent configuration of a dihedral group.



F. Raei Barandagh, A. Rahnamai Barghi 3

We know that any rank 2 coherent configuration and any coherent configuration of a

dihedral group are Schurian. Moreover, the wreath product of two Schurian coherent

configurations is Schurian, see [14]. Thus we have the following corollary:

Corollary 1. Let X be a homogeneous coherent configuration such that X = X (Γ) for a
circular-arc graph Γ. Then X is Schurian.

The automorphism group of each graph is equal to the automorphism group of its

coherent configuration, see [13]. Moreover, it is well-known that the automorphism

group of the wreath product of two coherent configurations is equal to the wreath

product of their automorphism groups. Denote by Sn the symmetric group acting on

n points, by D2n the dihedral group on n elements, and by G oH the wreath product

of two groups G and H. The following corollary is a consequence of Theorems 1 and

2.

Corollary 2. Let Γ be a circular-arc graph on n vertices, such that X (Γ) is homogeneous.
Then there is an even integer k, k|n, such that Aut(Γ) is isomorphic to Sn

k
oG, where G is

Sk or S2 o S k
2

or D2k.

This paper is organized as follows. In Section 2, we present some preliminaries on

graph theory and coherent configurations. In Section 3, we first remind the concept of

circular-arc graphs and then we introduce arc-function and reduced arc-function of a

circular-arc graph. Moreover, we characterize non-empty regular circular-arc graphs

without twins. Section 4 contains relationship between wreath product of graphs and

wreath product of their coherent configurations. In Section 5, we define elementary

circular-arc graphs, and then we characterize their coherent configurations. Finally,

in Section 6 we give the proof of Theorem 1 and Theorem 2.

Notation. Throughout the paper, V denotes a finite set. The diagonal of the Carte-

sian product V 2 is denoted by 1V .

For r, s ⊂ V 2 and X,Y ⊂ V we have the following notations:

r∗ = {(u, v) ∈ V 2 : (v, u) ∈ r},

rX,Y = r ∩ (X × Y ) , rX = rX,X ,

r · s = {(v, u) ∈ V 2 : (v, w) ∈ r, (w, u) ∈ s for some w ∈ V },

r ⊗ s = {((v1, v2), (u1, u2)) ∈ V 2 × V 2 : (v1, u1) ∈ r and (v2, u2) ∈ s},

Also for any v ∈ V , set vr = {u ∈ V : (v, u) ∈ r} and nr(v) = |vr|.

For S ∈ 2V
2

denote by S∪ the set of all unions of the elements of S, and set S∗ =

{s∗ : s ∈ S} and vS = ∪s∈Svs. For T ∈ 2V
2

, set

S · T = {s · t : s ∈ S, t ∈ T}.
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For an integer n, let Zn be the ring of integer numbers modulo n. Set

AZn := {{i, i+ 1, . . . , i+ k} : i, k ∈ Zn and k 6= n− 1}.

For each set {i, i+ 1, . . . , i+k}, the points i and i+k are called the end-points of the

set.

2. Preliminaries

2.1. Graphs.

All terminologies and definitions of graph theory have been adapted from [1]. In this

paper, we consider finite and undirected simple graphs. We denote a complete graph

on n vertices by Kn, and a cycle on n vertices by Cn.

Let Γ = (V,R) be a graph with vertex set V and edge set R. Let E be an equivalence

relation on V , then ΓV/E is a graph with vertex set V/E in which distinct vertices X

and Y are adjacent if and only if at least one vertex in X is adjacent in Γ with some

vertex in Y . For every subset X of V , the graph ΓX is the subgraph of Γ induced

by X.

Let Γi be a graph on Vi, for i = 1, 2. The graphs Γ1 and Γ2 are isomorphic if there

is a bijection f : V1 → V2, such that two vertices u and v in V1 are adjacent in

Γ1 if and only if their images f(u) and f(v) are adjacent in Γ2. Such a bijection is

called an isomorphism between Γ1 and Γ2. The set of all isomorphism between Γ1

and Γ2 is denoted by Iso(Γ1,Γ2). An isomorphism from a graph to itself is called an

automorphism. The set of all automorphisms of a graph Γ is the automorphism group

of Γ, and is denoted by Aut(Γ).

The lexicographic product or wreath product of graphs Γ1 and Γ2 is the graph Γ1 o Γ2

with vertex set V1×V2 in which (u1, u2) is adjacent to (v1, v2) if and only if either u1

and v1 are adjacent in Γ1 or u1 = v1 and also u2 and v2 are adjacent in Γ2.

Let Γ = (V,R) be a graph. Two vertices u, v ∈ V are twins if u and v are adjacent in

Γ and vR\{u} = uR\{v}, where the set of neighbors of a vertex v in the graph Γ is

denoted by vR.

2.2. Coherent configurations.

In this part all terminologies and notations are based on [3, 5].

Definition 1. A pair X = (V, S), where V is a finite set and S is a partition of V 2, is
called a coherent configuration on V if 1V ∈ S∪, S∗ = S, and for any r, s, t ∈ S the number

ctrs := |vr ∩ us∗|
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does not depend on the choice of (v, u) ∈ t. The coherent configuration X is called homoge-
neous if 1V ∈ S.

The elements of V , S, S∪ and the numbers ctrs are called the points, the basic relations,

the relations and the intersection numbers of X , respectively. The numbers |V | and

|S| are called the degree and the rank of X . A unique basic relation containing a pair

(v, u) ∈ V 2 is denoted by rX (v, u) or r(v, u).

An equivalence relation on a subset of V belonging to S∪ is called an equivalence

relation of X . Any coherent configuration has trivial equivalence relations: 1V and

V 2. Let e ∈ S∪ be an equivalence relation. For a given X ∈ V/e the restriction of X
to X is

XX = (X,SX),

where SX is the set of all non-empty relations rX with r ∈ S. The quotient of X
modulo e is defined

XV/e = (V/e, SV/e),

where SV/e is the set of all non-empty relations of the form {(X,Y ) : sX,Y 6= ∅},
with s ∈ S.

Two coherent configurations X1 and X2 are called isomorphic if there exists a bijection

between their point sets in such a way that induces a bijection between their sets of

basic relations. Such a bijection is called an isomorphism between X1 and X2. The

set of all isomorphism between X1 and X2 is denoted by Iso(X1,X2). The group of

all isomorphisms of X to itself contains a normal subgroup

Aut(X ) = {f ∈ Sym(V ) : sf = s, s ∈ S}

called the automorphism group of X where sf = {(uf , vf ) : (u, v) ∈ s}.

The wreath product X1 o X2 of X1 = (V1, S1) and X2 = (V2, S2) is a coherent configu-

ration on V1 ⊗ V2 with the following basic relations

V 2
1 ⊗ r, for r ∈ S2\1V2

and s⊗ 1V2
, for s ∈ S1.

2.3. The coherent configuration of a graph.

There is a natural partial order ” ≤ ” on the set of all coherent configurations on V .

Namely, given two coherent configurations X = (V, S) and X ′ = (V, S′) we set

X ≤ X ′ ⇔ S∪ ⊆ (S′)∪.

In this case, X is called a fusion of X ′ and X ′ is called a fission (extension) of X . The

minimal and maximal elements with respect to ” ≤ ” are the trivial and the complete
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coherent configuration on V , respectively: the basic relations of the former one are

the reflexive relation 1V and (if |V | > 1) its complement in V 2, whereas the relations

of the later one are all binary relations on V .

Let R be an arbitrary relation on the set V . Denote by X (R) the smallest coherent

configuration with respect to ” ≤ ” such that R is a union of its basic relations.

Let Γ = (V,R) be a graph with vertex set V and edge set R. By the coherent

configuration of Γ we mean X (Γ) = X (R). For example, if Γ is a complete graph

or empty graph with at least 2 vertices, then its coherent configuration is the trivial

coherent configuration of rank 2. One can check that if X (Γ) is homogeneous, then

Γ is a regular graph.

In general, it is quite difficult to find the coherent configuration of an arbitrary graph.

In [6], the coherent configuration of a graph has been studied for some classes of

graphs.

3. Circular-arc graphs

From [1], for a given family F of subsets of V , one may associate an intersection

graph. This is the graph whose vertex set is F , two different sets in F being adjacent

if their intersection is non-empty. Circular-arc graph is the intersection graph of a

family of arcs of a circle.

Lemma 1. Let Γ be a graph on V with n vertices. Then Γ is a circular-arc graph if and
only if there exists a function f : V → AZm, for some m, such that Γ is the intersection
graph of the family Im(f) = {f(v) : v ∈ V }. Moreover, this function can be chosen such that

(1) any element of Zm is the end-point of at least one set in Im(f),

(2) each set in Im(f) contains at least two elements.

Proof. To prove sufficient part, let Γ be a circular-arc graph. Then by the definition

it is the intersection graph of some arcs of a circle C. Without loss of generality,

we may assume that the end-points of any of these arcs are distinct. Let m be the

number of these end-points and let A = {a0, a1, . . . , am−1} be the set of all of them.

It is clear that m ≤ 2n. Here the indices of the points ai are the elements of Zm; they

are chosen in such a way that the point ai precedes the point ai+1 in the clockwise

order of the circle C. Then for any vertex v ∈ V there exist uniquely determined

elements iv, jv ∈ Zm such that

Av := Cv ∩A = {aiv , aiv+1 . . . , ajv},

where Cv is a subset of C which is the arc corresponding to v. Moreover, it is easily

seen that Cu ∩ Cv is not empty if and only if iv ∈ Au or jv ∈ Au or iu, ju ∈ Av.
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Therefore, the vertices u and v are adjacent if and only if the set Au ∩ Av is not

empty. Now define a function f : V → AZm by

f(v) = {iv, iv + 1, . . . , jv}.

Then Γ is the intersection graph of the family Im(f). Moreover, statements (1) and

(2) immediately follow from the definition of f .

Conversely, let m ≤ 2n and f : V → AZm be a function such that Γ is the intersection

graph of Im(f). Consider a circle C and choose m distinct points on it. We may label

these points by the elements of Zm such that these points appear in C in clockwise

order. Since Im(f) ⊂ AZm for each vertex v ∈ V , there exist iv, jv ∈ Zm such that

f(v) = {iv, iv + 1, . . . , jv}. We correspond an arc Cv ⊂ C, from iv to jv in clockwise

order to the vertex v. It is clear that the set f(u) ∩ f(v) is not empty if and only if

Cu∩Cv is not empty. It follows that Γ is the intersection graph of the set {Cv : v ∈ V }.
So it is a circular-arc graph. This completes the proof of the lemma.

The function f : V → AZm satisfying statements (1) and (2) and conditions of

Lemma 1 is called the arc-function of the graph Γ and the number m is called the

length of f .

Theorem 3. Let Γ = (V,R) be a non-empty circular-arc graph on n vertices. Suppose
that for any two vertices u and v in V we have:

v ∈ uR ⇒ uR 6⊂ {v} ∪ vR. (1)

Then there exists an arc-function f of Γ such that the following statements hold:

(i) no set of Im(f) is a subset of another set of Im(f),

(ii) the length of f is equal to n,

(iii) any element i ∈ Zn is the end-point of exactly two sets in Im(f).

Remark 1. The graph Γ satisfying condition (1) is a connected graph. Indeed, otherwise,
it is easily seen that Γ is an interval graph. On the other hand, each interval graph is chordal,
and so it has a vertex whose neighborhood is a complete graph (see [1]) which contradicts
the condition (1).

Proof. By Lemma 1, there exists an arc-function f ′ of Γ of length m′ ≤ 2n. Denote

by ∼ the binary relation on Zm′ defined by i ∼ j if and only if for any v ∈ V

i, j ∈ f ′(v) or i, j /∈ f ′(v).
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One can check that ∼ is an equivalence relation, and its equivalence classes belong

to AZm′ . By the definition of ” ∼ ” any element of Im(f ′) is a disjoint union of

some classes. Let us define a function f such that for each v ∈ V , f(v) is the set of

∼-classes contained in f ′(v). The equivalence classes of ∼ can be identified by Zm.

By this identification, we have f(v) ∈ AZm.

We claim that f is an arc-function of Γ. Indeed, from the definition of f it follows

that for each two vertices u and v, the set f(u) ∩ f(v) is not empty if and only if

the set f ′(u) ∩ f ′(v) is not empty. Moreover, statement (1) of Lemma 1 is obvious.

Thus, it is sufficient to verify that statement (2) of Lemma 1 occurs. Suppose on the

contrary, that there is a vertex v ∈ V such that f(v) contains exactly one element.

Then f ′(v) is a class of the equivalence ∼. By condition (1) this implies that v is an

isolated vertex in Γ, which is impossible by Remark 1. Thus f is an arc-function of

Γ.

By Lemma 1, the graph Γ is isomorphic to the intersection graph of the family Im(f ′).

Thus for two adjacent vertices u and v in V , if f ′(u) ⊆ f ′(v) then any vertex in V \{v}
which is adjacent to u in Γ is also adjacent to v. On the other hand, it is easy to see

that f ′(u) ⊆ f ′(v) is equivalent to f(u) ⊆ f(v). Therefore, we have

f(u) ⊆ f(v) ⇒ uR ⊂ {v} ∪ vR. (2)

Hence, statement (i) follows from condition (1).

Statement (ii) is a consequence of statement (iii). First we will show that any element

i ∈ Zm is the end-point of exactly two sets in Im(f). Suppose on the contrary that

there is an element i ∈ Zm which is an end-point of at least three sets of Im(f). By

statement (2) of Lemma 1, there are at least two sets f(u) and f(v) such that

i+ 1 ∈ f(v) ∩ f(u) or i− 1 ∈ f(v) ∩ f(u).

It follows that in any case f(v) ⊆ f(u) or f(u) ⊆ f(v). From (2), this contradicts

condition (1). Thus any element i ∈ Zm is the end-point of at most two sets in Im(f).

To complete the proof, suppose that there exists i ∈ Zm which is an end-point of

exactly one set, say f(v), in Im(f). By statement (2) of Lemma 1, we have i+1 ∈ f(v)

or i− 1 ∈ f(v). Suppose that the former inclusion holds. Then by (2) we have

u ∈ vR ⇒ i 6∈ f(v) ∩ f(u). (3)

If i + 1 is an end-point of f(v) then, since Γ does not contain any isolated vertex,

so there is a vertex u ∈ V such that f(u) ∩ f(v) is not empty. From (3) it follows

that i + 1 is an end-point of f(u). Let w ∈ vR, then the set f(v) ∩ f(w) is not

empty. From (3) we have i+ 1 ∈ f(w) and so f(w) ∩ f(u) is not empty. So, w ∈ uR.

Therefore, in this case vR ⊆ {u} ∪ uR, that contradicts the condition (1). Thus

we suppose i + 1 is not an end-point of f(v). In this case, statement (1) of Lemma

1 implies that i + 1 is an end-point of a set in Im(f), say f(u). From Lemma 1,
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we have f(u) * f(v) and it follows that f(v)\{i} ⊆ f(u). Now from (3), we have

vR ⊆ {u} ∪ uR, which contradicts the condition (1). If i − 1 ∈ f(v), by the same

argument we have a contradiction again. Thus, any element i ∈ Zm is the end-point

of exactly two sets in Im(f). This completes the proof of the theorem.

Any arc-function f : V → AZn, satisfying conditions (i), (ii) and (iii) of Theorem 3

is called the reduced arc-function of the graph Γ.

Corollary 3. Let Γ = (V,R) be a graph which satisfies the conditions of Theorem 3.
Then nR(v) = 2|f(v)| − 2 for each vertex v ∈ V , where f is the reduced arc-function of Γ.

Proof. Let v ∈ V . From statement (iii) of Theorem 3 any i ∈ f(v) is the end-point

of exactly two elements in Im(f). Therefore, we get

nR(v) ≤ 2|f(v)| − 2. (4)

In fact, by statement (i) of Theorem 3 for each u ∈ vR, exactly one of the end-points

of f(u) belongs to f(v). Thus we have equality in (4), and we are done.

Proposition 1. Let Γ = (V,R) be a non-empty circular-arc graph without twins. Then
Γ is regular if and only if for any two vertices u and v in V we have:

v ∈ uR ⇒ uR 6⊂ {v} ∪ vR. (5)

Proof. Suppose that Γ is regular and u and v are two adjacent vertices of the graph

Γ. Then |{v}∪ vR| = |{u}∪uR|. However, {v}∪ vR 6= {u}∪uR because u and v are

not twins. It follows that there exists a vertex in uR, different from v, which is not in

vR; and there exists a vertex in vR, different from u, which is not in uR. Therefore,

the condition (5) holds.

Conversely, suppose that Γ satisfies condition (5). By the same argument as Remark 1

the graph Γ is connected. Thus, it is sufficient to show that any two adjacent vertices

u and v have the same degree. On the other hand, by Theorem 3 there is a reduced

arc-function f : V → AZn, where n = |V |. So by Corollary 3, it is sufficient to show

that |f(v)| = |f(u)|, or equivalently

|f(u)\f(v)| = |f(v)\f(u)|. (6)

Note that the set f(u) ∩ f(v) is not empty because u and v are adjacent. Moreover,

by hypothesis, u and v are not twins so f(v) 6= f(u). We may assume that

f(u) ∪ f(v) 6= Zn. (7)
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Indeed, otherwise, we would have f(u) ∪ f(v) = Zn and then from statement (i) of

Theorem 3, any set in Im(f) different from both f(u) and f(v) has one end-point in

f(v) and one end-point in f(u). This implies that any vertex in V \{u, v} is adjacent

to both u and v, which is impossible because u and v are not twins.

Let i ∈ f(u)\f(v). Then by statement (iii) of Theorem 3, there are exactly two

vertices ui, vi ∈ V , for which i is the end-point of both f(ui) and f(vi), or equivalently

due to (7) we have

{i} = f(ui) ∩ f(vi).

Moreover, by statement (i) of Theorem 3, neither f(ui) nor f(vi) is a subset of f(u).

Now, from (7) it follows that the end-points of f(ui) and f(vi) different from i are

not in the set f(u). Thus, exactly one of f(ui) or f(vi) contains the set f(v) ∩ f(u).

Assume that f(u) ∩ f(v) ⊂ f(ui). Since, by statement (i) of Theorem 3, f(v) is

not a subset of f(ui), it follows that the end-point of f(ui), different from i, is in

the set f(v)\f(u), denote this end-point by ji, (see Figure 1). So far we could

s s s
i ji

f(ui)
f(vi)

s sf(u) s sf(v)

Figure 1. Some arcs of reduced arc-function f of Γ

define the mapping, i → ji, from f(u)\f(v) to f(v)\f(u). Now we claim that this

mapping is a bijection. To do so, we first prove that it is injective. Suppose on the

contrary that there are i, i′ ∈ f(u)\f(v) such that ji = ji′ . Then f(ui) ⊂ f(ui′) or

f(ui′) ⊂ f(ui). However, in both cases this contradicts statement (i) of Theorem 3.

Now, let j ∈ f(v)\f(u) then in a similar way there is a corresponding element of

f(u)\f(v), say i. By statement (i) of Theorem 3, it is clear that ji = j. This shows

that the mapping is surjective.

The same argument can be done for the case f(u) ∩ f(v) ⊂ f(vi). Thus (6) follows

and this proves the proposition.

Corollary 4. Let Γ be an m-regular circular-arc graph on n vertices. Suppose that m ≥ 1
and the graph has no twins. Then for each reduced arc-function f of Γ and each v ∈ V , we
have |f(v)| = m+2

2
.

Proof. Let Γ = (V,R) be an m-regular circular-arc graph on n vertices. Then

m = nR(v) for each vertex v ∈ V . Since m ≥ 1, the graph Γ is non-empty and

from hypothesis it has no twins, thus Γ satisfies the conditions of Theorem 3. So, it

also satisfies the conditions of Corollary 3. Thus for reduced arc-function f we have,

nR(v) = 2|f(v)| − 2 for each vertex v ∈ V , and we are done.
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4. Graphs and coherent configurations

In this section we prove some results on the coherent configuration of a graph. In

particular we will study a relationship between the wreath product of two graphs and

the wreath product of their coherent configurations.

Lemma 2. Let Γ = (V,R) be a graph. For each integer k, let

Rk = {(u, v) ∈ R : |uR ∩ vR| = k}.

Then Rk is a union of some basic relations of X (Γ).

Proof. Let S be the set of basic relations of X (Γ). Then R =
⋃
s∈S′ s where S′ ⊂ S.

It is sufficient to show that Rk contains any relation from S′ whose intersection with

Rk is not empty. To do this, let s be such a relation. Then there exists a pair (u, v) ∈ s
such that |uR∩vR| = k. On the other hand, by the definition of intersection numbers

we have |uR∩ vR| =
∑
r,t∈S′ c

s
rt. Thus the number |uR∩ vR| does not depend on the

choice of (u, v) ∈ s. By definition of Rk this implies that s ⊂ Rk as required.

Theorem 4. Let Γ be a graph on the vertex set V and let

E = {(u, v) ∈ V × V : u and v are twins or u = v}.

Then E is an equivalence relation of X (Γ). Moreover, if Γ is a graph such that with X (Γ)
is homogeneous then, it is isomorphic to wreath product of the graph ΓV/E and a complete
graph.

Proof. Let S be the set of basic relations of X (Γ) and let R be the edge set of Γ.

Then there exists a subset S′ of S such that

R =
⋃
s∈S′

s. (8)

To prove the first statement, we need to check that any non-reflexive basic relation

r ∈ S such that r ∩E 6= ∅ is contained in E. To do this, let (u, v) ∈ r. We claim that

(u, v) ∈ E, or equivalently u and v are twins.

First we show that

uR\{v} ⊆ vR\{u}. (9)

If the set uR\{v} is empty, then (9) is clear. Now, we may assume that there exists

an element w in V such that w ∈ uR\{v}. It is enough to show that v is adjacent to

w in Γ. By (8) there exists a basic relation s ∈ S′ so that (u,w) ∈ s. Denote by t the

basic relation which contains (v, w). It is sufficient to show that t ∈ S′.
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We have w ∈ us ∩ vt∗, thus |us ∩ vt∗| = crst∗ 6= 0. Since intersection number does not

depend on the choice of (u, v) ∈ r, for (u′, v′) ∈ r we have

|u′s ∩ v′t∗| = crst∗ 6= 0. (10)

On the other hand, by the choice of r there exists (u′, v′) ∈ r ∩ E. So by (10), there

exists a vertex w′ ∈ V such that

w′ ∈ u′s ∩ v′t∗. (11)

Moreover, since s ∈ S′, we have w′ ∈ u′R\{v′}. On the other hand, u′R\{v′} =

v′R\{u′}, since u′ and v′ are twins. It follows that w′ ∈ v′R\{u′}, so from (11) we

conclude that w′ is adjacent to v′ in Γ and so from (8) we have t ∈ S′. The converse

inclusion of (9) can be proved in a similar way. Thus u and v are twins and the first

statement follows.

To prove the second statement, suppose that Γ is a graph such that X (Γ) is homoge-

neous. It is well-known fact that all classes of an equivalence relation of a homogeneous

coherent configuration have the same size, say m, where m divides n = |V |. Moreover,

for each X ∈ V/E we have u, v ∈ X if and only if u and v are twins. Thus for each

X ∈ V/E we have

ΓX ' Km. (12)

Fix a class X0 ∈ V/E. For each X ∈ V/E choose an isomorphism fX ∈ Iso(ΓX0
,ΓX).

Then the mapping

f : V → V/E ×X0 (13)

v 7→ (X, f−1
X (v)),

is a bijection, where X is a class of E containing v. In order to complete the proof,

we show that the above bijection is a required isomorphism:

f ∈ Iso(Γ,ΓV/E o ΓX0
). (14)

Take two different vertices u and v in V , then f(u) = (X,u0) and f(v) = (Y, v0),

where X,Y ∈ V/E, u ∈ X, v ∈ Y and u0, v0 ∈ X0. It is enough to show that u and

v are adjacent in Γ if and only if f(u) and f(v) are adjacent in ΓV/E o ΓX0
.

First, we assume that u and v are not twins. Then X 6= Y . In this case, by definition

of E, if u and v are adjacent in Γ then any vertices in X and any vertices in Y are

adjacent to each other. Also, if X and Y are adjacent in ΓV/E , by definition of ΓV/E ,

there is a vertex in X and a vertex in Y which are adjacent. However, since all of the

vertices in each class of V/E are twins, then u and v are adjacent in Γ. Thus u and

v are adjacent in Γ if and only if X and Y are adjacent in ΓV/E . Therefore, u and v

are adjacent in Γ if and only if f(u) and f(v) are adjacent in ΓV/E o ΓX0
.
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Now, we may assume that u and v are twins. Then X = Y . However, u and v are

twins, so they are adjacent in Γ. Since, fX is an isomorphism thus f−1
X (u) 6= f−1

X (v),

so u0 6= v0. From (12), it follows that u0 and v0 are adjacent in ΓX . Therefore, f(u)

and f(v) are adjacent in ΓV/E o ΓX0 . Thus f is an isomorphism and (14) follows, as

desired.

In the next theorem, we show that the coherent configuration of the wreath product

of two graphs is smaller than the wreath product of their coherent configuration. In

general, we do not have equality here. For example, the coherent configuration of the

wreath product of two complete graphs is a coherent configuration of rank 2, but the

wreath product of their coherent configurations has rank 3.

Theorem 5. Let Γ1 and Γ2 be two graphs. Then X = X (Γ1 o Γ2) is isomorphic to a
fusion of Y = X (Γ1) o X (Γ2). Moreover, if Γ1 is a complete graph and Γ2 is a graph without
twins such that its coherent configuration is homogeneous, then X and Y are isomorphic.

Proof. Let Γi = (Vi, Ri), Xi = X (Γi) and Si be the set of basic relations of Xi for

i = 1, 2. Then there exists S′i ⊂ Si such that

Ri =
⋃
s∈S′i

s. (15)

Let Γ be the wreath product of Γ1 and Γ2, and let R be the edge set of Γ. Then

R = {((k, i), (l, j)) ∈ (V1 × V2)2 : (i, j) ∈ R2 or (k, l) ∈ R1 with i = j}

= {((k, i), (l, j)) ∈ (V1 × V2)2 : (i, j) ∈ R2} ∪

{((k, i), (l, j)) ∈ (V1 × V2)2 : (k, l) ∈ R1 with i = j}.

So, by (15) we have

R = {(V1)2 ⊗ s : s ∈ S′2} ∪ {s⊗ 1V2
: s ∈ S′1}. (16)

Therefore, R is a union of some basic relations of Y = X1 oX2. Thus we conclude that

X (Γ) ≤ Y, (17)

and so the first statement follows.

To prove the second statement, let Γ1 be a complete graph on n vertices and let Γ2

be a graph without twins such that X2 is homogeneous. Then, X1 oX2 is homogeneous
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and from the first statement it follows that X (Γ) is homogeneous. Thus 1V1
⊗ 1V2

is

a basic relation of X (Γ).

If Γ2 is an empty graph, then it is easy to see that we have equality in (17). So we

may suppose that Γ2 is a non-empty graph. Since X (Γ2) is homogeneous, so there

exists a positive integer t such that Γ2 is a t-regular graph. Let t0(i, j) be the number

of common neighbors of two adjacent vertices i and j in Γ2. Since Γ2 is without twins,

we have

t0(i, j) < t− 1. (18)

Let u = (k, i) and v = (l, j) be two adjacent vertices in Γ. Since, for each i ∈ V2 the

graph ΓV1×i is isomorphic to Γ1, and for each two adjacent vertices i and j in Γ2 the

set (V1 × i)× (V1 × j) is a subset of R, thus we have

|uR ∩ vR| =

 (n− 2) + tn, i = j

2(n− 1) + t0(i, j)n, i 6= j.
(19)

Using (18), for each i 6= j we have

2(n− 1) + t0(i, j)n < (n− 2) + tn. (20)

Define

E := {(u, v) ∈ R : |uR ∩ vR| = (n− 2) + tn}.

From (19) and (20) it follows that

E = ∪i∈V2(V1 × i)2\(1V1 ⊗ 1V2).

Now, from Lemma 2, the set E is a union of some of the basic relations of X (Γ). On

the other hand, E = s⊗ 1V2
, where s is the non-reflexive basic relation of X1 of rank

2. However, s ⊗ 1V2 is a basic relation of X1 o X2. Therefore, from (17) it is obvious

that E is a basic relation of X (Γ). Hence,

F = E ∪ (1V1
⊗ 1V2

) (21)

is an equivalence relation of X (Γ).

The coherent configuration X1 o X2 is the minimal coherent configuration which con-

tains an equivalence F such that for each class X ∈ V/F , (X1 o X2)X is isomorphic

to X1 and (X1 o X2)V/F is isomorphic to X2. In order to prove equality in (17), it is

sufficient to show that X (Γ) has the above property.

Let X ∈ V/F . Then by (21), X (Γ)X is isomorphic to X1. Moreover, from (17) it

follows that

X (Γ)V/F ≤ X2. (22)

However, the edge set of Γ2 is a union of some of the basic relations of X (Γ)V/F .

Thus we have equality in (22), and we are done.
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Remark 2. Let Γ and Γ′ be two graphs with the same vertex set. Suppose that the edge
set of Γ′ is a union of some basic relations of X (Γ). Then X (Γ′) ≤ X (Γ).

5. Elementary circular-arc graphs

Given integers n and k such that 0 ≤ 2k + 1 < n, set Cn,k = Cay(Zn, S) where

S = {±1, . . . ,±k}. It immediately follows that Cn,k is a 2k-regular graph without

twins. Note that Cn,0 is an empty graph and Cn,1 is an undirected cycle on n vertices.

From definition, one can verify that Cn,k is the graph with vertex set V = Zn in

which two vertices i and j are adjacent if and only if

{i, . . . , k + i} ∩ {j, . . . , k + j} 6= ∅.

Suppose that f : V → AZn, such that f(i) = {i, . . . , k + i}. Then the graph Cn,k is

the intersection graph of the family Im(f). Thus, by Lemma 1 we conclude that Cn,k
is a circular-arc graph, and we call it an elementary circular-arc graph.

Example 1. For n = 2k+2, two different vertices i and j are adjacent in Cn,k if and only
if j 6= i + k + 1. Thus Cn,k is isomorphic to a graph on n vertices which is obtained from
a complete graph by removing the edges of a perfect matching. It is easy to check that the
coherent configuration of this graph is isomorphic to X1 o X2, where X1 is a rank 2 coherent
configuration on 2 points and X2 is a rank 2 coherent configurations on k + 1 points.

Theorem 6. A regular circular-arc graph without twins is elementary.

Proof. Let Γ be a circular-arc graph with the vertex set V where n = |V |. Suppose

that it has no twins. Then by Proposition 1 and Theorem 3, there exists a reduced

arc-function f of Γ, such that for each vertex v ∈ V we have f(v) = {iv, . . . , jv}.
Define a bijection from V to Zn, the vertex set of Cn,k, such that v → iv. From

Corollary 3 we conclude that Γ is a 2k-regular graph. Then k = |f(v)| − 1 for any

vertex v by Corollary 4. Hence jv = iv + k. By Lemma 1, two vertices u and v in

V are adjacent if and only if f(u) ∩ f(v) 6= ∅. It follows that iu and iv are adjacent

if and only if {iu, . . . , k + iu} ∩ {iv, . . . , k + iv} 6= ∅. Therefore, the bijection defined

above gives the required isomorphism.

Theorem 7. Let n and k be two positive integers such that 2k+2 < n. Then the coherent
configuration of the graph Cn,k is isomorphic to a coherent configuration of a dihedral group.

Proof. Let R be the edge set of Cn,k. For two vertices i, j ∈ Zn, we define d(i, j)

be the distance of i and j in the graph Cn,1. Suppose that i and j are two adjacent

vertices in Cn,k. Then by definition of Cn,k, we have d(i, j) ≤ k. Without loss of

generality we may assume that the vertices {i+ 1, i+ 2, . . . , j − 1} are between i and

j. Thus they are adjacent to both of i and j in the graph Cn,k. Moreover, the vertices
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{j − k, j − k + 1 . . . , i− 1} and {j + 1, j + 2, . . . , i+ k} are adjacent to both of i and

j too. Thus the latter three sets are subsets of iR ∩ jR, which are of size d(i, j)− 1,

k − d(i, j) and k − d(i, j) respectively. Moreover, since n > 2k + 2, they are disjoint.

On the other hand, Bi := {i−k, i−k+ 1, . . . , j−k−1} is the set of all other vertices

which are adjacent to i, and Bj := {i + k + 1, i + k + 2, . . . , j + k} is the set of all

other vertices which are adjacent to j, (see Figure 2).

si sj
sj − k s

j − k − 1 s
j + k

s
i− k

s i + ks
i + k + 1

Bi
Bj

Figure 2. Some vertices of the graph Cn,1 and the sets Bi and Bj

It is clear that Bi and Bj are disjoint from the above three subsets. In addition, we

have |Bi| = |Bj | = d(i, j). Moreover, since n > 2k + 2, the vertex j − k − 1 is not in

Bj and the vertex i+ k + 1 is not in Bi. It follows that Bi 6= Bj , and

|Bi ∩Bj | < d(i, j). (23)

On the other hand, Bi ∩Bj ⊂ iR ∩ jR and thus

|iR∩jR| = (d(i, j)−1)+2(k−d(i, j))+ |Bi∩Bj | = 2k−d(i, j)−1+ |Bi∩Bj |. (24)

Now, set

R2k−2 := {(i, j) ∈ R : |iR ∩ jR| = 2k − 2}.

Then R2k−2 is a symmetric relation. Moreover, from (24) we see that

(i, j) ∈ R2k−2 ⇔ |Bi ∩Bj | = d(i, j)− 1. (25)

If d(i, j) = 1, then by (23) we have |Bi ∩Bj | = 0. Thus, from (25) we see that

d(i, j) = 1 ⇒ (i, j) ∈ R2k−2. (26)

If 1 < d(i, j) ≤ k, then j − k − 2 ∈ Bi\Bj and i + k + 2 ∈ Bj\Bi. It follows that

|Bi ∩ Bj | < d(i, j) − 1. Thus, from (25) we have (i, j) /∈ R2k−2. Then using (26) we

have (i, j) ∈ R2k−2 if and only if d(i, j) = 1.

It follows that the graph (Zn, R2k−2) is isomorphic to an undirected cycle on n points,

say Cn. By Remark 2, we conclude that R2k−2 is union of some basic relations of

X (Cn,k). Thus by Lemma 2, we have X (Cn) ≤ X (Cn,k).
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It is well-known that X (Cn) = Inv(D2n), where D2n is a dihedral group on n elements.

So, in order to complete the proof of the theorem it is enough to show that X (Cn,k) ≤
X (Cn). Equivalently, it is suffices to verify that Aut(X (Cn)) ≤ Aut(X (Cn,k)). Since

the automorphism group of a graph is equal to the automorphism group of its coherent

configuration, it is sufficient to show that Aut(Cn) ≤ Aut(Cn,k).

Since Aut(Cn) is the dihedral group D2n, and D2n is generated by automorphisms σ

and δ where iσ = i + 1 and iδ = n − i for each i ∈ Zn. It is enough to show that

σ, δ ∈ Aut(Cn,k). Let i, j ∈ Zn. Two vertices i and j are adjacent in Cn,k if and only

if

{i, . . . , k + i} ∩ {j, . . . , k + j} 6= ∅ ⇔

{i+ 1, . . . , k + i+ 1} ∩ {j + 1, . . . , k + j + 1} 6= ∅ ⇔

{iσ, . . . , k + iσ} ∩ {jσ, . . . , k + jσ} 6= ∅. (27)

Moreover, we have (27) if and only if iσ and jσ are adjacent in Cn,k. Thus σ ∈
Aut(Cn,k). In a similar way we can show that δ ∈ Aut(Cn,k), this completes the

proof.

6. Proof of the main theorems

Proof of Theorem 1.

We first prove the necessity condition of the theorem. Let Γ = (V,R) be a circular-arc

graph such that X (Γ) is homogeneous and |V | = n. Denote by E the equivalence

relation on V defined in Theorem 4. Then by this theorem Γ is isomorphic to wreath

product of a complete graph and the graph ΓV/E . In particular, it is easy to see that

ΓV/E is also a circular-arc graph and has no twins. So, to complete the proof it is

enough to show that ΓV/E is an elementary circular-arc graph.

If ΓV/E is empty, then it is isomorphic to Cm,0 with m = |V/E|, and we are done. We

suppose that ΓV/E is non-empty. The graph Γ is regular, because X (Γ) is homoge-

neous. By the definition of E this implies that ΓV/E is regular too. From Corollary 4,

the graph ΓV/E is 2k-regular for some integer k > 0. Therefore, from Theorem 6,

the latter graph is isomorphic to the elementary circular-arc graph Cm,k. Thus Γ is

isomorphic to the wreath product of a complete graph and an elementary circular-arc

graph.

Conversely, let Γ1 be a complete graph and let Γ2 be an elementary circular-arc graph.

If Γ2 is an empty graph then X (Γ2) is homogeneous. If it is a non-empty elementary

circular-arc graph then from Example 1 and Theorem 7 we conclude that X (Γ2) is

homogeneous. On the other hand, the wreath product of two homogeneous coherent

configuration is homogeneous. Thus, from Theorem 5, X (Γ1 o Γ2) is homogeneous.

This completes the proof of the theorem. 2
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Proof of Theorem 2.

We first assume that X is homogeneous and there is a circular-arc graph Γ such that

X (Γ) = X . From Theorem 1, Γ is isomorphic to the wreath product of a complete

graph and an elementary circular-arc graph. Let the elementary circular-arc graph

be an empty graph, then its coherent configuration is of rank 2. Otherwise, from

Example 1 and Theorem 7 the coherent configuration of an elementary circular-arc

graph is isomorphic to the wreath product of a rank 2 coherent configuration on 2

points and a rank 2 coherent configuration, or it is isomorphic to a coherent config-

uration of a dihedral group. Therefore, in any case the coherent configuration of an

elementary circular-arc graph is homogeneous. Moreover, any elementary circular-arc

graph is without twins. Hence, from Theorem 5, it follows that X (Γ) is isomorphic to

the wreath product of a rank 2 coherent configuration and the coherent configuration

of an elementary circular-arc graph which is of rank 2 or the wreath product of two

rank 2 or the coherent configuration of a dihedral group.

Conversely, assume that X = X (Γ) such that Γ is a circular-arc graph. Also, assume

that X is isomorphic to the wreath product of a rank 2 coherent configuration and a

coherent configuration which is of rank 2 or the wreath product of two rank 2 or the

coherent configuration of a dihedral group. Since any rank 2 coherent configuration

and any coherent configuration of a dihedral group are homogeneous, it is enough

to note that the wreath product of two homogeneous coherent configuration is

homogeneous. Thus X is homogeneous and the proof is complete. 2
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