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Abstract: An edge e of a simple graph G = (VG, EG) is said to ev -dominate a vertex

v ∈ VG if e is incident with v or e is incident with a vertex adjacent to v. A subset

D ⊆ EG is an edge-vertex dominating set (or an evd-set for short) of G if every vertex
of G is ev -dominated by an edge of D. The edge-vertex domination number of G is

the minimum cardinality of an evd-set of G. In this paper, we initiate the study of

the graphs with unique minimum evd-sets that we will call UEVD-graphs. We first
present some basic properties of UEVD-graphs, and then we characterize UEVD-trees

by equivalent conditions as well as by a constructive method.
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AMS Subject classification: 05C69

1. Introduction

Let G be a simple, connected and undirected graph with vertex set VG and edge set

EG. The set NG(v) = {x ∈ VG : x is adjacent to v in G} is the open neighborhood of

a vertex v ∈ VG and the closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}.
An edge e ∈ EG edge-vertex dominates (or simply ev -dominates) a vertex v ∈ VG
if e is incident with v or e is incident with a vertex adjacent to v. In [10], Peters

introduced edge-vertex dominating sets, abbreviated evd-sets, of a graph G as a subset
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2 Graphs with unique minimum edge-vertex dominating sets

D ⊆ EG such that every vertex of G is ev -dominated by an edge of D. The edge-

vertex domination number of G, denoted as γev(G), is the minimum cardinality of an

evd-set of G. A γev(G)-set is an evd-set of G with minimum cardinality γev(G). For

further details on edge-vertex domination, the reader is referred to [8, 9, 11].

Several studies on the graphs having a unique set for some domination parameters

are available in the literature. But the first work on such graphs with respect to

the domination number was done by Gunther et al. [4] who additionally gave a

characterization of the trees having unique minimum dominating sets. For further

details, we refer the reader for example to [1–3, 5–7, 12].

Our main purpose in this paper is to study the graphs G with unique γev(G)-sets

which we call UEVD-graphs. In section 2, some basic properties of UEVD-graphs are

discussed while in Section 3, we establish equivalent conditions for the characterization

of UEVD-trees. Moreover, a constructive characterization of UEVD-trees will be

provided in the last section.

Before presenting our results, we need to introduce some further but standard notation

and definitions. Given a simple and connected graph G = (VG, EG). The degree of a

vertex v ∈ VG is dG(v) = |NG(v)|. A vertex of degree one is a leaf and its neighbor is

a support vertex. A support vertex is a weak support vertex if it is adjacent to exactly

one leaf, otherwise it is called a strong support vertex. A pendant edge in G is an

edge incident with a leaf. A star of order n ≥ 2, denoted by K1,n−1, is a tree with

at least n − 1 leaves. A double star Sp,q is a tree with exactly two vertices that are

not leaves. The distance between two vertices u and v in a connected graph G is the

number of edges in a shortest path between u and v. The diameter of a connected

graph G, denoted diam(G), is the maximum distance between two vertices.

2. Properties of the UEVD-graphs

In this section, we prove certain properties of the UEVD-graphs. We begin by defining

a private-vertex of an edge.

Definition 1. Let D be an evd-set of a graph G. A vertex v ∈ VG is a private-vertex of
an edge e ∈ D with respect to D if v is ev-dominated by the edge e and no other edge in
D \ {e}, ev-dominates v.

In accordance with Definition 1, let P (e,D) denote the set of private vertices of an

edge e with respect to the set D. The following result gives a necessary and sufficient

condition for evd-sets to be minimal in a graph G.

Proposition 1. Let D be an evd-set of a connected graph G. Then, D is minimal if and
only if for every e ∈ D, we have P (e,D) 6= ∅.

Proof. Let D be a minimal evd -set of G. Suppose that P (e,D) = ∅ for some e ∈ D.

Since the vertices ev -dominated by e are already ev -dominated by D \ {e}, the set
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D \ {e} thus remains an evd-set of G, contradicting the minimality of D. Hence

P (e,D) 6= ∅.
Conversely, assume that for every e ∈ D, we have P (e,D) 6= ∅. Suppose that D is

not minimal. Then, D \ {e∗} is an evd-set of G for some e∗ ∈ D. It follows that

P (e∗, D) = ∅, contradicting our assumption.

According to Definition 1, for any edge e = xy in a γev(G)-set D, let αe
D(x) =

P (e,D)∩(N(x)−{y}) and αe
D(y) = P (e,D)∩(N(y)− {x}). Observe that x /∈ αe

D(y)

and y /∈ αe
D(x) even when x, y ∈ P (e,D).

Proposition 2. Let G be a connected graph of order at least three with a unique γev(G)-
set D. Then for every edge e = xy ∈ D, we have αe

D(x) 6= ∅ and αe
D(y) 6= ∅.

Proof. Suppose not, that for some edge e = xy ∈ D, either αe
D(x) = ∅ or αe

D(y) = ∅.
Without loss of generality, let αe

D(x) = ∅. Let e′ be an adjacent edge of e in G chosen

incident with y if it is not a leaf, otherwise incident with x. Note that such an edge

exists since G is connected of order at least three. In this case, the set {e′} ∪D \ {e}
is another γev(G)-set, a contradiction to the uniqueness of D. Hence αe

D(x) 6= ∅ and

likewise αe
D(y) 6= ∅.

As an immediate consequence of Proposition 2 we have the following observation.

Observation 3. Let G be a connected graph of order at least three. If any pendant

edge of G is in an γev(G)-set, then G is not a UEVD-graph.

It is also noteworthy that the converse of Proposition 2 is not true. To see, simply

consider the cycle C4 that admits γev(C4)-sets of size one whereas each edge xy

satisfies αe
D(x) 6= ∅ and αe

D(y) 6= ∅.
Recall that an evd-set D is said to be independent if no two edges of D have a common

neighbor.

Proposition 3. If G is a connected graph of order at least three with a unique γev(G)-set
D, then D is independent.

Proof. Suppose that D contains two adjacent edges e1 = xy and e2 = xz. By

Observation 3, neither e1 nor e2 is a pendant edge. So let e be any edge incident with

y. Clearly, {e} ∪D − {e1} is a γev(G)-set different from D, a contradiction.

The converse of Proposition 3 is not true in general. To see, consider the path P6

that admits four γev(P6)-sets all of which are independent.

Proposition 4. Let G be a connected graph of order at least three with a unique γev(G)-
set D. Then for every e /∈ D, we have γev(G− e) ≥ γev(G).
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Proof. Suppose not, that γev(G − e) < γev(G) for some e /∈ D, and let D′ be a

γev(G− e)-set. Hence the set D′ ev-dominates all vertices of VG−e, but since VG−e =

VG, D′ also ev-dominates VG. This leads to a contradiction because of |D′| < |D| .
Therefore γev(G− e) ≥ γev(G) for every e /∈ D.

Proposition 5. Let G be a connected graph of order at least three with a unique γev(G)-
set D. Then for every e ∈ D, we have γev(G− e) > γev(G).

Proof. We first note that no edge of D is pendant, by Observation 3. Now, sup-

pose that γev(G − e) ≤ γev(G) for some e ∈ D, and let D′ be a γev(G − e)-set. If

|D′| = γev(G), then since e ∈ D \ D′ and D′ ev -dominates VG−e as well as VG, we

conclude that D′ is a second γev(G)-set, contradicting the uniqueness of D. Hence

|D′| < γev(G). But then D′ would be an evd-set smaller than D, a contradiction too.

Therefore γev(G− e) > γev(G) for every every e ∈ D.

The converse of Proposition 5 is not true in general. For example, let G be the graph of

order 10 obtained from a cycle C8 whose vertices are labeled in order x1, x2, . . . , x8, x1
by adding a two vertices y and z and the edges x1x5, yz, yx3 and yx7. Clearly, X =

{yx3, x1x5} is a γev(G)-set and γev(G − e) = 3 > γev(G) for every e ∈ X. But X is

not the only γev(G)-set since {yx7, x1x5} is also a γev(G)-set.

3. UEVD-trees

In this section, we investigate the trees T with unique γev(T )-sets. In the first sub-

section, we establish three equivalent conditions for UEVD-trees, while in the second

subsection we provide a constructive characterization of such trees.

3.1. Equivalent conditions for UEVD-trees

Theorem 1. Let T be a tree of order at least three. Then the following conditions are
equivalent:

i) T has a unique γev(T )-set D.

ii) T has a γev(T )-set D such that for every e = xy ∈ D, we have αe
D(x) 6= ∅ and αe

D(y) 6= ∅.

iii) T has a γev(T )-set D containing no pendant edge such that γev(T − e) > γev(T ) for
every e ∈ D.

Proof. (i) ⇒ (ii) is true by Proposition 2 and (i) ⇒ (iii) is true by Proposition 5.

Now, to prove the equivalence, we prove (iii)⇒ (ii) and (ii)⇒(i).

(iii) ⇒ (ii). Let D be a γev(T )-set that contains no pendant edge, and assume that

γev(T − e) > γev(T ) for every e ∈ D. Suppose that there is an edge e = xy ∈ D

such that either αe
D(x) = ∅ or αe

D(y) = ∅, say αe
D(x) = ∅. By assumption, e is not a

pendant edge. Let e′ ∈ ET −D be an edge adjacent to e and incident with y. Then,
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the set (D \ {e})∪{e′} is a γev(T )-set leading to γev(T − e) ≤ γev(T ), a contradiction

to our assumption.

(ii)⇒ (i). Let D be a γev(T )-set such that for every e = xy ∈ D, we have αe
D(x) 6= ∅

and αe
D(y) 6= ∅. Clearly, if D contains two edges e1 and e2 incident with a common

vertex, say u, then by definition αe1
D (u) = αe2

D (u) = ∅ yielding a contradiction. There-

fore D is independent. Moreover, no edge e = xy of D is pendant for otherwise either

αe
D(x) = ∅ or αe

D(y) = ∅.
Now, to prove that D is the unique γev(T )-set, we use an induction on the number

of edges m of T. Clearly the base case is a path P4 which has a unique γev(T )-set.

Assume that the result is true for all trees with sizes less than m. Now, let T be a

tree with m edges. Let e = xy be a non-pendant edge of T such that e /∈ D. If such

an edge does not exist, then T is a double star and certainly the unique edge in D is a

unique γev(T )-set. Hence we can assume that such an edge e exists. Consider the tree

T − e obtained from T by removing the edge e. Clearly each of the two components

of T has order at least three, for otherwise the edge in the component of order two

would be a pendant edge in T belonging to D, contradicting our earlier assumption.

Let us denote by Tx the component of T − e containing x, and likewise Ty is the

component of T − e containing y. Clearly, each of Tx and Ty has size less than m. Let

Dx = D ∩ ETx
and Dy = D ∩ ETy

. Then Dx is a γev(Tx)-set and likewise Dy is a

γev(Ty)-set. In addition, since each edge f = uv ∈ Dx still satisfies αf
Dx

(u) 6= ∅ and

αf
D(v) 6= ∅. By the induction hypothesis on Tx we have Dx is a unique γev(Tx)-set

and similarly Dy is a unique γev(Ty)-set. Let r∗x be the edge of Dx that ev -dominates

x in Tx. Note that x might be an endvertex of r∗x or not. Similarly, we can define r∗y
if necessary. Now assume that T has a second γve(T )-set D′, and let D′x = D′ ∩ ETx

and D′y = D′ ∩ ETy . If e /∈ D′, then the unicity of Dx and Dy implies that D′x = Dx

and D′y = Dy. Therefore D = D′. Next suppose that e ∈ D′. In this case, it should be

noted that |D′| = |D′x|+
∣∣D′y∣∣ + 1. Since P (e,D′) 6= ∅ (by Proposition 1), either D′x

or D′y is not an evd-set for Tx or Ty, respectively. Without loss of generality, assume

that D′x does not ev -dominate Tx. Notice that no edge incident with x in Tx belongs

to D′x. Hence let e′x ∈ ETx be any edge incident with x in Tx different from r∗x. We

note that such an edge e′x can be chosen as desired. Indeed, if x is an endvertex of r∗x,

then r∗x is not a pendant edge because of the unicity of Dx and thus e′x can be chosen

so that e′x 6= r∗x. Moreover, if x is not an endvertex of r∗x, then e′x is arbitrarily chosen.

Therefore D′x ∪{e′x} is an evd-set of Tx different from Dx, and since Dx is the unique

γev(Tx)-set, we must have |D′x ∪ {e′x}| > |Dx| , that is |D′x| + 2 ≥ |Dx| . Similarly, if

D′y does not ev -dominate Ty, then
∣∣D′y∣∣+ 1 ≥ |Dy| while if D′y ev -dominates Ty, then∣∣D′y∣∣ ≥ |Dy| . In either case, we may assume that

∣∣D′y∣∣ ≥ |Dy| . It follows that

|D′| = |D′x|+
∣∣D′y∣∣ + 1 ≥ |Dx| − 2 + |Dy|+ 1 > |D| ,

a contradiction. Thus D is the only γev(T )-set, which completes the proof.



6 Graphs with unique minimum edge-vertex dominating sets

3.2. Characterization of UEVD-trees

The aim of this subsection is to provide a constructive characterization of the UEVD-

trees. For this purpose, let T be the family of all trees that can be obtained from a

sequence T1, T2, ..., Tk, (k ≥ 1), of trees T such that T1 is the path P4 with support

vertices a and b, and if k ≥ 2, then Ti+1 can be obtained recursively from Ti by one

of the operations defined below. Let A(T1) = {ab}, B(T1) = V (P4)− {a, b}.

• Operation O1 : Assume w is a support vertex of Ti. Then Ti+1 is obtained

from Ti by adding a new vertex v and the edge wv. Let A(Ti+1) = A(Ti) and

B(Ti+1) = B(Ti) ∪ {v}.

• Operation O2 : Assume w is a vertex of B(Ti). Then Ti+1 is obtained from Ti by

adding a path P4 : u1u2u3u4 and the edge u1w. Let A(Ti+1) = A(Ti) ∪ {u2u3}
and B(Ti+1) = B(Ti) ∪ {u1, u4}.

• Operation O3 : Assume w is a vertex of B(Ti). Then Ti+1 is obtained from Ti
by adding a path P4 : u1u2u3u4 and a new vertex u and the edges u2u and uw.

Let A(Ti+1) = A(Ti) ∪ {u2u3} and B(Ti+1) = B(Ti) ∪ {u, u1, u4}.

• Operation O4 : Assume w is a non-leaf vertex which is either a support vertex or

adjacent to a support vertex of degree two in Ti. Then Ti+1 is obtained from Ti
by adding a path P4 : u1u2u3u4 and the edge u2w. Let A(Ti+1) = A(Ti)∪{u2u3}
and B(Ti+1) = B(Ti) ∪ {u1, u4}.

• Operation O5 : Assume w is a vertex of Ti. Then Ti+1 is obtained from Ti by

adding t (t ≥ 1) paths P4 : uj1u
j
2u

j
3u

j
4 and a new vertex u and the edges uw

and uj2u for every j. Let A(Ti+1) = A(Ti) ∪ {uj2u
j
3 : 1 ≤ i ≤ t} and B(Ti+1) =

B(Ti) ∪ {u, uj1, u
j
4 : 1 ≤ i ≤ t}.

Notice that from the way a tree T ∈ T is constructed, the set A(T ) is an edge-vertex

dominating set of T. For a vertex v in a rooted tree T , we let C(v) and D(v) denote

the set of children and descendants, respectively, of v. The maximal subtree at v is

the subtree of T induced by D(v) ∪ {v}, and is denoted by Tv. The depth of v is the

largest distance from v to a vertex in D(v).

In the rest of the paper, we shall prove:

Theorem 2. A tree T is a UEVD-tree if and only if T = P2 or T ∈ T .

We need the following lemmas.

Lemma 1. If T = P2 or T ∈ T , then T has a unique γev(T )-set.

Proof. Clearly if T = P2, then T has a unique γev(T )-set. Hence assume that T ∈ T .

Then T can be constructed from a sequence T1, T2, . . . , Tk (k ≥ 1) of trees, where T1
is a path P4, and if k ≥ 2, Ti+1 can be obtained recursively from Ti by one of the
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five operations defined above. We use the terminology of the construction for sets

A(T ) and B(T ). If k = 1, then T = P4 and clearly the edge of A(T1) is the unique

γev(T1)-set. This establishes our basis case.

Assume that the result holds for all trees T ∈ T that can be constructed from a

sequence of length at most k−1, and let T ′ = Tk−1. Applying our inductive hypothesis

to T ′ ∈ T shows that A(T ′) is the unique γev(T ′)-set. Clearly, if T is obtained from

T ′ using Operation O1, then γev(T ) = γev(T ′) and A(T ′) = A(T ) is the unique

γev(T )-set. Hence let us examine the following four cases.

Case 1. T is obtained from T ′ using Operation O2.

Certainly, γev(T ) ≤ γev(T ′)+1. The equality γev(T ) = γev(T ′)+1 is obtained from the

fact that there is a γev(T )-set F containing the edge u2u3 and neither u3u4, u1u2 nor

u1w (if u1w ∈ F , then it can replaced by wy, for some neighbor y of w in T ′). Hence

A(T ) = A(T ′) ∪ {u2u3} is a γev(T )-set. Now assume that T has another γev(T )-set

D different from A(T ), and recall that w ∈ B(T ′). Clearly, D ∩ {u3u4, u3u2} 6= ∅.
Without loss of generality, assume that u3u2 ∈ D. If u2u1 or u1w ∈ D, then for any

edge f incident with w in T ′, the set D′ = {f}∪D−{u2u1, u1w} is also a γev(T )-set

for which D′ ∩ ET ′ is a γev(T ′)-set that contains an edge incident with w, and thus

becomes a second γev(T ′)-set, a contradiction. Hence u2u1, u1w, u3u4 /∈ D, and thus

D − {u3u2} is again a γev(T ′)-set different from A(T ′), a contradiction. Therefore

A(T ) = A(T ′) ∪ {u2u3} is the unique γev(T )-set.

Case 2. T is obtained from T ′ using Operation O3.

The inequality γev(T ) ≤ γev(T ′) + 1 follows from the fact that A(T ′) ∪ {u2u3} is an

evd-set of T, and the equality γve(T ) = γve(T
′)+1 follows from the fact that there is a

γev(T )-set that contains u2u3 and that does not contain the edges u3u4, u1u2, u2u, uw.

Hence A(T ) = A(T ′) ∪ {u2u3} is a γev(T )-set. Now assume that T has another

γev(T )-set D different from A(T ), and let F = {u3u4, u2u3, u1u2, u2u, uw}. Clearly,

|D ∩ F | ≥ 1. Now, if |D ∩ F | ≥ 2, then one can construct another γev(T )-set D′

that contains only the edge u2u3 and any the edge of F can be replaced by an edge

incident with w in T ′. Using the fact that w /∈ B(T ′), the set D′ ∩ ET ′ becomes a

second γev(T ′)-set, a contradiction. Hence |D ∩ F | = 1, and thus u2u3 ∈ D. But then

D′∩ET ′ is also a second γev(T ′)-set, a contradiction. Therefore A(T ) = A(T ′)∪{u2u3}
is the unique γev(T )-set.

Case 3. T is obtained from T ′ using Operation O4.

Then γev(T ) ≤ γev(T ′) + 1 since A(T ′) ∪ {u2u3} is an evd-set of T. The equality

follows from the fact that there is a γev(T )-set that contains u2u3 and an edge with

endvertices w and some neighbor of w in T ′. Consequently, A(T ) = A(T ′) ∪ {u2u3}
is a γev(T )-set. Now assume that T has a second γev(T )-set D different from A(T ),

and let F = {u3u4, u2u3, u1u2, u2w}. Then |D ∩ F | ≥ 1. If |D ∩ F | ≥ 2, then we must

have u2u3 and u2w ∈ D. The minimality of D implies that w is a support vertex in

T ′ with leaf neighbor w′. In this case, the set D′ = {ww′}∪D−{u2w} is a γev(T )-set

for which D′ ∩ ET ′ is a γev(T ′)-set that contains a pendant edge, contradicting the

unicity of A(T ′). Hence |D ∩ F | = 1, implying that u2u3 ∈ D. Since w is either a

support vertex or adjacent to a support vertex of degree two in T ′, the set D must
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contain an edge incident with w. In that case D′ ∩ ET ′ is γev(T ′)-set different from

A(T ′), a contradiction. Therefore A(T ) = A(T ′) ∪ {u2u3} is the unique γev(T )-set.

Case 4. T is obtained from T ′ using Operation O5.

Then γev(T ) ≤ γev(T ′) + t since A(T ) = A(T ′) ∪ {uj2u
j
3 : 1 ≤ j ≤ t}. The equality

follows from the fact that there is a γev(T )-set that contains the edge uj2u
j
3 for every

j ∈ {1, . . . , t} and neither any edge incident with u nor any edge of the t added paths

P4. Therefore A(T ) = A(T ′) ∪ {uj2u
j
3 : 1 ≤ j ≤ t} is a γev(T )-set. Finally, as for the

previous cases, it is easy to show that the uniqueness of A(T ′) leads to the uniqueness

of A(T ).

Through all situations, we conclude that A(T ) is the unique γev(T )-set and T is

UEVD-tree.

Lemma 2. If T is a nontrivial tree with a unique γev(T )-set, then T = P2 or T ∈ T .

Proof. If the number of vertices, n of T, is two, then T = P2. Hence we assume that

n ≥ 3. To show that T ∈ T we use an induction on n. Since there is no tree T of

order three with a unique unique γev(T )-set, let n ≥ 4. If n = 4, then T = P4 and

clearly T ∈ T . This establishes the base case. Let n ≥ 5 and assume that any tree

T ′ of order n′ < n having a unique γev(T ′)-set belongs to the family T . Let T be a

tree of order n with a unique γev(T )-set D. Recall that by Observation 3, no pendant

edge belongs to D and by Proposition 3, D is independent.

First, assume that T has a strong support vertex u, and let x and y be two leaves

adjacent to u. Let T ′ = T − x. It is easy to see that γev(T ) = γev(T ′) and that

the uniqueness of D implies that it is also the unique γev(T ′)-set. By the inductive

hypothesis on T ′, we have T ′ ∈ T . Since the tree T can be obtained from T ′ by using

Operation O1, we deduce that T ∈ T . Therefore, in the sequel we will assume that

every support vertex of T is weak, that is, adjacent to exactly one leaf. Since n ≥ 5

and every support vertex is weak, we conclude that diam(T ) ≥ 4.

Let v1, v2, . . . , vk (k ≥ 5) be a diametral path in T chosen so that dT (v3) is as small

as possible. Root T at vk. Clearly, dT (v2) = 2, and v2v3 ∈ D. If v3 has a child of

degree 2, say y, other than v2, then D must contain the pendant edge incident with

y, which leads to a contradiction. Thus v2 is the unique child of v3 of degree 2. Hence

either dT (v3) = 2 or dT (v3) = 3 and v3 is a weak support vertex.

Assume first that dT (v3) = 2. By Proposition 2, αv2v3
D (v3) 6= ∅ and thus v4 is a private

vertex of the edge v2v3. Then v4 must have degree 2 for otherwise any child of v4
would be an end-vertex of an edge belonging to D, contradicting v4 ∈ P (v2v3, D). Let

T ′ = T − Tv4 . The unicity of D implies that n′ ≥ 4. Since D − {v2v3} ev -dominates

V (T ′), γev(T ′) ≤ γev(T ) − 1. The equality follows from the fact that any γev(T ′)-

set can be extended to an evd-set of T by adding to it the edge v2v3. Therefore

γev(T ′) = γev(T ) − 1, and D ∩ ET ′ is a γev(T ′)-set. Now, if D′ is a γev(T ′)-set

different from D ∩ ET ′ , then D′ ∪ {v2v3} would be a γev(T )-set different from D, a

contradiction. Hence D ∩ET ′ is the unique γev(T ′)-set for which we notably have no

edge incident with v5 in T ′ belonging to D ∩ET ′ (because of v4 is a private vertex of
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v2v3 with respect to D). By the inductive hypothesis on T ′, we have T ′ ∈ T , where

v5 ∈ B(T ′). Therefore T ∈ T because it can be obtained from T ′ by using Operation

O2.

In the sequel, we can assume that v3 is a support vertex of degree three. Let v′3 be

the unique leaf neighbor of v3. We consider the following two cases.

Case 1. v4 is an endvertex of some edge belonging to D.

Let f be the edge of D incident with v4. First, suppose that f = v4v5. Since by

Proposition 2, αf
D(v4) 6= ∅, we deduce that some child of v4, say z, belongs to αf

D(v4).

We claim that z is a leaf, and thus v4 is a support vertex. Suppose not, and let z′ be

a child of z, and z′′ the child (if any) of z′. Regardless of the existence or not of the

vertex z′′, D must contain the edge zz′, which contradicts the fact that z ∈ αf
D(v4).

Hence z is leaf. Second, assume that f 6= v4v5, and let z be a child of v4 such that

f = zv4. Clearly, z is not a leaf (since D contains no pendant edge). A similar

argument to that used above, it can be shown that z is a support vertex of degree

two. Consequently, v4 is either a support vertex or has a child which is a support

vertex of degree two. Now, whatever the situation that occurs, let T ′ = T − Tv3 . By

Proposition 2, αf
D(v4) 6= ∅ we deduce that T ′ has order at least four. On the other

hand, one can easily see that γev(T ′) = γev(T )− 1, and that the unicity of D implies

that D ∩ ET ′ is also the unique γev(T ′)-set containing the edge f which is incident

with v4. By the inductive hypothesis on T ′, we have T ′ ∈ T , where v4 is either a

support vertex of T ′ or adjacent to support vertex of degree two. Therefore T ∈ T
because it can be obtained from T ′ by using Operation O4.

Case 2. v4 is not an endvertex of any edge of D.

Clearly, v4 cannot be a support vertex in T. Consider two subcases.

Subcase 2.1. v4 ∈ P (v2v3, D).

Hence no edge incident with v5 belongs to D, in particular v4v5 /∈ D. We claim that

dT (v4) = 2. Suppose to the contrary that dT (v4) ≥ 3, and let y be any child of v4
different from v3. According to the diametrical path, y has depth at most two and

therefore D must contain an edge incident with y. But then v4 is no longer a private

neighbor of v2v3 with respect to D, a contradiction. Hence dT (v4) = 2.

Now, let T ′ = T−Tv4
. Since v5 is not ev -dominated by v2v3, we deduce that D∩ET ′ 6=

∅. Moreover, the unicity of D requires that T ′ has order n′ ≥ 4. Also, it is easy to

see that γev(T ′) = γev(T )− 1, and that the unicity of D implies that D ∩ ET ′ is the

unique γev(T ′)-set in which v5 is not an endvertex of any edge of D ∩ ET ′ . By the

inductive hypothesis on T ′, we have T ′ ∈ T , where v5 ∈ B(T ′). Therefore T ∈ T
because it can be obtained from T ′ by using Operation O3.

Subcase 2.2. v4 /∈ P (v2v3, D).

We claim that every subtree rooted at a child of v4 (if any other than v3) is isomorphic

to Tv3 . To see, let y be a child of v4 different from v3. Since v4 is not a support vertex,

dT (y) ≥ 2. Recall that T has no strong support vertex. Now, since v4 is not an

endvertex of any edge of D, the vertex y cannot be a support vertex of degree two.

Moreover, the choice of diametral path with the condition that dT (v3) is a small as

possible, vertex y cannot be in a path of length three starting from v4 in which y and its
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child are of degree two. Consequently, according the cases considered above, Ty must

be a path P4 in which y is a support vertex. Now, let p = dT (v4) and T ′ = T − Tv4 .
Clearly, by Proposition 2 and the fact that v5 is not ev -dominated by an edge incident

with v4, the order of T ′ is n′ ≥ 4. Also, one can see that γev(T ′) = γev(T ) − p + 1,

and that D ∩ ET ′ is the unique γev(T ′)-set. By the inductive hypothesis on T ′, we

have T ′ ∈ T , and therefore T ∈ T because it is obtained from T ′ by using Operation

O5.

According to Lemmas 1 and 2, the proof of Theorem 2 is achieved.
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