

Research Article

Graphs with unique minimum edge-vertex dominating sets

B. Senthilkumar^{1,†}, M. Chellali², H. Naresh Kumar^{1,‡} and Y.B. Venkatakrishnan^{1,*},

Department of Mathematics, SASTRA Deemed University, Tanjore, Tamilnadu, India

†senthilsubramanyan@gmail.com

†nareshhari1403@gmail.com

*venkatakrish2@maths.sastra.edu

²LAMDA-RO Laboratory, Department of Mathematics, University of Blida, B.P. 270, Blida, Algeria
m_chellali@yahoo.com

Received: 26 April 2023; Accepted: 6 September 2023 Published Online: 11 September 2023

Abstract: An edge e of a simple graph $G = (V_G, E_G)$ is said to ev-dominate a vertex $v \in V_G$ if e is incident with v or e is incident with a vertex adjacent to v. A subset $D \subseteq E_G$ is an edge-vertex dominating set (or an evd-set for short) of G if every vertex of G is ev-dominated by an edge of D. The edge-vertex domination number of G is the minimum cardinality of an evd-set of G. In this paper, we initiate the study of the graphs with unique minimum evd-sets that we will call UEVD-graphs. We first present some basic properties of UEVD-graphs, and then we characterize UEVD-trees by equivalent conditions as well as by a constructive method.

Keywords: Edge-vertex dominating set, edge-vertex domination number, trees

AMS Subject classification: 05C69

1. Introduction

Let G be a simple, connected and undirected graph with vertex set V_G and edge set E_G . The set $N_G(v) = \{x \in V_G : x \text{ is adjacent to } v \text{ in } G\}$ is the open neighborhood of a vertex $v \in V_G$ and the closed neighborhood of v is the set $N_G[v] = N_G(v) \cup \{v\}$. An edge $e \in E_G$ edge-vertex dominates (or simply ev-dominates) a vertex $v \in V_G$ if e is incident with v or e is incident with a vertex adjacent to v. In [10], Peters introduced edge-vertex dominating sets, abbreviated evd-sets, of a graph G as a subset

^{*} Corresponding Author

 $D \subseteq E_G$ such that every vertex of G is ev-dominated by an edge of D. The edge-vertex domination number of G, denoted as $\gamma_{ev}(G)$, is the minimum cardinality of an evd-set of G. A $\gamma_{ev}(G)$ -set is an evd-set of G with minimum cardinality $\gamma_{ev}(G)$. For
further details on edge-vertex domination, the reader is referred to [8, 9, 11].

Several studies on the graphs having a unique set for some domination parameters are available in the literature. But the first work on such graphs with respect to the domination number was done by Gunther et al. [4] who additionally gave a characterization of the trees having unique minimum dominating sets. For further details, we refer the reader for example to [1–3, 5–7, 12].

Our main purpose in this paper is to study the graphs G with unique $\gamma_{ev}(G)$ -sets which we call UEVD-graphs. In section 2, some basic properties of UEVD-graphs are discussed while in Section 3, we establish equivalent conditions for the characterization of UEVD-trees. Moreover, a constructive characterization of UEVD-trees will be provided in the last section.

Before presenting our results, we need to introduce some further but standard notation and definitions. Given a simple and connected graph $G = (V_G, E_G)$. The degree of a vertex $v \in V_G$ is $d_G(v) = |N_G(v)|$. A vertex of degree one is a leaf and its neighbor is a support vertex. A support vertex is a weak support vertex if it is adjacent to exactly one leaf, otherwise it is called a strong support vertex. A pendant edge in G is an edge incident with a leaf. A star of order $n \geq 2$, denoted by $K_{1,n-1}$, is a tree with at least n-1 leaves. A double star $S_{p,q}$ is a tree with exactly two vertices that are not leaves. The distance between two vertices u and v in a connected graph G is the number of edges in a shortest path between u and v. The diameter of a connected graph G, denoted diam(G), is the maximum distance between two vertices.

2. Properties of the UEVD-graphs

In this section, we prove certain properties of the UEVD-graphs. We begin by defining a private-vertex of an edge.

Definition 1. Let D be an evd-set of a graph G. A vertex $v \in V_G$ is a private-vertex of an edge $e \in D$ with respect to D if v is ev-dominated by the edge e and no other edge in $D \setminus \{e\}$, ev-dominates v.

In accordance with Definition 1, let P(e, D) denote the set of private vertices of an edge e with respect to the set D. The following result gives a necessary and sufficient condition for evd-sets to be minimal in a graph G.

Proposition 1. Let D be an evd-set of a connected graph G. Then, D is minimal if and only if for every $e \in D$, we have $P(e, D) \neq \emptyset$.

Proof. Let D be a minimal evd-set of G. Suppose that $P(e, D) = \emptyset$ for some $e \in D$. Since the vertices ev-dominated by e are already ev-dominated by e by e and ev-dominated by e-dominated by e-dominate

 $D \setminus \{e\}$ thus remains an *evd-set of* G, contradicting the minimality of D. Hence $P(e, D) \neq \emptyset$.

Conversely, assume that for every $e \in D$, we have $P(e, D) \neq \emptyset$. Suppose that D is not minimal. Then, $D \setminus \{e^*\}$ is an *evd-set* of G for some $e^* \in D$. It follows that $P(e^*, D) = \emptyset$, contradicting our assumption.

According to Definition 1, for any edge e = xy in a $\gamma_{ev}(G)$ -set D, let $\alpha_D^e(x) = P(e, D) \cap (N(x) - \{y\})$ and $\alpha_D^e(y) = P(e, D) \cap (N(y) - \{x\})$. Observe that $x \notin \alpha_D^e(y)$ and $y \notin \alpha_D^e(x)$ even when $x, y \in P(e, D)$.

Proposition 2. Let G be a connected graph of order at least three with a unique $\gamma_{ev}(G)$ -set D. Then for every edge $e = xy \in D$, we have $\alpha_D^e(x) \neq \emptyset$ and $\alpha_D^e(y) \neq \emptyset$.

Proof. Suppose not, that for some edge $e = xy \in D$, either $\alpha_D^e(x) = \emptyset$ or $\alpha_D^e(y) = \emptyset$. Without loss of generality, let $\alpha_D^e(x) = \emptyset$. Let e' be an adjacent edge of e in G chosen incident with y if it is not a leaf, otherwise incident with x. Note that such an edge exists since G is connected of order at least three. In this case, the set $\{e'\} \cup D \setminus \{e\}$ is another $\gamma_{ev}(G)$ -set, a contradiction to the uniqueness of D. Hence $\alpha_D^e(x) \neq \emptyset$ and likewise $\alpha_D^e(y) \neq \emptyset$.

As an immediate consequence of Proposition 2 we have the following observation.

Observation 3. Let G be a connected graph of order at least three. If any pendant edge of G is in an $\gamma_{ev}(G)$ -set, then G is not a UEVD-graph.

It is also noteworthy that the converse of Proposition 2 is not true. To see, simply consider the cycle C_4 that admits $\gamma_{ev}(C_4)$ -sets of size one whereas each edge xy satisfies $\alpha_D^e(x) \neq \emptyset$ and $\alpha_D^e(y) \neq \emptyset$.

Recall that an evd-set D is said to be independent if no two edges of D have a common neighbor.

Proposition 3. If G is a connected graph of order at least three with a unique $\gamma_{ev}(G)$ -set D, then D is independent.

Proof. Suppose that D contains two adjacent edges $e_1 = xy$ and $e_2 = xz$. By Observation 3, neither e_1 nor e_2 is a pendant edge. So let e be any edge incident with y. Clearly, $\{e\} \cup D - \{e_1\}$ is a $\gamma_{ev}(G)$ -set different from D, a contradiction.

The converse of Proposition 3 is not true in general. To see, consider the path P_6 that admits four $\gamma_{ev}(P_6)$ -sets all of which are independent.

Proposition 4. Let G be a connected graph of order at least three with a unique $\gamma_{ev}(G)$ -set D. Then for every $e \notin D$, we have $\gamma_{ev}(G - e) \ge \gamma_{ev}(G)$.

Proof. Suppose not, that $\gamma_{ev}(G-e) < \gamma_{ev}(G)$ for some $e \notin D$, and let D' be a $\gamma_{ev}(G-e)$ -set. Hence the set D' ev-dominates all vertices of V_{G-e} , but since $V_{G-e} = V_G$, D' also ev-dominates V_G . This leads to a contradiction because of |D'| < |D|. Therefore $\gamma_{ev}(G-e) \ge \gamma_{ev}(G)$ for every $e \notin D$.

Proposition 5. Let G be a connected graph of order at least three with a unique $\gamma_{ev}(G)$ -set D. Then for every $e \in D$, we have $\gamma_{ev}(G-e) > \gamma_{ev}(G)$.

Proof. We first note that no edge of D is pendant, by Observation 3. Now, suppose that $\gamma_{ev}(G-e) \leq \gamma_{ev}(G)$ for some $e \in D$, and let D' be a $\gamma_{ev}(G-e)$ -set. If $|D'| = \gamma_{ev}(G)$, then since $e \in D \setminus D'$ and D' ev-dominates V_{G-e} as well as V_G , we conclude that D' is a second $\gamma_{ev}(G)$ -set, contradicting the uniqueness of D. Hence $|D'| < \gamma_{ev}(G)$. But then D' would be an evd-set smaller than D, a contradiction too. Therefore $\gamma_{ev}(G-e) > \gamma_{ev}(G)$ for every every $e \in D$.

The converse of Proposition 5 is not true in general. For example, let G be the graph of order 10 obtained from a cycle C_8 whose vertices are labeled in order $x_1, x_2, \ldots, x_8, x_1$ by adding a two vertices y and z and the edges x_1x_5, yz, yx_3 and yx_7 . Clearly, $X = \{yx_3, x_1x_5\}$ is a $\gamma_{ev}(G)$ -set and $\gamma_{ev}(G - e) = 3 > \gamma_{ev}(G)$ for every $e \in X$. But X is not the only $\gamma_{ev}(G)$ -set since $\{yx_7, x_1x_5\}$ is also a $\gamma_{ev}(G)$ -set.

3. UEVD-trees

In this section, we investigate the trees T with unique $\gamma_{ev}(T)$ -sets. In the first subsection, we establish three equivalent conditions for UEVD-trees, while in the second subsection we provide a constructive characterization of such trees.

3.1. Equivalent conditions for UEVD-trees

Theorem 1. Let T be a tree of order at least three. Then the following conditions are equivalent:

- i) T has a unique $\gamma_{ev}(T)$ -set D.
- ii) T has a $\gamma_{ev}(T)$ -set D such that for every $e = xy \in D$, we have $\alpha_D^e(x) \neq \emptyset$ and $\alpha_D^e(y) \neq \emptyset$.
- iii) T has a $\gamma_{ev}(T)$ -set D containing no pendant edge such that $\gamma_{ev}(T-e) > \gamma_{ev}(T)$ for every $e \in D$.

Proof. (i) \Rightarrow (ii) is true by Proposition 2 and (i) \Rightarrow (iii) is true by Proposition 5. Now, to prove the equivalence, we prove (iii) \Rightarrow (ii) and (ii) \Rightarrow (i).

(iii) \Rightarrow (ii). Let D be a $\gamma_{ev}(T)$ -set that contains no pendant edge, and assume that $\gamma_{ev}(T-e) > \gamma_{ev}(T)$ for every $e \in D$. Suppose that there is an edge $e = xy \in D$ such that either $\alpha_D^e(x) = \emptyset$ or $\alpha_D^e(y) = \emptyset$, say $\alpha_D^e(x) = \emptyset$. By assumption, e is not a pendant edge. Let $e' \in E_T - D$ be an edge adjacent to e and incident with y. Then,

the set $(D \setminus \{e\}) \cup \{e'\}$ is a $\gamma_{ev}(T)$ -set leading to $\gamma_{ev}(T-e) \leq \gamma_{ev}(T)$, a contradiction to our assumption.

(ii) \Rightarrow (i). Let D be a $\gamma_{ev}(T)$ -set such that for every $e = xy \in D$, we have $\alpha_D^e(x) \neq \emptyset$ and $\alpha_D^e(y) \neq \emptyset$. Clearly, if D contains two edges e_1 and e_2 incident with a common vertex, say u, then by definition $\alpha_D^{e_1}(u) = \alpha_D^{e_2}(u) = \emptyset$ yielding a contradiction. Therefore D is independent. Moreover, no edge e = xy of D is pendant for otherwise either $\alpha_D^e(x) = \emptyset$ or $\alpha_D^e(y) = \emptyset$.

Now, to prove that D is the unique $\gamma_{ev}(T)$ -set, we use an induction on the number of edges m of T. Clearly the base case is a path P_4 which has a unique $\gamma_{ev}(T)$ -set. Assume that the result is true for all trees with sizes less than m. Now, let T be a tree with m edges. Let e = xy be a non-pendant edge of T such that $e \notin D$. If such an edge does not exist, then T is a double star and certainly the unique edge in D is a unique $\gamma_{ev}(T)$ -set. Hence we can assume that such an edge e exists. Consider the tree T-e obtained from T by removing the edge e. Clearly each of the two components of T has order at least three, for otherwise the edge in the component of order two would be a pendant edge in T belonging to D, contradicting our earlier assumption. Let us denote by T_x the component of T-e containing x, and likewise T_y is the component of T-e containing y. Clearly, each of T_x and T_y has size less than m. Let $D_x = D \cap E_{T_x}$ and $D_y = D \cap E_{T_y}$. Then D_x is a $\gamma_{ev}(T_x)$ -set and likewise D_y is a $\gamma_{ev}(T_y)$ -set. In addition, since each edge $f = uv \in D_x$ still satisfies $\alpha_{D_x}^f(u) \neq \emptyset$ and $\alpha_D^f(v) \neq \emptyset$. By the induction hypothesis on T_x we have D_x is a unique $\gamma_{ev}(T_x)$ -set and similarly D_y is a unique $\gamma_{ev}(T_y)$ -set. Let r_x^* be the edge of D_x that ev-dominates x in T_x . Note that x might be an endvertex of r_x^* or not. Similarly, we can define r_y^* if necessary. Now assume that T has a second $\gamma_{ve}(T)$ -set D', and let $D'_x = D' \cap E_{T_x}$ and $D'_y = D' \cap E_{T_y}$. If $e \notin D'$, then the unicity of D_x and D_y implies that $D'_x = D_x$ and $D'_y = D_y$. Therefore D = D'. Next suppose that $e \in D'$. In this case, it should be noted that $|D'| = |D'_x| + |D'_y| + 1$. Since $P(e, D') \neq \emptyset$ (by Proposition 1), either D'_x or D'_y is not an evd-set for T_x or T_y , respectively. Without loss of generality, assume that D'_x does not ev-dominate T_x . Notice that no edge incident with x in T_x belongs to D'_x . Hence let $e'_x \in E_{T_x}$ be any edge incident with x in T_x different from r_x^* . We note that such an edge e'_x can be chosen as desired. Indeed, if x is an endvertex of r_x^* , then r_x^* is not a pendant edge because of the unicity of D_x and thus e_x' can be chosen so that $e'_x \neq r^*_x$. Moreover, if x is not an endvertex of r^*_x , then e'_x is arbitrarily chosen. Therefore $D'_x \cup \{e'_x\}$ is an evd-set of T_x different from D_x , and since D_x is the unique $\gamma_{ev}(T_x)$ -set, we must have $|D_x' \cup \{e_x'\}| > |D_x|$, that is $|D_x'| + 2 \ge |D_x|$. Similarly, if D'_y does not ev-dominate T_y , then $|D'_y|+1 \ge |D_y|$ while if D'_y ev-dominates T_y , then $|D_y'| \ge |D_y|$. In either case, we may assume that $|D_y'| \ge |D_y|$. It follows that

$$|D'| = |D'_x| + |D'_y| + 1 \ge |D_x| - 2 + |D_y| + 1 > |D|,$$

a contradiction. Thus D is the only $\gamma_{ev}(T)$ -set, which completes the proof.

3.2. Characterization of UEVD-trees

The aim of this subsection is to provide a constructive characterization of the UEVD-trees. For this purpose, let \mathcal{T} be the family of all trees that can be obtained from a sequence $T_1, T_2, ..., T_k$, $(k \ge 1)$, of trees T such that T_1 is the path P_4 with support vertices a and b, and if $k \ge 2$, then T_{i+1} can be obtained recursively from T_i by one of the operations defined below. Let $A(T_1) = \{ab\}, B(T_1) = V(P_4) - \{a, b\}$.

- Operation \mathcal{O}_1 : Assume w is a support vertex of T_i . Then T_{i+1} is obtained from T_i by adding a new vertex v and the edge wv. Let $A(T_{i+1}) = A(T_i)$ and $B(T_{i+1}) = B(T_i) \cup \{v\}$.
- Operation \mathcal{O}_2 : Assume w is a vertex of $B(T_i)$. Then T_{i+1} is obtained from T_i by adding a path P_4 : $u_1u_2u_3u_4$ and the edge u_1w . Let $A(T_{i+1}) = A(T_i) \cup \{u_2u_3\}$ and $B(T_{i+1}) = B(T_i) \cup \{u_1, u_4\}$.
- Operation \mathcal{O}_3 : Assume w is a vertex of $B(T_i)$. Then T_{i+1} is obtained from T_i by adding a path $P_4: u_1u_2u_3u_4$ and a new vertex u and the edges u_2u and uw. Let $A(T_{i+1}) = A(T_i) \cup \{u_2u_3\}$ and $B(T_{i+1}) = B(T_i) \cup \{u, u_1, u_4\}$.
- Operation \mathcal{O}_4 : Assume w is a non-leaf vertex which is either a support vertex or adjacent to a support vertex of degree two in T_i . Then T_{i+1} is obtained from T_i by adding a path $P_4: u_1u_2u_3u_4$ and the edge u_2w . Let $A(T_{i+1}) = A(T_i) \cup \{u_2u_3\}$ and $B(T_{i+1}) = B(T_i) \cup \{u_1, u_4\}$.
- Operation \mathcal{O}_5 : Assume w is a vertex of T_i . Then T_{i+1} is obtained from T_i by adding t ($t \geq 1$) paths $P_4: u_1^j u_2^j u_3^j u_4^j$ and a new vertex u and the edges uw and $u_2^j u$ for every j. Let $A(T_{i+1}) = A(T_i) \cup \{u_2^j u_3^j : 1 \leq i \leq t\}$ and $B(T_{i+1}) = B(T_i) \cup \{u, u_1^j, u_4^j : 1 \leq i \leq t\}$.

Notice that from the way a tree $T \in \mathcal{T}$ is constructed, the set A(T) is an edge-vertex dominating set of T. For a vertex v in a rooted tree T, we let C(v) and D(v) denote the set of *children* and *descendants*, respectively, of v. The *maximal subtree* at v is the subtree of T induced by $D(v) \cup \{v\}$, and is denoted by T_v . The *depth* of v is the largest distance from v to a vertex in D(v).

In the rest of the paper, we shall prove:

Theorem 2. A tree T is a UEVD-tree if and only if $T = P_2$ or $T \in \mathcal{T}$.

We need the following lemmas.

Lemma 1. If $T = P_2$ or $T \in \mathcal{T}$, then T has a unique $\gamma_{ev}(T)$ -set.

Proof. Clearly if $T = P_2$, then T has a unique $\gamma_{ev}(T)$ -set. Hence assume that $T \in \mathcal{T}$. Then T can be constructed from a sequence T_1, T_2, \ldots, T_k $(k \ge 1)$ of trees, where T_1 is a path P_4 , and if $k \ge 2$, T_{i+1} can be obtained recursively from T_i by one of the

five operations defined above. We use the terminology of the construction for sets A(T) and B(T). If k = 1, then $T = P_4$ and clearly the edge of $A(T_1)$ is the unique $\gamma_{ev}(T_1)$ -set. This establishes our basis case.

Assume that the result holds for all trees $T \in \mathcal{T}$ that can be constructed from a sequence of length at most k-1, and let $T' = T_{k-1}$. Applying our inductive hypothesis to $T' \in \mathcal{T}$ shows that A(T') is the unique $\gamma_{ev}(T')$ -set. Clearly, if T is obtained from T' using Operation \mathcal{O}_1 , then $\gamma_{ev}(T) = \gamma_{ev}(T')$ and A(T') = A(T) is the unique $\gamma_{ev}(T)$ -set. Hence let us examine the following four cases.

Case 1. T is obtained from T' using Operation \mathcal{O}_2 .

Certainly, $\gamma_{ev}(T) \leq \gamma_{ev}(T')+1$. The equality $\gamma_{ev}(T) = \gamma_{ev}(T')+1$ is obtained from the fact that there is a $\gamma_{ev}(T)$ -set F containing the edge u_2u_3 and neither u_3u_4, u_1u_2 nor u_1w (if $u_1w \in F$, then it can replaced by wy, for some neighbor y of w in T'). Hence $A(T) = A(T') \cup \{u_2u_3\}$ is a $\gamma_{ev}(T)$ -set. Now assume that T has another $\gamma_{ev}(T)$ -set D different from A(T), and recall that $w \in B(T')$. Clearly, $D \cap \{u_3u_4, u_3u_2\} \neq \emptyset$. Without loss of generality, assume that $u_3u_2 \in D$. If u_2u_1 or $u_1w \in D$, then for any edge f incident with w in T', the set $D' = \{f\} \cup D - \{u_2u_1, u_1w\}$ is also a $\gamma_{ev}(T)$ -set for which $D' \cap E_{T'}$ is a $\gamma_{ev}(T')$ -set that contains an edge incident with w, and thus becomes a second $\gamma_{ev}(T')$ -set, a contradiction. Hence $u_2u_1, u_1w, u_3u_4 \notin D$, and thus $D - \{u_3u_2\}$ is again a $\gamma_{ev}(T')$ -set different from A(T'), a contradiction. Therefore $A(T) = A(T') \cup \{u_2u_3\}$ is the unique $\gamma_{ev}(T)$ -set.

Case 2. T is obtained from T' using Operation \mathcal{O}_3 .

The inequality $\gamma_{ev}(T) \leq \gamma_{ev}(T') + 1$ follows from the fact that $A(T') \cup \{u_2u_3\}$ is an evd-set of T, and the equality $\gamma_{ve}(T) = \gamma_{ve}(T') + 1$ follows from the fact that there is a $\gamma_{ev}(T)$ -set that contains u_2u_3 and that does not contain the edges u_3u_4, u_1u_2, u_2u, uw . Hence $A(T) = A(T') \cup \{u_2u_3\}$ is a $\gamma_{ev}(T)$ -set. Now assume that T has another $\gamma_{ev}(T)$ -set D different from A(T), and let $F = \{u_3u_4, u_2u_3, u_1u_2, u_2u, uw\}$. Clearly, $|D \cap F| \geq 1$. Now, if $|D \cap F| \geq 2$, then one can construct another $\gamma_{ev}(T)$ -set D' that contains only the edge u_2u_3 and any the edge of F can be replaced by an edge incident with w in T'. Using the fact that $w \notin B(T')$, the set $D' \cap E_{T'}$ becomes a second $\gamma_{ev}(T')$ -set, a contradiction. Hence $|D \cap F| = 1$, and thus $u_2u_3 \in D$. But then $D' \cap E_{T'}$ is also a second $\gamma_{ev}(T')$ -set, a contradiction. Therefore $A(T) = A(T') \cup \{u_2u_3\}$ is the unique $\gamma_{ev}(T)$ -set.

Case 3. T is obtained from T' using Operation \mathcal{O}_4 .

Then $\gamma_{ev}(T) \leq \gamma_{ev}(T') + 1$ since $A(T') \cup \{u_2u_3\}$ is an evd-set of T. The equality follows from the fact that there is a $\gamma_{ev}(T)$ -set that contains u_2u_3 and an edge with endvertices w and some neighbor of w in T'. Consequently, $A(T) = A(T') \cup \{u_2u_3\}$ is a $\gamma_{ev}(T)$ -set. Now assume that T has a second $\gamma_{ev}(T)$ -set D different from A(T), and let $F = \{u_3u_4, u_2u_3, u_1u_2, u_2w\}$. Then $|D \cap F| \geq 1$. If $|D \cap F| \geq 2$, then we must have u_2u_3 and $u_2w \in D$. The minimality of D implies that w is a support vertex in T' with leaf neighbor w'. In this case, the set $D' = \{ww'\} \cup D - \{u_2w\}$ is a $\gamma_{ev}(T)$ -set for which $D' \cap E_{T'}$ is a $\gamma_{ev}(T')$ -set that contains a pendant edge, contradicting the unicity of A(T'). Hence $|D \cap F| = 1$, implying that $u_2u_3 \in D$. Since w is either a support vertex or adjacent to a support vertex of degree two in T', the set D must

contain an edge incident with w. In that case $D' \cap E_{T'}$ is $\gamma_{ev}(T')$ -set different from A(T'), a contradiction. Therefore $A(T) = A(T') \cup \{u_2u_3\}$ is the unique $\gamma_{ev}(T)$ -set.

Case 4. T is obtained from T' using Operation \mathcal{O}_5 .

Then $\gamma_{ev}(T) \leq \gamma_{ev}(T') + t$ since $A(T) = A(T') \cup \{u_2^j u_3^j : 1 \leq j \leq t\}$. The equality follows from the fact that there is a $\gamma_{ev}(T)$ -set that contains the edge $u_2^j u_3^j$ for every $j \in \{1, \ldots, t\}$ and neither any edge incident with u nor any edge of the t added paths P_4 . Therefore $A(T) = A(T') \cup \{u_2^j u_3^j : 1 \leq j \leq t\}$ is a $\gamma_{ev}(T)$ -set. Finally, as for the previous cases, it is easy to show that the uniqueness of A(T') leads to the uniqueness of A(T).

Through all situations, we conclude that A(T) is the unique $\gamma_{ev}(T)$ -set and T is UEVD-tree.

Lemma 2. If T is a nontrivial tree with a unique $\gamma_{ev}(T)$ -set, then $T = P_2$ or $T \in \mathcal{T}$.

Proof. If the number of vertices, n of T, is two, then $T=P_2$. Hence we assume that $n \geq 3$. To show that $T \in \mathcal{T}$ we use an induction on n. Since there is no tree T of order three with a unique unique $\gamma_{ev}(T)$ -set, let $n \geq 4$. If n=4, then $T=P_4$ and clearly $T \in \mathcal{T}$. This establishes the base case. Let $n \geq 5$ and assume that any tree T' of order n' < n having a unique $\gamma_{ev}(T')$ -set belongs to the family \mathcal{T} . Let T be a tree of order n with a unique $\gamma_{ev}(T)$ -set D. Recall that by Observation 3, no pendant edge belongs to D and by Proposition 3, D is independent.

First, assume that T has a strong support vertex u, and let x and y be two leaves adjacent to u. Let T' = T - x. It is easy to see that $\gamma_{ev}(T) = \gamma_{ev}(T')$ and that the uniqueness of D implies that it is also the unique $\gamma_{ev}(T')$ -set. By the inductive hypothesis on T', we have $T' \in \mathcal{T}$. Since the tree T can be obtained from T' by using Operation \mathcal{O}_1 , we deduce that $T \in \mathcal{T}$. Therefore, in the sequel we will assume that every support vertex of T is weak, that is, adjacent to exactly one leaf. Since $n \geq 5$ and every support vertex is weak, we conclude that $\dim(T) \geq 4$.

Let v_1, v_2, \ldots, v_k $(k \geq 5)$ be a diametral path in T chosen so that $d_T(v_3)$ is as small as possible. Root T at v_k . Clearly, $d_T(v_2) = 2$, and $v_2v_3 \in D$. If v_3 has a child of degree 2, say y, other than v_2 , then D must contain the pendant edge incident with y, which leads to a contradiction. Thus v_2 is the unique child of v_3 of degree 2. Hence either $d_T(v_3) = 2$ or $d_T(v_3) = 3$ and v_3 is a weak support vertex.

Assume first that $d_T(v_3)=2$. By Proposition 2, $\alpha_D^{v_2v_3}(v_3)\neq\emptyset$ and thus v_4 is a private vertex of the edge v_2v_3 . Then v_4 must have degree 2 for otherwise any child of v_4 would be an end-vertex of an edge belonging to D, contradicting $v_4\in P(v_2v_3,D)$. Let $T'=T-T_{v_4}$. The unicity of D implies that $n'\geq 4$. Since $D-\{v_2v_3\}$ ev-dominates $V(T'),\ \gamma_{ev}(T')\leq \gamma_{ev}(T)-1$. The equality follows from the fact that any $\gamma_{ev}(T')$ -set can be extended to an evd-set of T by adding to it the edge v_2v_3 . Therefore $\gamma_{ev}(T')=\gamma_{ev}(T)-1$, and $D\cap E_{T'}$ is a $\gamma_{ev}(T')$ -set. Now, if D' is a $\gamma_{ev}(T')$ -set different from $D\cap E_{T'}$, then $D'\cup \{v_2v_3\}$ would be a $\gamma_{ev}(T)$ -set different from D, a contradiction. Hence $D\cap E_{T'}$ is the unique $\gamma_{ev}(T')$ -set for which we notably have no edge incident with v_5 in T' belonging to $D\cap E_{T'}$ (because of v_4 is a private vertex of

 v_2v_3 with respect to D). By the inductive hypothesis on T', we have $T' \in \mathcal{T}$, where $v_5 \in B(T')$. Therefore $T \in \mathcal{T}$ because it can be obtained from T' by using Operation \mathcal{O}_2 .

In the sequel, we can assume that v_3 is a support vertex of degree three. Let v_3' be the unique leaf neighbor of v_3 . We consider the following two cases.

Case 1. v_4 is an endvertex of some edge belonging to D.

Let f be the edge of D incident with v_4 . First, suppose that $f = v_4 v_5$. Since by Proposition 2, $\alpha_D^f(v_4) \neq \emptyset$, we deduce that some child of v_4 , say z, belongs to $\alpha_D^f(v_4)$. We claim that z is a leaf, and thus v_4 is a support vertex. Suppose not, and let z' be a child of z, and z'' the child (if any) of z'. Regardless of the existence or not of the vertex z'', D must contain the edge zz', which contradicts the fact that $z \in \alpha_D^f(v_4)$. Hence z is leaf. Second, assume that $f \neq v_4v_5$, and let z be a child of v_4 such that $f = zv_4$. Clearly, z is not a leaf (since D contains no pendant edge). A similar argument to that used above, it can be shown that z is a support vertex of degree two. Consequently, v_4 is either a support vertex or has a child which is a support vertex of degree two. Now, whatever the situation that occurs, let $T' = T - T_{v_3}$. By Proposition 2, $\alpha_D^f(v_4) \neq \emptyset$ we deduce that T' has order at least four. On the other hand, one can easily see that $\gamma_{ev}(T') = \gamma_{ev}(T) - 1$, and that the unicity of D implies that $D \cap E_{T'}$ is also the unique $\gamma_{ev}(T')$ -set containing the edge f which is incident with v_4 . By the inductive hypothesis on T', we have $T' \in \mathcal{T}$, where v_4 is either a support vertex of T' or adjacent to support vertex of degree two. Therefore $T \in \mathcal{T}$ because it can be obtained from T' by using Operation \mathcal{O}_4 .

Case 2. v_4 is not an endvertex of any edge of D.

Clearly, v_4 cannot be a support vertex in T. Consider two subcases.

Subcase 2.1. $v_4 \in P(v_2v_3, D)$.

Hence no edge incident with v_5 belongs to D, in particular $v_4v_5 \notin D$. We claim that $d_T(v_4) = 2$. Suppose to the contrary that $d_T(v_4) \geq 3$, and let y be any child of v_4 different from v_3 . According to the diametrical path, y has depth at most two and therefore D must contain an edge incident with y. But then v_4 is no longer a private neighbor of v_2v_3 with respect to D, a contradiction. Hence $d_T(v_4) = 2$.

Now, let $T' = T - T_{v_4}$. Since v_5 is not ev-dominated by v_2v_3 , we deduce that $D \cap E_{T'} \neq \emptyset$. Moreover, the unicity of D requires that T' has order $n' \geq 4$. Also, it is easy to see that $\gamma_{ev}(T') = \gamma_{ev}(T) - 1$, and that the unicity of D implies that $D \cap E_{T'}$ is the unique $\gamma_{ev}(T')$ -set in which v_5 is not an endvertex of any edge of $D \cap E_{T'}$. By the inductive hypothesis on T', we have $T' \in \mathcal{T}$, where $v_5 \in B(T')$. Therefore $T \in \mathcal{T}$ because it can be obtained from T' by using Operation \mathcal{O}_3 .

Subcase 2.2. $v_4 \notin P(v_2v_3, D)$.

We claim that every subtree rooted at a child of v_4 (if any other than v_3) is isomorphic to T_{v_3} . To see, let y be a child of v_4 different from v_3 . Since v_4 is not a support vertex, $d_T(y) \geq 2$. Recall that T has no strong support vertex. Now, since v_4 is not an endvertex of any edge of D, the vertex y cannot be a support vertex of degree two. Moreover, the choice of diametral path with the condition that $d_T(v_3)$ is a small as possible, vertex y cannot be in a path of length three starting from v_4 in which y and its

child are of degree two. Consequently, according the cases considered above, T_y must be a path P_4 in which y is a support vertex. Now, let $p = d_T(v_4)$ and $T' = T - T_{v_4}$. Clearly, by Proposition 2 and the fact that v_5 is not ev-dominated by an edge incident with v_4 , the order of T' is $n' \geq 4$. Also, one can see that $\gamma_{ev}(T') = \gamma_{ev}(T) - p + 1$, and that $D \cap E_{T'}$ is the unique $\gamma_{ev}(T')$ -set. By the inductive hypothesis on T', we have $T' \in \mathcal{T}$, and therefore $T \in \mathcal{T}$ because it is obtained from T' by using Operation \mathcal{O}_5 .

According to Lemmas 1 and 2, the proof of Theorem 2 is achieved.

Acknowledgements. YBVK research is supported by MATRICS project, grant MTR/2018/000234, Science and Engineering Research Board (SERB), India. BS thank TATA Realty infrastructure limited for their support.

Conflict of interest. The authors declare that they have no conflict of interest.

Data Availability. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

- [1] M. Chellali and T.W. Haynes, Trees with unique minimum paired-dominating sets, Ars Combin. 73 (2004), 3–12.
- [2] _____, A characterization of trees with unique minimum double dominating sets, Util. Math. 83 (2010), 233–242.
- [3] M. Fischermann and L. Volkmann, *Unique minimum domination in trees*, Australas. J. Combin. **25** (2002), 117–124.
- [4] G. Gunther, B. Hartnell, L.R. Markus, and D. Rall, *Trees with unique minimum paired-dominating sets*, Congr. Numer. **101** (1994), 55–63.
- [5] T.W. Haynes and M.A. Henning, Trees with unique minimum total dominating sets, Discuss. Math. Graph Theory 22 (2002), no. 2, 233–246 https://doi.org/10.7151/dmgt.2349.
- [6] ______, Trees with unique minimum semitotal dominating sets, Graphs Combin. 36 (2020), no. 3, 689–702 https://doi.org/10.1007/s00373-020-02145-0.
- [7] _____, Unique minimum semipaired dominating sets in trees, Discuss. Math. Graph Theory 43 (2023), no. 1, 35–53 https://doi.org/10.7151/dmgt.2349.
- [8] B. Krishnakumari, Y.B. Venkatakrishnan, and M. Krzywkowski, On trees with total domination number equal to edge-vertex domination number plus one, Proc. Math. Sci. 126 (2016), 153–157 https://doi.org/10.1007/s12044-016-0267-6.

- [9] J.R. Lewis, Vertex-edge and edge-vertex domination in graphs, Ph.D. thesis, Clemson University, Clemson, 2007.
- [10] J.W. Peters, Theoretical and algorithmic results on domination and connectivity, Ph.D. thesis, Clemson University, Clemson, 1986.
- [11] Y.B. Venkatakrishnan and B. Krishnakumari, An improved upper bound of edge-vertex domination number of a tree, Information Processing Letters 134 (2018), 14–17 https://doi.org/10.1016/j.ipl.2018.01.012.
- [12] W. Zhao, F. Wang, and H. Zhang, Construction for trees with unique minimum dominating sets, Int. J. Comput. Math. Comput. Sys. Theory 3 (2018), no. 3, 204–213 https://doi.org/10.1080/23799927.2018.1531930.