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Abstract: Let G be a graph with vertex set V (G) and edge set E(G). Denote

by dG(u) the degree of a vertex u ∈ V (G). The Sombor index of G is defined as
SO(G) =

∑
uv∈E(G)

√
d2
u + d2

v , whereas, the inverse sum indeg (ISI) index is defined

as ISI(G) =
∑
uv∈E(G)

dudv
du+dv

. In this paper, we compute the bounds in terms of
maximum degree, minimum degree, order and size of the original graphs G and H

for Sombor and ISI indices of several graph operations like corona product, cartesian
product, strong product, composition and join of graphs.
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1. Introduction

We consider only simple, finite, undirected and connected graphs. Let G be such a

graph with vertex set V (G) = {v1, v2, ..., vn} and edge set E(G). The cardinality

|V (G)| = nG is called order of G and the cardinality |E(G)| = mG is the size of G.

The degree dG(u) of a vertex u in G is the number of edges incident with u. The

minimum degree (resp. maximum degree) of vertex in G is denoted by δG (resp. ∆G).

If the vertex ui is adjacent to vertex uj , then the edge connecting them is denoted by

uiuj . A regular graph is a graph in which degree of each vertex is same. A complete

graph of order n is denoted by Kn.

∗ Corresponding Author
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In the chemical and mathematical literature, a topological index is a numerical quan-
tity that is derived from a (chemical) graph such that it remains the same under graph
isomorphism. They have several applications in chemistry, pharmacology, materials
science, among other, [7, 21]. In 2010, Vukičević and Gašperov [22] introduced the
inverse sum indeg index (shortly ISI index) as

ISI(G) =
∑

uv∈E(G)

dudv

du + dv
. (1)

The ISI index is a well-studied topological index and has several applications in

quantitative structure-activity or structure-property relationships (QSAR/QSPR)

[10, 11, 15]. Zangi et. al. [24] found basic properties of the ISI matrix. They

also gave some bounds for the ISI energy of graphs. The ISI index and ISI en-

ergy of the molecular graphs of hyaluronic acid-paclitaxel conjugates was obtained by

Havare [10]. For more results on ISI index and ISI energy, see [3, 12].
In [5] Gutman defined new vertex-degree-based topological index called Sombor index,
denoted by SO(G) and defined as:

SO(G) =
∑

uv∈E(G)

√
d2
u + d2

v . (2)

The study of the Sombor index of graphs has attracted a significant amount of atten-

tion within a very short span of time. Redžepović [18] found that the Sombor index

has good predictive potential for statistical modeling of enthalpy of vaporization and

entropy for alkanes. Cruz et al. [4] investigated the Sombor index of chemical graphs

and characterized the extremal graphs with respect to the Sombor index over the sets

of (connected) chemical graphs, chemical trees, and hexagonal systems. For more

related results, one may refer to [6, 8, 16, 19, 23] and the references therein.

In chemical graph theory, some chemical graphs obtained by the use of different graph

operations (graph products) are very interesting to investigate. In 2015, Shetty et al.

[20] gave formulae for harmonic index of some graph operations. The exact expressions

for first and second Zagreb indices and hyper Wiener index was found by Khalifeh

et al. [13, 14]. Akhter et al. [1, 2] computed the exact formulae and the bounds for

general sum-connectivity index of some graph operations.

In this paper, we compute some bounds for the Sombor and inverse sum indeg (ISI)

index of several graph operations. These graph operations include corona product,

cartesian product, strong product, join and composition of graphs.

2. Bounds for the Sombor and inverse sum ideg (ISI) indices

In this section, we derive some bounds for Sombor and inverse sum indeg (ISI)
indices of several graph operations. Let G and H be two simple connected graphs
whose vertex sets are disjoint. For each u ∈ V (G) and v ∈ V (H), we have

∆G ≥ dG(u), δG ≤ dG(u), (3)

∆H ≥ dH(v), δH ≤ dH(v). (4)
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The equality holds if and only if G and H are regular graphs.

2.1. The corona product

The corona product of G and H, denoted by G �H, is a graph obtained by taking
one copy of G and nG copies of H and joining the vertex u that is on i-th position in
G to every vertex in i-th copy of H. The order and size of G�H are nG(1 +nH) and
mG + nGmH + nGnH , respectively. The degree of a vertex u ∈ V (G�H) is given by

dG�H(u) =

{
dG(u) + nH if u ∈ V (G),

dH(u) + 1 if u ∈ V (H).
(5)

In the following theorem, the bounds on the Sombor index of corona product of two

graphs are computed.

Theorem 1. Let G and H be graphs. Then α1 ≤ SO(G�H) ≤ α2, where

α1 =
√

2mG(δG + nH) +
√

2nGmH(δH + 1) + nGnH

√
(δG + nH)2 + (δH + 1)2,

α2 =
√

2mG(∆G + nH) +
√

2nGmH(∆H + 1) + nGnH

√
(∆G + nH)2 + (∆H + 1)2.

The equality holds if and only if G and H are regular graphs.

Proof. Using (3), (4) and (5) in equation (2), we obtain

SO(G�H) =
∑

uv∈E(G)

√
(dG(u) + nH)2 + (dG(v) + nH)2

+ nG
∑

uv∈E(H)

√
(dH(u) + 1)2 + (dH(v) + 1)2

+
∑

u∈V (G)

∑
v∈V (H)

√
(dG(u) + nH)2 + (dH(v) + 1)2

≤
∑

uv∈E(G)

√
2(∆G + nH)2 + nG

∑
uv∈E(H)

√
2(∆H + 1)2

+
∑

u∈V (G)

∑
v∈V (H)

√
(∆G + nH)2 + (∆H + 1)2

=
√

2mG(∆G + nH) +
√

2nGmH(∆H + 1)

+ nGnH

√
(∆G + nH)2 + (∆H + 1)2.

(6)

Similarly, we can compute

SO(G�H) ≥
√

2mG(δG + nH) +
√

2nGmH(δH + 1) + nGnH

√
(δG + nH)2 + (δH + 1)2. (7)

The equality in (6) and (7) holds if and only if G and H are regular graphs.
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Let t ≥ 1 and Kt be the complement of Kt. Then t-thorny graph of G is the corona

product of G and Kt. The following corollary is an easy consequence of Theorem 1.

Corollary 1. For a graph G, the following holds:

√
2mG(δG + t) + nGt

√
(δG + t)2 + 1 ≤ SO(G�Kt)

≤
√

2mG(∆G + t) + nGt
√

(∆G + t)2 + 1.

The next theorem gives the bounds on the ISI index of corona product of two graphs.

Theorem 2. Let G and H be graphs. Then α1 ≤ ISI(G�H) ≤ α2, where

α1 =
mG(δG + nH)2

2(∆G + nH)
+
nGmH(δH + 1)2

2(∆H + 1)
+
nGnH(δG + nH)(δH + 1)

∆G + ∆H + nH + 1
,

α2 =
mG(∆G + nH)2

2(δG + nH)
+
nGmH(∆H + 1)2

2(δH + 1)
+
nGnH(∆G + nH)(∆H + 1)

δG + δH + nH + 1
.

The equality holds if and only if G and H are regular graphs.

Proof. Using (3), (4) and (5) in equation (1), we obtain

ISI(G�H) =
∑

uv∈E(G)

(dG(u) + nH)(dG(v) + nH)

dG(u) + dG(v) + 2nH

+ nG
∑

uv∈E(H)

(dH(u) + 1)(dH(v) + 1)

dH(u) + dH(v) + 2

+
∑

u∈V (G)

∑
v∈V (H)

(dG(u) + nH)(dH(v) + 1)

dG(u) + dH(v) + nH + 1

≤
∑

uv∈E(G)

(∆G + nH)2

2(δG + nH)
+ nG

∑
uv∈E(H)

(∆H + 1)2

2(δH + 1)

+
∑

u∈V (G)

∑
v∈V (H)

(∆G + nH)(∆H + 1)

δG + δH + nH + 1

=
mG(∆G + nH)2

2(δG + nH)
+
nGmH(∆H + 1)2

2(δH + 1)
+
nGnH(∆G + nH)(∆H + 1)

δG + δH + nH + 1
.

(8)

Similarly, we can compute

ISI(G�H) ≥
mG(δG + nH)2

2(∆G + nH)
+
nGmH(δH + 1)2

2(∆H + 1)
+
nGnH(δG + nH)(δH + 1)

∆G + ∆H + nH + 1
. (9)

The equality in (8) and (9) holds if and only if G and H are regular graphs.

The following corollary is an easy consequence of Theorem 2.
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Corollary 2. For a graph G, the following holds:

mG(δG + t)2

2(∆G + t)
+
nGt(δG + t)(δH + 1)

∆G + t+ 1
≤ ISI(G�Kt)

≤ mG(∆G + t)2

2(δG + t)
+
nGt(∆G + t)

δG + t+ 1
.

2.2. The cartesian product

The cartesian product of G and H, denoted by G ×H, is a graph whose vertex set

is V (G × H) = V (G) × V (H) and two vertices (u1, v1) and (u2, v2) are adjacent in

G×H whenever [v1 and v2 are adjacent in H and u1 = u2] or [u1 and u2 are adjacent

in G and v1 = v2]. The order of the cartesian product of two graphs is the product of

number of vertices of G and H, and the size is mGnH +mHnG. If G and H are regular

graphs then G×H is also regular graph. The degree of a vertex (u, v) ∈ V (G×H) is

dG×H((u, v)) = dG(u) + dH(v). (10)

In the following theorem, we compute bounds on the Sombor index of G×H.

Theorem 3. Let G and H be graphs. Then

√
2mG×H(δG + δH) ≤ SO(G×H) ≤

√
2mG×H(∆G + ∆H).

The equality holds if and only if G and H are regular graphs.

Proof. Using (3), (4) and (10) in equation (2), we obtain

SO(G×H) =
∑

u1∈V (G)

∑
v1v2∈E(H)

√
(dG(u1) + dH(v1))2 + (dG(u1) + dH(v2))2

+
∑

v1∈V (H)

∑
u1u2∈E(G)

√
(dG(u1) + dH(v1))2 + (dG(u2) + dH(v1))2

≤
∑

u1∈V (G)

∑
v1v2∈E(H)

√
2(∆G + ∆H)2

+
∑

v1∈V (H)

∑
u1u2∈E(G)

√
2(∆G + ∆H)2

=
√

2(nGmH + nHmG)(∆G + ∆H)

=
√

2mG×H(∆G + ∆H).

(11)

One can analogously compute the following:

SO(G×H) ≥
√

2mG×H(δG + δH). (12)

The equality in (11) and (12) obviously holds if and only if G and H are regular

graphs.
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Now, we compute the bounds on the ISI index of G×H.

Theorem 4. Let G and H be graphs. Then

1

2
mG×H

(δG + δH)2

∆G + ∆H
≤ ISI(G×H) ≤

1

2
mG×H

(∆G + ∆H)2

δG + δH
.

The equality holds if and only if G and H are regular graphs.

Proof. Using (3), (4) and (10) in equation (1), we obtain

ISI(G×H) =
∑

u1∈V (G)

∑
v1v2∈E(H)

(dG(u1) + dH(v1))(dG(u1) + dH(v2))

2dG(u1) + dH(v1) + dH(v2)

+
∑

v1∈V (H)

∑
u1u2∈E(G)

(dG(u1) + dH(v1))(dG(u2) + dH(v1))

dG(u1) + dG(u2) + 2dH(v1)

≤
∑

u1∈V (G)

∑
v1v2∈E(H)

(∆G + ∆H)2

2(δG + δH)
+

∑
v1∈V (H)

∑
u1u2∈E(G)

(∆G + ∆H)2

2(δG + δH)

=
1

2
(nGmH + nHmG)

(∆G + ∆H)2

δG + δH

=
1

2
mG×H

(∆G + ∆H)2

δG + δH
.

(13)

One can analogously compute the following:

ISI(G×H) ≥
1

2
mG×H

(δG + δH)2

∆G + ∆H
. (14)

The equality in (13) and (14) obviously holds if and only if G and H are regular

graphs.

2.3. The strong product

The strong product of G and H, denoted by G � H, is a graph whose vertex set is

V (G�H) = V (G)×V (H) and two vertices (u1, v1) and (u2, v2) are adjacent in G�H
whenever [v1 and v2 are adjacent in H and u1 = u2] or [u1 and u2 are adjacent in G

and v1 = v2] or [u1u2 ∈ E(G) and v1v2 ∈ E(H)]. The order of G�H is the product

of number of vertices of G and H, and the size is nGmH + nHmG + 2mGmH . The

degree of a vertex (u, v) ∈ V (G�H) is

dG�H((u, v)) = dG(u) + dH(v) + dG(u)dH(v). (15)

We compute bounds on the Sombor index of G�H in the following theorem.
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Theorem 5. Let G and H be graphs. Then

√
2mG�H(δG + δH + δGδH) ≤ SO(G�H) ≤

√
2mG�H(∆G + ∆H + ∆G∆H).

The equality holds if and only if G and H are regular graphs.

Proof. Using (3), (4) and (15) in equation (2), we obtain

SO(G �H)

=
∑

u1∈V (G)

∑
v1v2∈E(H)

√
(dG(u1) + dH (v1) + dG(u1)dH (v1))2 + (dG(u1) + dH (v2) + dG(u1)dH (v2))2

+
∑

v1∈V (H)

∑
u1u2∈E(G)

√
(dG(u1) + dH (v1) + dG(u1)dH (v1))2 + (dG(u2) + dH (v1) + dG(u2)dH (v1))2

+ 2
∑

u1u2∈E(G)

∑
v1v2∈E(H)

√
(dG(u1) + dH (v1) + dG(u1)dH (v1))2 + (dG(u2) + dH (v2) + dG(u2)dH (v2))2

≤
∑

u1∈V (G)

∑
v1v2∈E(H)

√
2(∆G + ∆H + ∆G∆H )2

+
∑

v1∈V (H)

∑
u1u2∈E(G)

√
2(∆G + ∆H + ∆G∆H )2

+ 2
∑

u1u2∈E(G)

∑
v1v2∈E(H)

√
2(∆G + ∆H + ∆G∆H )2

=
√

2(nGmH + nHmG + 2mGmH )(∆G + ∆H + ∆G∆H )

=
√

2mG�H (∆G + ∆H + ∆G∆H ).

(16)

Analogously, one can compute the following:

SO(G �H) ≥
√

2mG�H(δG + δH + δGδH). (17)

If G and H are regular graphs then the equality in (16) and (17) holds.

Next, we compute bounds on the ISI index of G�H.

Theorem 6. Let G and H be graphs. Then

1

2
mG�H

(δG + δH + δGδH)2

∆G + ∆H + ∆G∆H
≤ ISI(G �H) ≤

1

2
mG�H

(∆G + ∆H + ∆G∆H)2

δG + δH + δGδH
.

The equality holds if and only if G and H are regular graphs.

Proof. Using (3), (4) and (15) in equation (1), we obtain

ISI(G �H) =
∑

u1∈V (G)

∑
v1v2∈E(H)

(dG(u1) + dH (v1) + dG(u1)dH (v1))(dG(u1) + dH (v2) + dG(u1)dH (v2))

2dG(u1) + dH (v1) + dH (v2) + dG(u1)(dH (v1) + dH (v2))

+
∑

v1∈V (H)

∑
u1u2∈E(G)

(dG(u1) + dH (v1) + dG(u1)dH (v1))(dG(u2) + dH (v1) + dG(u2)dH (v1))

dG(u1) + dG(u2) + 2dH (v1) + dH (v1)(dG(u1) + dG(u2))

+ 2
∑

u1u2∈E(G)

∑
v1v2∈E(H)

(dG(u1) + dH (v1) + dG(u1)dH (v1))(dG(u2) + dH (v2) + dG(u2)dH (v2))

dG(u1) + dG(u2) + dH (v1) + dH (v2) + dG(u1)dH (v1) + dG(u2)dH (v2)
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≤
∑

u1∈V (G)

∑
v1v2∈E(H)

(∆G + ∆H + ∆G∆H )2

2(δG + δH + δGδH )
+

∑
v1∈V (H)

∑
u1u2∈E(G)

(∆G + ∆H + ∆G∆H )2

2(δG + δH + δGδH )

+ 2
∑

u1u2∈E(G)

∑
v1v2∈E(H)

(∆G + ∆H + ∆G∆H )2

2(δG + δH + δGδH )

=
1

2
(nGmH + nHmG + 2mGmH )

(∆G + ∆H + ∆G∆H )2

δG + δH + δGδH

=
1

2
mG�H

(∆G + ∆H + ∆G∆H )2

δG + δH + δGδH
.

(18)

Analogously, one can compute the following:

ISI(G �H) ≥
1

2
mG�H

(δG + δH + δGδH)2

∆G + ∆H + ∆G∆H
. (19)

If G and H are regular graphs then the equality in (18) and (19) holds.

2.4. The join of graphs

The join of G and H, denoted by G+H, is a union of graphs G and H together with
all the edges joining the sets of vertices of G and H. The order and size of G + H
are nGnH and mG +mH + nGnH , respectively. The degree of a vertex u in G+H is
given by

dG+H(u) =

{
dG(u) + nH if u ∈ V (G),

dH(u) + nG if u ∈ V (H).
(20)

We compute bounds on the Sombor index for join of two graphs in the following

theorem.

Theorem 7. Let G and H be graphs. Then α1 ≤ SO(G+H) ≤ α2, where

α1 =
√

2mG(δG + nH) +
√

2mH(δH + nG) + nGnH

√
(δG + nH)2 + (δH + nG)2,

α2 =
√

2mG(∆G + nH) +
√

2mH(∆H + nG) + nGnH

√
(∆G + nH)2 + (∆H + nG)2.

The equality holds if and only if G and H are regular graphs.

Proof. Using (3), (4) and (20) in equation (2), we obtain

SO(G+H) =
∑

uv∈E(G)

√
(dG(u) + nH)2 + (dG(v) + nH)2+

∑
uv∈E(H)

√
(dH(u) + nG)2 + (dH(v) + nG)2

+
∑

u∈V (G)

∑
v∈V (H)

√
(dG(u) + nH)2 + (dH(v) + nG)2

≤
∑

uv∈E(G)

√
2(∆G + nH)2 +

∑
uv∈E(H)

√
2(∆H + nG)2

+
∑

u∈V (G)

∑
v∈V (H)

√
(∆G + nH)2 + (∆H + nG)2

=
√

2mG(∆G + nH) +
√

2mH(∆H + nG)

+ nGnH

√
(∆G + nH)2 + (∆H + nG)2.

(21)
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Similarly, we can show that

SO(G+H) ≥
√

2mG(δG + nH) +
√

2mH(δH + nG) + nGnH

√
(δG + nH)2 + (δH + nG)2. (22)

If G and H are regular graphs then we obtain the equality in (21) and (22).

Now, the bounds on the ISI index for join of two graphs is given in the following

theorem.

Theorem 8. Let G and H be graphs. Then α1 ≤ ISI(G+H) ≤ α2, where

α1 =
1

2
mG

(δG + nH)2

∆G + nH
+

1

2
mH

(δH + nG)2

∆H + nG
+ nGnH

(δG + nH)(δH + nG)

∆G + ∆H + nH + nG
,

α2 =
1

2
mG

(∆G + nH)2

δG + nH
+

1

2
mH

(∆H + nG)2

δH + nG
+ nGnH

(∆G + nH)(∆H + nG)

δG + δH + nH + nG
.

The equality holds if and only if G and H are regular graphs.

Proof. Using (3), (4) and (20) in equation (1), we obtain

ISI(G+H) =
∑

uv∈E(G)

(dG(u) + nH)(dG(v) + nH)

dG(u) + dG(v) + 2nH

+
∑

uv∈E(H)

(dH(u) + nG)(dH(v) + nG)

dH(u) + dH(v) + 2nG

+
∑

u∈V (G)

∑
v∈V (H)

(dG(u) + nH)(dH(v) + nG)

dG(u) + dH(v) + nH + nG

≤
∑

uv∈E(G)

(∆G + nH)2

2(δG + nH)
+

∑
uv∈E(H)

(∆H + nG)2

2(δH + nG)

+
∑

u∈V (G)

∑
v∈V (H)

(∆G + nH)(∆H + nG)

δG + δH + nH + nG

=
1

2
mG

(∆G + nH)2

δG + nH
+

1

2
mH

(∆H + nG)2

δH + nG
+ nGnH

(∆G + nH)(∆H + nG)

δG + δH + nH + nG
.

(23)

Similarly, we can show that

ISI(G+H) ≥
1

2
mG

(δG + nH)2

∆G + nH
+

1

2
mH

(δH + nG)2

∆H + nG
+ nGnH

(δG + nH)(δH + nG)

∆G + ∆H + nH + nG
. (24)

If G and H are regular graphs then we obtain the equality in (23) and (24).
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2.5. The composition

The composition or lexicographic product of G and H, denoted by G[H], is the graph

whose vertex set is V (G[H]) = V (G) × V (H) and two vertices (u1, v1) and (u2, v2)

are adjacent in G[H] whenever [u1u2 ∈ E(G)] or [v1 and v2 are adjacent in H and

u1 = u2]. The order of G[H] is the product of number of vertices of G and H, and

size is mGn
2
H + nGmH . The degree of a vertex (u, v) ∈ V (G[H]) is

dG[H]((u, v)) = nHdG(u) + dH(v). (25)

In the following theorem, we calculate bounds on the Sombor index for composition

of two graphs.

Theorem 9. Let G and H be graphs. Then

√
2mG[H](nHδG + δH) ≤ SO(G[H]) ≤

√
2mG[H](nH∆G + ∆H).

The equality holds if and only if G and H are regular graphs.

Proof. Using (3), (4) and (25) in equation (2), we obtain

SO(G[H]) =
∑

u1∈V (G)

∑
v1v2∈E(H)

√
(nHdG(u1) + dH(v1))2 + (nHdG(u1) + dH(v2))2

+
∑

v1∈V (H)

∑
v2∈V (H)

∑
u1u2∈E(G)

√
(nHdG(u1) + dH(v1))2 + (nHdG(u2) + dH(v2))2

≤
∑

u1∈V (G)

∑
v1v2∈E(H)

√
2(nH∆G + ∆H)2

+
∑

v1∈V (H)

∑
v2∈V (H)

∑
u1u2∈E(G)

√
2(nH∆G + ∆H)2

=
√

2(nGmH + n2
HmG)(nH∆G + ∆H)

=
√

2mG[H](nH∆G + ∆H).

(26)

Analogously, one can compute the upper bound

SO(G[H]) ≥
√

2mG[H](nHδG + δH). (27)

The equality in (26) and (27) obviously holds if and only if G and H are regular

graphs.

In the next theorem, we compute bounds on the ISI index for composition of two

graphs.
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Theorem 10. Let G and H be graphs. Then

1

2
mG[H]

(nHδG + δH)2

nH∆G + ∆H
≤ ISI(G[H]) ≤

1

2
mG[H]

(nH∆G + ∆H)2

nHδG + δH
.

The equality holds if and only if G and H are regular graphs.

Proof. Using (3), (4) and (25) in equation (1), we obtain

ISI(G[H]) =
∑

u1∈V (G)

∑
v1v2∈E(H)

(nHdG(u1) + dH(v1))(nHdG(u1) + dH(v2))

2nHdG(u1) + dH(v1) + dH(v2)

+
∑

v1∈V (H)

∑
v2∈V (H)

∑
u1u2∈E(G)

(nHdG(u1) + dH(v1))(nHdG(u2) + dH(v2))

nH(dG(u1) + dG(u2)) + dH(v1) + dH(v2)

≤
∑

u1∈V (G)

∑
v1v2∈E(H)

(nH∆G + ∆H)2

2(nHδG + δH)

+
∑

v1∈V (H)

∑
v2∈V (H)

∑
u1u2∈E(G)

(nH∆G + ∆H)2

2(nHδG + δH)

=
1

2
(nGmH + n2

HmG)
(nH∆G + ∆H)2

nHδG + δH

=
1

2
mG[H]

(nH∆G + ∆H)2

nHδG + δH
.

(28)

Analogously, one can compute the upper bound

ISI(G[H]) ≥ 1

2
mG[H]

(nHδG + δH)2

nH∆G + ∆H
. (29)

The equality in (28) and (29) obviously holds if and only if G and H are regular

graphs.

Remark 1. Recently, Milovanović et al. [17] proved that for a connected graph G

SO(G) ≥
√

2

2
M1(G).

The equality holds if and only if G is regular. Here, M1(G) =
∑
uv∈E(G)(du + dv) =∑

u∈V (G) d
2
u is the first Zagreb index [9]. As a consequence of this result, upper bounds on

the first Zagreb index follow from the upper bounds on the Sombor index reported in this
paper.
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3. Conclusion

In this paper, the bounds for Sombor index of several graph operations in terms of

maximum degree, minimum degree, order and size of the original graphs G and H

are computed. These graph operations include corona product, cartesian product,

strong product, composition and join of graphs. Analogously, we calculated the

bounds for inverse sum indeg (ISI) index.

It still remains an open problem to compute the bounds for Sombor and ISI indices

of graph operations like disjunction, symmetric index of graphs and several others.
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