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Abstract: Sombor index of a graph G is defined by SO(G) =∑
uv∈E(G)

√
d2G(u) + d2G(v), where dG(v) is the degree of the vertex v of G.

An r-degree graph is a graph whose degree sequence includes exactly r distinctive

numbers. In this article, we study r-degree connected graphs with integer Sombor
index for r ∈ {5, 6, 7}. We show that: if G is a 5-degree connected graph of order

n with integer Sombor index then n ≥ 50 and the equality occurs if only if G is a

bipartite graph of size 420 with SO(G) = 14830; if G is a 6-degree connected graph of
order n with integer Sombor index then n ≥ 75 and the equality is established only

for the bipartite graph of size 1080; and if G is a 7-degree connected graph of order n

with integer Sombor index then n ≥ 101 and the equality is established only for the
bipartite graph of size 1680.
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1. Introduction

Throughout this paper G is a simple undirected connected graph of order n = |V (G)|
and size m = |E(G)|. For any vertex x ∈ V (G), the degree of a vertex x, denoted by

dG(x) (or just dx), is the number of vertices adjacent to x. We denote by ∆(G) and

δ(G) the maximum degree and minimum degree amongst the vertices of G, respec-

tively. A vertex of degree one is called a pendant vertex, and an edge incident with a

pendant vertex is called a pendant edge. For a positive integer k, a graph G is called

k-regular, if every vertex of G has degree k. A bipartite graph is a graph whose vertex
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set can be partitioned into two sets, namely partite sets, in such a way that no edge

has its both end-vertices in the same partite set. A complete bipartite graph is one

that every vertex of each partite set is adjacent to all vertices in the other partite set.

We denote by Kr,s the complete partite set in which one partite set has cardinality

r and the other partite set has cardinality s. In particular, K1,r−1 is called the star

of order r. We denote the complete graph, the empty graph, a path and a cycle, all

of order n, by Kn,K
′
n, Pn and Cn, respectively. For a subgraph H of G, we mean by

G \H the graph obtained by removing the edges of H from G.
Topological indices are a numerical quantity computed from the molecular graph of a
chemical compound. One of most recent index, namely Sombor index, is introduced
by Gutman [7] as a new vertex-degree-based molecular structure, and received much
attention in both Mathematics and Chemistry. The Sombor index of a graph G,
denoted by SO(G), is defined as

SO(G) =
∑

uv∈E(G)

√
d2u + d2v (1)

where du is the vertex degree of u. For example, for every n ≥ 1 the Sombor index of

the cycle graph Cn is 2n
√

2 and the Sombor index of the path Pn is 2
√

5+2(n−3)
√

2.

Due to chemical applications of the Sombor index, it is followed by a large number

of mathematical studies, most of which dealing with bounds and characterizations of

graphs, see for example, [1–4, 8–10, 13–15]. The study of graphs whose Sombor index

is integer has taken much interest in recent years, see for example, [5, 11, 12]. It is

claimed in [5] that SO(G) is an integer if and only if G is a bipartite semi-regular and

its degrees δ and ∆ appear as non-maximal elements in some Pythagorean triple”.

Oboudi [11] showed that the “only if” part of the above claim is not true. Oboudi [11]

constructed infinite number of connected bipartite graphs such that in their degree

sequence there are three or four distinct numbers. In [12] he studied r-degree graphs

whose Sombor index is integer. He characterized all 1-degree and 2-degree graphs

with integer Sombor index. He showed that if G is a 3-degree connected graph of

order n with integer Sombor index then n ≥ 25 and if G is a 4-degree connected

graph of order n with integer Sombor index, then n ≥ 30.

In this paper, we continue the study of graphs with integer Sombor index for 5-degree,

6-degree and 7-degree connected graphs. We show that if G is a 5-degree connected

graph of order n with integer Sombor index, then n ≥ 50 and the equality occurs if

only if G is a bipartite graph of size 420 with SO(G) = 14830. We also show that if G

is a 6-degree connected graph of order n with integer Sombor index, then n ≥ 75 and

the equality is established only for the bipartite graph of size 1080. We next show

that if G is a 7-degree connected graph of order n with integer Sombor index, then

n ≥ 101 and the equality is established only for the bipartite graph of size 1680.

We make use of the following.

Theorem 1. [6] Let n1, . . . , nk be positive integers. Then
√
n1 + · · ·+

√
nk is integer if

and only if all n1, . . . , nk are squares.
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2. Five-degree graphs with integer Sombor index

In this section we present a lower bound for the order of 5-degree graphs whose

Sombor index is integer, and characterize 5-degree graphs with integer Sombor index

and minimum order. Let G be the graph depicted in Figure 1. It can be seen that G

is a bipartite graph of size 420 and Sombor index 14830.

Theorem 2. If G is a 5-degree graph of order n with integer Sombor index, then n ≥ 50,
with equality if and only if G is the graph depicted in Figure 1.

Proof. Let a, b, c, d and e be the five distinct values of the degree sequence of G.
Clearly n > max{a, b, c, d, e}. Let V1, V2, V3, V4 and V5 be the sets of all vertices of
G of degrees a, b, c, d and e, respectively. If there are two adjacent vertices in one of
these five sets then they produce a

√
2 in SO(G), which is a contradiction. Thus Vi

is an independent set for i = 1, 2, 3, 4, 5. Set S = {u1, u2, u3, u4, u5} and let Λ(G) be
the graph on S such that ui and uj are adjacent if and only if there is at least one
edge in G between the parts Vi and Vj . Since G is connected, Λ(G) is also connected.
Thus Λ(G) is one of the graphs

{K1,4, K2,3, P5, K5, K5\e, K5\2e, K5\3e, K5\4e, C5, H5, H5\e, H5\2e, R5}, (2)

where H5 is a graph obtained by adding a pendent edge to one of the vertices of

K4. In addition, R5 is the graph constructed by adding two pendent edges to one or

two of the vertices of K3 and K5\ie is the graph constructed by removing (i) edges

(i = 1, 2, 3, 4) from K5, and in H5\ie(i = 1, 2), e is not a pendant edge. We proceed

according to each possibility of Λ(G).

Case 1. Λ(G) = K1,4. Without loss of generality, suppose that |V1| > |Vi|(i =

2, . . . , 6) in Λ(G), and note that V2 ∪ V3 ∪ V4 ∪ V5 is an independent set in G, and

all a2 + b2, a2 + c2, a2 + d2 and a2 + e2 are squares, since Λ(G) = K1,4. Thus,

G is a bipartite graph with partite sets V1 and V2 ∪ V3 ∪ V4 ∪ V5. Focusing on

those a, b, c, d, e where 1 ≤ a, b, c, d, e ≤ 100, by using MATLAB, we obtain that if

a2 + b2, a2 + c2, a2 + d2, a2 + e2 are squares such that b > c > d > e, then (a, b, c, d, e)

is one of the following: (12, 35, 16, 9, 5), (20, 99, 48, 21,15), (24, 32, 18, 10, 7), (24,

45, 32, 18, 10), (24, 70,45, 32, 18), (36, 77, 48, 27, 15), (40, 75, 42, 30, 9), (40, 96, 75,

42, 30), (48, 55, 36, 20, 14), (48, 64, 55, 36, 20), (48, 90, 64, 55, 36), (60, 45, 32, 25,

11), (60, 63, 45, 32, 25), (60, 80, 63, 45, 32), (60, 91, 80, 63, 45), (72, 62, 54, 30, 21),

(72, 96, 65, 54, 30), (80, 84, 60, 39, 18), (84, 80, 63, 35, 13).
Observe that:

|V1| ≥ max{b, c, d, e} and |V2|+ |V3|+ |V4|+ |V5| ≥ a. (3)

By enumerating the edges of G we have:

a|V1| = b|V2|+ c|V3|+ d|V 4|+ e|V5|. (4)

In addition
n = |V1|+ |V2|+ |V3|+ |V4|+ |V5| ≥ a + max{b, c, d, e}. (5)
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We now show that n ≥ 50. Clearly we only need to consider the case that 1 ≤
a, b, c, d, e ≤ 49. It can be seen that for (a, b, c, d, e) with b > c > d > e where all of

a2 + b2, a2 + c2, a2 + d2 and a2 + e2 are squares, from all possibilities denoted above,

there are only the following three possibilities for (a, b, c, d, e):

(a, b, c, d, e) = (12, 35, 16, 9, 5) or (24, 32, 18, 10, 7) or (24, 45, 32, 18, 10).

By (4), if (a, b, c, d, e) = (12, 35, 16, 9, 5) then n ≥ 50, if (a, b, c, d, e) = (24, 32, 18, 10, 7)

then, n ≥ 56, and if (a, b, c, d, e) = (24, 45, 32, 18, 10) then n ≥ 69, as desired.

Case 2. Λ(G) = P5. Without loss of generality, assume that Λ(G) = V1 − V2 − V3 −
V4 − V5, that is, the edges of G are between V1 and V2, V2 and V3, V3 and V4 and V4
and V5. Since SO(G) is an integer, by Theorem 1 we obtain a2 + b2, b2 + c2, c2 + d2

and d2 + e2 are squares. Focusing on those a, b, c, d, e where 1 ≤ a, b, c, d, e ≤ 100, by

using MATLAB we obtain that if a2 + b2, b2 + c2, c2 + d2 and d2 + e2 are squares

then (a, b, c, d, e) is one of the following: (5, 12, 9, 40, 30), (5, 12, 9, 40, 42), (5, 12,

16, 30, 40), (6, 8, 15, 20, 21), (6, 8, 15, 20, 48), (6, 8, 15, 36, 27), (6, 8, 15, 36, 48),

(7, 24, 45, 28, 21),(8, 15, 20, 21, 28), (8, 15, 20, 48, 14), (8, 15, 20, 48, 36), (8, 15,

20, 48, 55), (8, 15, 36, 48, 14), (8, 15, 36, 48, 20), (9, 12, 16, 30, 40), (9, 40, 30, 16,

12), (10, 24, 45, 28, 21), (12, 9, 40, 30, 16), (12, 16, 30, 40, 9), (12, 16, 30, 40, 42),

(14, 48, 20, 15, 36), (14, 48, 20, 21, 28), (14, 48, 36, 15, 8),(14, 48, 20, 15, 8), (15, 20,

21, 28, 45), (15, 20, 48, 36, 27), (15, 36, 48, 20, 21), (16, 12, 9, 40, 30), (16, 12, 9, 40,

42), (16, 30, 40, 9, 12), (18, 24, 45, 28, 21), (20, 15, 36, 48, 14), (20, 21, 28, 45, 24),

(20, 48, 36, 15, 8), (21, 20, 15, 8, 6), (21, 20, 15, 36, 27), (21, 28, 45, 24, 7), (21, 28,

45, 24, 10), and (a, b, c, d, e)′s with a ≥ 21 and b+ c+ d > 50.
Considering the structure of G and Λ(G), we find that:

|V2| ≥ a, |V4| ≥ e, |V1|+ |V3| ≥ b, |V2|+ |V4| ≥ c and |V3|+ |V5| ≥ d. (6)

By enumerating the edges of G, we find that:

a|V1|+ c|V3|+ e|V5| = b|V2|+ d|V4|. (7)

On the other hand

n = |V1|+ |V2|+ |V3|+ |V4|+ |V5| ≥ b + c + d. (8)

We now show that n ≥ 50. Clearly we only need to consider the case that

1 ≤ a, b, c, d, e ≤ 49. From (6), (7) and (8), we obtain that:

If a > c then (a, b, c, d, e) is one of the following: (16, 12, 9, 40, 30), (16, 12, 9, 40, 42),

(21, 20, 15, 8, 6),

(21, 20, 15, 36, 27) or (21, 20, 15, 36, 48).

If a > d then (a, b, c, d, e) is one of the following: (16, 30, 40, 9, 12), (20, 48, 36, 15, 8)

or (21, 20, 15, 8, 6).

If a > e then (a, b, c, d, e) is one of the (12, 16, 30, 40, 9), (14, 48, 20, 15, 8),

(14, 48, 36, 15, 8), (16, 30, 40, 9, 12), (20, 15, 36, 48, 14) or (21, 20, 15, 8, 6).
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Now it can be seen that in (a, b, c, d, e) = (16, 30, 40, 9, 12) by (8) we arrive n ≥
79, in (a, b, c, d, e) = (12, 16, 30, 40, 9) we arrive n ≥ 86, and in (a, b, c, d, e) =

(21, 20, 15, 8, 6), by (7) and (8), there is no possibility for |V1|, |V2|, |V3|, |V4| and |V5|
such that |V1|+ |V2|+ |V3|+ |V4|+ |V5| ≤ 62. We deduce that n ≥ 63 > 50.

Case 3. Λ(G) = K2,3. Without loss of generality, assume that there {V1, V2} and

{V3, V4, V5} are partite sets of Λ(G). Thus, there is at least one edge between Vj
(j = 1, 2) and any parts Vi , for i = {3, 4, 5}. Since SO(G) is an integer, by Theorem

1 we obtain that all of a2 + c2, a2 + d2, a2 + e2, b2 + c2, b2 + d2 and b2 + e2 are

squares. Then as before, using MATLAB we obtain that there is no possibility for

(a, b, c, d, e) such that 1 ≤ a, b, c, d, e ≤ 50. Consequently, n > 50.

Case 4. Λ(G) ∈ { K5, K5\e, K5\2e, K5\3e, K5\4e, C5, H5, H5\e, H5\2e, R5}.
Then Λ(G) has a triangle. Without loss of generality, assume that there are some

edges between the parts V3V4V5 is a triangle of Λ(G). Since SO(G) is an integer, by

Theorem 1, all of c2 + d2, c2 + e2, and d2 + e2 are squares. Now using MATLAB we

obtain that for c ≤ 1000, there are ten possibilities for (c, d, e) which are:

(240, 117, 44), (275, 252, 240), (480, 234, 88), (550, 504, 480), (693, 480, 140), (9)

(720, 132, 85), (720, 351, 132), (792, 231, 160), (825, 756, 720), (960, 468, 176).

all of which confirm that n ≥ 241 > 50.

We conclude that n ≥ 50. Now we show there is exactly one graph of order 50 whose

Sombor index is minimum. Following the above cases, we obtain that the only possi-

bility occurs in the Case 1. (for Λ(G) = K1,4) that is (a, b, c, d, e) = (12, 35, 16, 9, 5),

where |V1| = 35, |V2| = 11, |V3| = 1, |V4| = 1 and |V5| = 2. Let V1 = {a1, . . . , a35},
V2 = {b1, . . . , b11}, V3 = {c}, V4 = {d} and V5 = {e1, e2}. Since each vertex of V2 is

adjacent to some vertices in V1 and every vertex of V2 has degree 35, from |V1| = 35

we find that each vertex of V2 is adjacent to all vertices of V1. Similarly, each of

vertices c and d are only adjacent to vertices of V1. Thus, c is adjacent to 16 vertices

of V1 and d is adjacent to 9 vertices of V1. Without loss of generality, assume that c is

adjacent to a1, . . . , a16 and d is adjacent to a17, . . . , a25. Since every vertex of V1 has

degree 12, there is no edge between ai and V5 for i = 1, 2, . . . , 25. Now the vertices

of V5 can only be adjacent to some vertices in {a26, . . . , a35}. Since each of e1 and e2
has degree five, we may assume that e1 is adjacent to a26, . . . , a30 and e2 is adjacent

to a31, . . . , a35. Consequently, G is the graph depicted in Figure 1.

3. Six-degree graphs with integer Sombor index

In this section we present a lower bound for the order of 6-degree graphs whose

Sombor index is integer, and then give a description for all extremal graphs achieving

the equality of the bound. We need to introduce the following families of graphs of

order 75. Let G75 be the family of simple graphs of order 75 with 6 distinct degrees

(d1, d2, d3, d4, d5, d6) = (24, 45, 32, 18, 10, 7) such that the vertices of the same degrees
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Figure 1. A graph G of order 50, size 420 and Sombor index 14830.

are independent, there are 45 vertices of degree d1, there are 15 vertices of degree d2,

there are 11 vertices of degree d3, there are 2 vertices of degree d4, there is 1 vertex

of degree d5, there is 1 vertex of degree d6, and every vertex of degree d1 is adjacent

to all vertices of degrees d2, . . . , d6. Figure 2 illustrates a graph in G75.

Lemma 1. If G ∈ G75, then SO(G) is an integer.

Proof. Let G ∈ G75. Then we may assume that V (G) = {x1, x2, . . . , x75} =⋃6
i=1 Vi = {x1, . . . , x45} ∪ {x46, . . . , x60} ∪ {x61, . . . , x71} ∪ {x72, x73} ∪ {x74} ∪ {x75},

where Vi is an independent set for each i = 2, . . . , 6 and xi is adjacent to xj for all
i = 1, 2, . . . , 45 and j = 46, . . . , 75. Since every vertex of V2 has degree 45, from
|V1| = 45 we find that each vertex of V2 is adjacent to all vertices of V1. Similarly,
each vertex of Vi (i = 2, . . . , 6) is adjacent to all vertices of V1. Without loss of
generality, assume that the adjacent vertices are as the following:
x46 is adjacent to {x13, . . . , x19, x21, . . . , x45}, x47 is adjacent to
{x13, . . . , x20, x22, . . . , x45}, x48 is adjacent to {x13, . . . , x21, x23, . . . , x45}, x49
is adjacent to {x1, . . . , x12, x14, x15, x17, . . . , x22, x24, . . . , x32, x40, x43, x45},
x50 is adjacent to {x1, . . . , x13, x15, x16, x18, . . . , x23, x25, . . . , x32, x41, x43, x45},
x51 is adjacent to {x1, . . . , x14, x16, . . . , x24, x26, . . . , x32, x42, x45}, x52 is
adjacent to {x1, . . . , x17, x19, . . . , x25, x27, . . . , x32, x44, x45}, x53 is adja-
cent to {x1, . . . , x18, x20, . . . , x26, x28, . . . , x32, x44, x45}, x54 is adjacent to
{x1, . . . , x27, x29, . . . , x32, x45}, x55 is adjacent to {x1, . . . , x22, x33, . . . , x44},
x56 is adjacent to {x1, . . . , x12, x21, . . . , x28, x33, . . . , x44}, x57 is adjacent to
{x1, . . . , x5, x33, . . . , x44}, x58 is adjacent to {x7, . . . , x12, x33, . . . , x44}, x59 is
adjacent to {x33, . . . , x42} and x60 is adjacent to {x33, . . . , x39}. Now:

SO(G) =
∑

xixj∈E(G)

√
d2xi

+ d2xj
= 15× 45

√
(45)2 + (24)2 + 11× 32

√
(32)2 + (24)2

+ 2× 18
√

(18)2 + (24)2 + 1× 10
√

(10)2 + (24)2 + 1× 7
√

(7)2 + (24)2 = 50020

which is an integer. See the Figure 2 (above).
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Figure 2. Two graphs from the family G75.

Theorem 3. If G is a 6-degree graph of order n with integer Sombor index, then n ≥ 75,
with equality if and only if G ∈ G75.

Proof. Let a, b, c, d, e and f be the six distinct values of the degree sequence of G.
Clearly n > max{a, b, c, d, e, f}. Let V1, V2, V3, V4, V5 and V6 be the sets of all vertices
of G of degrees a, b, c, d, e and f , respectively. If there are two adjacent vertices in one
of these six sets then they produce a

√
2 in SO(G), which is a contradiction. Thus

Vi is an independent set for i = 1, 2, . . . , 6. Let S = {u1, u2, u3, u4, u5, u6} and Λ(G)
be the graph on S such that ui and uj are adjacent if and only if there is at least one
edge in G between the parts Vi and Vj . Since G is connected, Λ(G) is also connected.
Thus Λ(G) is one of the next graphs:

K1,5, K2,4, K3,3, K6, K6\e, K6\2e, . . . , K6\9e, C6, P6, H6, H6\e,H6\2e, . . . , H6\5e, (10)

R6, R6\e, R6\2e, Z6,

where H6 is the graph obtained by adding a pendent edge to one of the vertices

of K5, R6 is a graph constructed by adding two pendent edges to one or two of the
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vertices of K4, Z6 is a graph obtained by adding three pendent edges to the vertices

of K3, K6\ie is the graph constructed by removing (i) edges (i = 1, 2, . . . , 9) from

K6, and in H6\ie and R6\ie, e is not a pendant edge. We proceed according to each

possibility of Λ(G).

Case 1. Λ(G) = K1,5.

Without loss of generality, assume that |V1| > |Vi|(i = 2, . . . , 6) in Λ(G), and note

that V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6 is an independent set. Clearly, there is at least one edge

between V1 and any parts Vi, for i = 2, . . . , 6. Assume that b > c > d > e > f . Since

SO(G) is integer, by Theorem 1, all of a2 +b2, a2 +c2, a2 +d2, a2 +e2 and a2 +f2 are

squares. Hence G is a bipartite graph with partite sets V1 and V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6.

Focusing on those a, b, c, d, e where 1 ≤ a, b, c, d, e ≤ 150, by using MATLAB, we

obtain that if a2 + b2, a2 + c2, a2 + d2, a2 + e2 and a2 + f2 are squares such that

b > c > d > e > f , then (a, b, c, d, e, f) is one of the following: (24, 45, 32, 18, 10, 7),

(24, 70, 45, 32, 18, 10), (24, 143, 70, 45, 32, 18), (36, 105, 77, 48, 27, 15), (36, 160,

105, 77, 48, 27), (40, 96, 75, 42, 30, 9), (40, 198, 96, 75, 42, 30), (45, 200, 108, 60,

28, 24), (48, 64, 55, 36, 20, 14), (48, 90, 64, 55, 36, 20), (48, 140, 90, 64, 55, 36), (48,

189, 140, 90, 64, 55), (56, 192, 105, 90, 42, 33), (60, 63, 45, 32, 25, 11), (60, 80, 63,

45, 32, 25), (60, 91, 80, 63, 45, 32), (60, 144, 91, 80, 63, 45), (72, 96, 65, 54, 30, 21),

(72, 135, 96, 65, 54, 30), (80, 150, 84, 60, 39, 18), (84, 112, 80, 63, 35, 13), (84, 135,

112, 80, 63, 35), (96, 128, 110, 72, 40, 28), (105, 140, 100, 88, 56, 36), (120, 64, 50,

35, 27, 22), (120, 90, 64, 50, 35, 27), (120, 119, 90, 64, 50, 35), (120, 126, 119, 90, 64,

50), (144, 130, 108, 60, 42, 17).
By considering the structure of G and Λ(G) we find that:

|V1| ≥ max{b, c, d, e, f} and |V2|+ |V3|+ |V4|+ |V5|+ |V6| ≥ a. (11)

By enumerating the edges of G we find that:

a|V1| = b|V2|+ c|V3|+ d|V 4|+ e|V5|+ f |V6| (12)

In addition by equation (11) we have:

n = |V1|+ |V2|+ |V3|+ |V4|+ V5|+ |V6| ≥ a + max{b, c, d, e, f} = a + b (13)

Focusing on those (a, b, c, d, e, f) where 1 ≤ a, b, c, d, e, f ≤ 74, we can easily see that

if b > c > d > e > f and all of a2 + b2, a2 + c2, a2 + d2, a2 + e2 and a2 + f2 are

squares, then from all possibilities denoted above, we obtain that (a, b, c, d, e, f) is

(24, 45, 32, 18, 10, 7), (48, 64, 55, 36, 20, 14) or (60, 63, 45, 32, 25, 11).

If (a, b, c, d, e, f) = (48, 64, 55, 36, 20, 14), then by (13), n ≥ 110, if (a, b, c, d, e, f) =

(60, 63, 45, 32, 25, 11) then n ≥ 123, and if (a, b, c, d, e, f) = (24, 45, 32, 18, 10, 7) then

n ≥ 75.

Case 2. Λ(G) = P6.
Without loss of generality, suppose that Λ(G) = V1 − V2 − V3 − V4 − V5 − V6. Since
SO(G) is integer, by Theorem 1

a2 + b2, b2 + c2, c2 + d2, d2 + e2, e2 + f2 (14)
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are squares. Focusing on those a, b, c, d, e, f where 1 ≤ a, b, c, d, e, f ≤ 74, by using
MATLAB, we obtain that (a, b, c, d, e, f) have the following forms: (5, 12, 9, 40, 30,
16), (5, 12, 9, 40, 30, 72), (5, 12, 9, 40, 42, 56), (5, 12, 16, 30, 40, 9),(5, 12, 16, 30,
40, 42), (5, 12, 16, 63, 60, 11), (6, 8, 15, 20, 21, 28), (6, 8, 15, 20, 21, 72), (6, 8, 15,
20, 48, 14), (6, 8, 15, 20, 48, 36), (6, 8, 15, 20, 48, 55), (6, 8, 15, 20, 48, 64), (7, 24,
45, 28, 21, 20), (7, 24, 45, 28, 21, 72), (7, 24, 45, 60, 63, 16), (8, 15, 20, 21, 28, 45),
(9, 12, 16, 30, 40, 42), (9, 40, 30, 16, 12, 5), (10, 24, 32, 60, 45, 28), (10, 24, 32, 60,
63, 16), (11, 60, 63, 16, 12, 5), (11, 60, 63, 16, 12, 9), (12, 9, 40, 30, 16, 63), (12, 9,
40, 42, 56, 33), (12, 16, 30, 40, 42, 56), (14, 48, 20, 15, 8, 6), (15, 20, 21, 28, 45, 60),
(16, 12, 9, 40, 42, 56), (16, 30, 40, 9, 12, 5), (16, 63, 60, 45, 24, 7), (18, 24, 32, 60, 45,
28), (18, 24, 45, 60, 63, 16), (20, 21, 28, 45, 24, 7), (20, 21, 28, 45, 24, 10), (21, 20,
48, 36, 15, 8), (21, 20, 15, 36, 48, 14), (24, 32, 60, 63, 16, 12), (24, 45, 28, 21, 20, 15),
(24, 45, 28, 21, 72, 30) and (a, b, c, d, e, f)’s those where a > 24, a + b + e + f > 75.
Considering the structure of G and Λ(G) we find that:

|V2| ≥ a, |V5| ≥ f, |V1|+ |V3| ≥ b, |V2|+ |V4| ≥ c and |V3|+ |V5| ≥ d and |V4|+ |V6| ≥ e. (15)

By enumerating the edges of G, we find that:

a|V1|+ c|V3|+ e|V5| = b|V2|+ d|V4|+ f |V6|. (16)

On the other hand

n = |V1|+ |V2|+ |V3|+ |V4|+ |V5|+ |V6| ≥ a + b + e + f. (17)

Now we demonstrate n ≥ 75. Clearly we only need to consider the case that 1 ≤
a, b, c, d, e, f ≤ 74. From (15), (16), (17), we obtain that:

if a > c then (a, b, c, d, e, f) = (16, 12, 9, 40, 42, 56) or (21, 20, 15, 36, 48, 14)

or if a > d then: (a, b, c, d, e, f) = (16, 30, 40, 9, 12, 5) or (24, 45, 28, 21, 20, 15)

or if a > e then: (a, b, c, d, e, f) = (24, 32, 60, 63, 16, 12) or (14, 48, 20, 15, 8, 6)

or if a > f then: (a, b, c, d, e, f) = (21, 20, 48, 36, 15, 8) or (9, 40, 30, 16, 12, 5) or

(16, 63, 60, 45, 24, 7).

Now it can be seen that in (a, b, c, d, e, f) = (5, 12, 9, 40, 30, 16) or in (a, b, c, d, e, f) =

(6, 8, 15, 20, 21, 28) or in (a, b, c, d, e, f) = (21, 20, 48, 36, 15, 8) by (15), there is no

answer for n ≤ 150, n ≤ 127 and n ≥ 130, respectively.

If (a, b, c, d, e, f) = (16, 12, 9, 40, 42, 56), then by (15) we arrive n ≥ 100, in

(a, b, c, d, e, f) = (24, 45, 28, 21, 20, 15) we arrive n ≥ 104, in (a, b, c, d, e, f) =

(16, 30, 40, 9, 12, 5), by (15), (16) there is no possibility for |V1|, |V2|, |V3|, |V4|, |V5|
and |V6| such that |V1| + |V2| + |V3| + |V4| + |V5| + |V6| ≤ 92. In (a, b, c, d, e, f) =

(14, 48, 20, 15, 8, 6), by using (15) and (16), we have n ≥ 76. Then we deduce that

n ≥ 76 > 75.

Case 3. Λ(G) = K2,4.

Without loss of generality, suppose that there {V1, V2} with {V3, V4, V5, V6} are partite

sets of Λ(G). Thus, there is at least one edge betweenVj (j = 1, 2) and any parts Vi
, for i = {3, 4, 5, 6}. Since SO(G) is an integer, by Theorem 1, we obtain that all of

a2 + c2, a2 + d2, a2 + e2, a2 + f2, b2 + c2, b2 + d2, b2 + e2 and b2 + f2 are squares. Then
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as before, using MATLAB we obtain that there is no possibility for (a, b, c, d, e, f)

such that 1 ≤ a, b, c, d, e, f ≤ 75. Consequently, n > 75.

Case 4. Λ(G) = K3,3.

Without loss of generality, suppose {V1, V2, V3} and {V4, V5, V6} are partite sets of

Λ(G). Thus, there is at least one edge between Vj (j = 1, 2, 3) and any parts Vi , for

i = {4, 5, 6}. Since SO(G) is integer, by Theorem 1, a2 + d2, a2 + e2, a2 + f2, b2 +

d2, b2 + e2, b2 + f2, c2 + d2, c2 + e2 and c2 + f2 are squares. Similarity to the case 3,

by using MATLAB we obtain that there is no possibility for (a, b, c, d, e, f) such that

1 ≤ a, b, c, d, e, f ≤ 75. Consequently, n > 75.

Case 5. Λ(G) ∈ {K6, K6\e, K6\2e, K6\3e, K6\4e, K6\5e, . . . , K6\9e, C6, P6, H6, H6\e, . . .,

H6\5e, R6, R6\e, R6\2e, Z6}.
Then Λ(G) has a triangle. Without loss of generality, assume that there are some

edges between the parts V4V5V6 is a triangle of Λ(G). Since SO(G) is integer, by

Theorem 1, all of d2 + e2, e2 + f2, and d2 + f2 are squares. According to the (9) we

have n ≥ 241 > 75. We conclude that n ≥ 75.

We next prove the equality part. Assume that G is a 6-degree graph of order

n = 75. Following the above cases, we obtain that the possibility occurs in

the Case 1. (For Λ(G) = K1,5) that is (a, b, c, d, e, f) = (24, 45, 32, 18, 10, 7),

where |V1| = 45, |V2| = 18, |V3| = 6, |V4| = 3, |V5| = 1, |V6| = 2 or

|V1| = 45, |V2| = 15, |V3| = 11, |V4| = 2, |V5| = 1, |V6| = 1.

For the first case we have SO(G) = 51220 and second case we have SO(G) = 50020.

Thus we model the second case. In this case, G will be a graph from the family of

G75, so according to the Lemma 1 SO(G) is integer.

Now, let V1 = {a1, . . . , a45}, V2 = {b1, . . . , b15}, V3 = {c1, . . . , c11}, V4 = {d1, d2},
V5 = {e} and V6 = {f}. Since each vertex of V2 is adjacent to some vertices in V1
and every vertex of V2 has degree 45, from |V1| = 45 we find that each vertex of V2
is adjacent to all vertices of V1. Similarly, each of vertices ci, di, e and f are only

adjacent to vertices of V1. Thus we may assume that ci (i = 1, . . . , 11) is adjacent to

32 vertices of V1 as:

c1 is adjacent to {a14, . . . , a45}, c2 is adjacent to

{a1, . . . , a13, a22, . . . , a32, a37, . . . , a44}, c3 is adjacent to {a10, . . . , a32, a37, . . . , a45},
c4 is adjacent to {a1, . . . , a9, a19, . . . , a32, a37, . . . , a45}, c5 is adjacent to

{a1, . . . , a18, a20, . . . , a32, a45}, c6 is adjacent to {a1, . . . , a32}, c7 is adjacent to

{a1, . . . , a28, a33, . . . , a36}, c8 is adjacent to {a1, . . . , a28, a33, . . . , a36}, c9 is adjacent

to {a1, . . . , a28, a33, . . . , a36}, c10 is adjacent to {a3, . . . , a21, a33, . . . , a45}, c11 is

adjacent to {a1, . . . , a19, a33, . . . , a45}. Also we may assume that d1 is adjacent to

18 vertices in {a1, a29, . . . , a45}, d2 is adjacent to to 18 vertices in {a2, a29, . . . , a45},
e is adjacent to 10 vertices in {a36, . . . , a45} and f is adjacent to 7 vertices in

{a29, . . . , a35}. Consequently, G ∈ G75. The converse follows from Lemma 1. See the

Figure 2 (below).
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4. Seven-degree graphs with integer Sombor index

In this section we present a lower bound for the order of 7-degree graphs whose

Sombor index is integer, and then give a description for all extremal graphs achieving

the equality of the bound. At first we introduce the following families of graphs of

order 101. Let G101 be the family of simple graphs of order 101 with 7 distinct degrees

(d1, d2, d3, d4, d5, d6, d7) = (24, 70, 45, 32, 18, 10, 7) such that the vertices of the same

degrees are independent, there are 70 vertices of degree d1, 17 vertices of degree d2,

9 vertices of degree d3, 2 vertices of degree d5, there is 1 vertex of degree d4, 1 vertex

of degree d6, 1 vertex of degree d7 and every vertex of degree d1 is adjacent to all

vertices of degrees d2, . . . , d7. Figure 3 illustrates a graph in G101.

Figure 3. A graph G from the family of G101.

Lemma 2. If G ∈ G101, then SO(G) is an integer.

Proof. Let G ∈ G101. Then we may assume that V (G) =
⋃7

i=1(Vi) =
{a1, . . . , a70} ∪ {b1, . . . , b17} ∪ {c1, . . . , c9} ∪ {d} ∪ {e1, e2} ∪ {f} ∪ {g}, where Vi
is an independent set for each i = 2, . . . , 7, and ai is adjacent to all vertices
of Vi (i = 2, . . . , 7). Since every vertex of V2 has degree 70, from |V1| = 70
we find that each vertex of V2 is adjacent to all vertices of V1. Similarly, each
vertex of Vi (i = 3, . . . , 7) is adjacent to all vertices of V1, and without loss
of generality, we may assume that the adjacent vertices are as follows: c1 is
adjacent to {a8, . . . , a45, a53, . . . , a59}, c2 is adjacent to {a16, . . . , a45, a56, . . . , a70},
c3 is adjacent to {a1, . . . , a15, a21, . . . , a45, a60, . . . , a64}, c4 is adjacent to
{a8, . . . , a45, a64, . . . , a70}, c5 is adjacent to {a1, . . . , a7, a15, . . . , a45, a64, . . . , a70}, c6
is adjacent to {a1, . . . , a14, a21, . . . , a45, a65, . . . , a70}, c7 is adjacent to {a1, . . . , a45},
c8, c9 are adjacent to {a1, . . . , a20, a46, . . . , a70}, d is adjacent to 32 vertices in
{a1, . . . , a8, a46, . . . , a70}, e1, e2 are adjacent to 18 vertices in {a46, . . . , a63}, f is ad-
jacent to 10 vertices in {a46, . . . , a55} and g is adjacent to 7 vertices in {a46, . . . , a52}.
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Now

SO(G) =
∑

uv∈E(G)

√
d2u + d2v

= 17× 70
√

(70)2 + (24)2 + 9× 45
√

(45)2 + (24)2 + 1× 32
√

(32)2 + (24)2

+ 2× 18
√

(18)2 + (24)2 + 1× 10
√

(10)2 + (24)2 + 1× 7
√

(7)2 + (24)2 = 111510.

Since G was an arbitrary graph of family G101, then the Sombor index of this family

is an integer. See the Figure 3.

Theorem 4. If G is a 7-degree graph of order n with integer Sombor index, then n ≥ 101,
with equality if and only if G ∈ G101.

Proof. The proof is similar to the Theorem 3, and note that extremality occurs for

Λ(G) = K1,6, that is, (a, b, c, d, e, f, g) = (24, 70, 45, 32, 18, 10, 7), |V1| = 70, |V2| =

17, |V3| = 9, |V4| = 1, |V5| = 2, |V6| = 1 and |V7| = 1. Thus n = 101, and one can

see that G ∈ G101. Therefore, according to the Lemma 2, the Sombor index of these

graphs is an integer.

5. Conclusion

In this paper we studied connected 5, 6 and 7-degree graphs whose Sombor indices

are integer. We found a lower bound of the orders of these graphs and described

minimum order graphs. This method can be applied on more r-degree graphs (r ≥ 8)

with integer Sombor indices.
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