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Abstract: Let G = (V,E) be a simple graph such that λ1, . . . , λn be the eigenvalues

of G. The energy of graph G is denoted by E(G) and is defined as E(G) =
∑n

i=1 |λi|.
The edge energy of G is the energy of line graph G. In this paper, we investigate the

energy and edge energy for two Cayley graphs on the abelian group Z4
n, namely, the

Sudoku graph and the positional Sudoku graph. Also, we obtain graph energy and
edge energy of the complement of these two graphs.
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1. Introduction

Throughout this paper, we consider G = (V,E) a simple and finite graph with the

vertex set V = {v1, . . . , vn} and the edge set E = {e1, . . . , em}. For vi ∈ V , the degree

of vi is the number of edges connected to vi and is denoted by di. The complement

of a graph G, denoted by G, is the graph with all the vertices of graph G, and two

vertices in G are adjacent if they are not adjacent in G.
The adjacency matrix of G denoted by A(G) = (aij) is the matrix of the order

n where aij = 1 if the vertices vi and vj are adjacent and aij = 0 otherwise. The
eigenvalues of A(G) are the eigenvalues of graph G. Let λ1 > λ2 > · · · > λt be
a non-increasing sequence of eigenvalues of G with multiplicities m1,m2, . . . ,mt, re-
spectively. The spectrum of G denoted by, Spec(G) is written by

Spec(G) =

(
λ1 . . . λt
m1 . . . mt

)
.

Assume that λ1, . . . , λn are the eigenvalues of graph G. The energy of graph G is

defined as E(G) =
∑n

i=1 |λi| [10]. The energy of a graph is a mathematical concept
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that has many applications in theoretical chemistry. Accordingly, much research on

graph energy and its numerous variants have been done. The line graph L(G) of the

graph G is the graph whose vertex set of L(G) is the set of G and two vertices of L(G)

are adjacent if and only if the corresponding edges in G have a common vertex [12].

The edge energy of a graph G, denoted by EE(G) is the energy of the line graph of

G [2]. Some results are obtained on the edge energy of graphs that can be found in

[8, 11, 16, 17].

The connection between algebraic structures and graph theory is one of the impor-

tant branches of mathematics. In 1878, first was introduced the Cayley graphs on

finite groups [3]. Let Γ be a finite group and S ⊆ Γ \ {1} with condition S = S−1.

The G = Cay(Γ, S) is an undirected and simple graph that contains the vertex set

V (G) = Γ and the edge set E(G) = {(x, y) |xy−1 ∈ S}. A Cayley graph Cay(Γ, S) is

connected if and only if Γ =< S > [1].

There are extensive studies devoted to computing graph energies of Cayley graphs.

For more literature, on Cayley graphs and their energies, readers might refer to [4, 5,

9, 13, 15].

In this paper, we consider two Cayley graphs on group Z4
n, namely, the Sudoku

graphs and the positional Sudoku graphs. The energy of these graphs is obtained.

Also, by computing the eigenvalues of line graphs of the Sudoku graph and the po-

sitional Sudoku graph, their edge energy is obtained. Finally, we obtain the edge

energy and graph energy of the complement of the Sudoku graph and the positional

Sudoku graph.

2. Energies of the Sudoku graph Sud(n)

In this section, we obtain the graph energy and edge energy of the Sudoku graph that

is the Cayley graph on group Z4
n.

An n-Sudoku is an arrangement of n × n square blocks each consisting of n × n
cells and each cell contains a number from {1, . . . , n2} such that every block, row or

column contain all numbers 1, 2, . . . , n2. The Sudoku graph Sud(n) is a simple graph

that has the vertices the n4 cells of an n-Sudoku and two distinct vertices are adjacent

if and only if they are in the same block, row or column [14].

The Sud(n) is the (3n2− 2n− 1)-regular graph with n2(3n2−2n−1)
2 edges. In [14], is

proved that graph Sud(n) is a Cayley graph for Z4
n. Therefore, Sud(n) = Cay(Z4

n, S)
in which S = S1 ∪ S2 ∪ S3 and Si’s are defined as follows

S1 = {(0, 0, x3, x4) : x3, x4 ∈ Zn , (x3, x4) 6= (0, 0)},
S2 = {(0, x2, 0, x4) : x2, x4 ∈ Zn , x2 6= 0}, (1)

S3 = {(x1, 0, x3, 0) : x1, x3 ∈ Zn , x1 6= 0}.

The eigenvalues of Sud(n) = Cay(Z4
n, S) are computed in [14]. We state the spectrum

of graph Sud(n) in the following lemma.
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Lemma 1. [14] For n ≥ 2, the spectrum of the Sudoku graph Sud(n) is as follows

(
3n2 − 2n− 1 2n2 − 2n− 1 n2 − n− 1 n2 − 2n− 1 −1 −1− n

1 2(n− 1) 2n(n− 1) (n− 1)2 n2(n− 1)2 2n(n− 1)2

)
.

In the following theorem, we obtain the graph energy of the Cayley graph Sud(n)

on group Z4
n for n ≥ 2.

Theorem 1. Let Sud(n) = Cay(Z4
n, S) be the Cayley graph on the abelian group Z4

n and

S =
⋃3

i=1 Si that Si’s are defined in (1).

i) If n = 2, then E(Sud(n)) = 34.

ii) If n ≥ 3, then E(Sud(n)) = 2n(n− 1)2(3n+ 2).

Proof. According to Lemma 1 and the definition of the graph energy, we get

E(Sud(n)) =
n4∑
i=1

|λi|

= |3n2 − 2n− 1|+ 2(n− 1)|2n2 − 2n− 1|+ 2n(n− 1)|n2 − n− 1|

+ (n− 1)2|n2 − 2n− 1|+ n2(n− 1)2| − 1|+ 2n(n− 1)2| − 1− n|

= (−1 + n)2(5n2 + 6n+ 1) + (n− 1)2|n2 − 2n− 1|

For n = 2, we obtain E(Sud(n)) = (n − 1)2(5n2 + 6n + 2) = 34. Also if n ≥ 3, we have

E(Sud(n)) = (−1 + n)2(5n2 + 6n+ 1) + (n− 1)2(n2 − 2n− 1) = 2n(n− 1)2(3n+ 2).

Lemma 2. [6] Let G be a regular graph of degree r ≥ 2 with n vertices and m = nr
2

edges.
Then the following relations hold.

(i) For 1 ≤ i ≤ n, λi(L(G)) = λi(G) + r − 2,

(ii) for n+ 1 ≤ i ≤ m, λi(L(G)) = −2.

Now, we obtain the eigenvalues of the line graph of Sudoku graph Sud(n).

Theorem 2. The spectrum of the line graph of the Sudoku graph Sud(n) for n ≥ 2 is as
follows

(
6n2 − 4n − 4 5n2 − 4n − 4 4n2 − 3n − 4 4n2 − 4n − 4 3n2 − 2n − 4 3n2 − 3n − 4 −2

1 2(n − 1) 2n(n − 1) (n − 1)2 n2(n − 1)2 2n(n − 1)2 1
2
n4(3n2 − 2n − 3)

)
.

Proof. Let G = Sud(n) be the Sudoku graph. Since graph Sud(n) for n ≥ 2 is the
(3n2 − 2n− 1)-regular graph, thus using Lemmas 1 and 2, we obtain the eigenvalues
of the line graph of Sud(n) as follows
i) λ1

(
L(Sud(n))

)
= (3n2 − 2n− 1) + (3n2 − 2n− 1)− 2 = 6n2 − 4n− 4.

ii) For 2 ≤ i ≤ 2n− 1, then

λi
(
L(Sud(n))

)
= (2n2 − 2n− 1) + (3n2 − 2n− 1)− 2 = 5n2 − 4n− 4.
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iii) For 2n ≤ i ≤ 2n2 − 1, then

λi
(
L(Sud(n))

)
= (n2 − n− 1) + (3n2 − 2n− 1)− 2 = 4n2 − 3n− 4.

iv) For 2n2 ≤ i ≤ 3n2 − 2n, then

λi
(
L(Sud(n))

)
= (n2 − 2n− 1) + (3n2 − 2n− 1)− 2 = 4n2 − 4n− 4.

v) For 3n2 − 2n+ 1 ≤ i ≤ n4 − 2n3 + 4n2 − 2n, then

λi
(
L(Sud(n))

)
= −1 + (3n2 − 2n− 1)− 2 = 3n2 − 2n− 4.

vi) For n4 − 2n3 + 4n2 − 2n+ 1 ≤ i ≤ n4, then

λi
(
L(Sud(n))

)
= (−1− n) + (3n2 − 2n− 1)− 2 = 3n2 − 3n− 4.

vii) For n4 + 1 ≤ i ≤ m =
n4(3n2−2n−1)

2
, then λi

(
L(Sud(n))

)
= −2.

Therefore, the spectrum of graph L(Sud(n)) for n ≥ 2 is obtained from the eigenvalues

of λi
(
L(Sud(n))

)
for 1 ≤ i ≤ m.

Theorem 3. The edge energy of the Sudoku graph Sud(n) for n ≥ 2 is as follows

EE(Sud(n)) = 2n4(3n2 − 2n− 3).

Proof. Let G = Sud(n) be the Sudoku graph for n ≥ 2 of the order n4 and size

m = n4(3n2−2n−1)
2 . Since the edge energy of graph Sud(n) is the energy of the line

graph of Sud(n), therefore using Theorem 2, we get

EE(G) = E(L(G)) =

m∑
i=1

|λi(L(G))|

= |6n2 − 4n− 4|+ 2(n− 1)|5n2 − 4n− 4|+ 2n(n− 1)2|4n2 − 3n− 4|

+ (n− 1)2|4n2 − 4n− 4|+ n2(n− 1)2|3n2 − 2n− 4|

+ 2n(n− 1)2|3n2 − 3n− 4|+
n4(3n2 − 2n− 3)

2
| − 2|

By simplifying the above relation and since n ≥ 2, the result is completed.

Now, we investigate to obtain the graph energy and the edge energy of the com-

plement of the Cayley graph Sud(n). To do this, we first recall the following known

result about the characteristic polynomial of the complement of a graph.

Lemma 3. [7] If G is a r-regular with n vertices then

PG(x) = (−1)n
x− n+ r + 1

x+ r + 1
PG(−x− 1),

where PG is the characteristic polynomial of the complement of the graph G.



F. Movahedi 123

Theorem 4. Let Sud(n) be the Sudoku graph of the order n4 where n ≥ 2. Then, the
spectrum of the complement of graph Sud(n) is as follows

(
n4 − 3n2 + 2n −2n2 + 2n −n2 + n −n2 + 2n 0 n

1 2(n− 1) 2n(n− 1) (n− 1)2 n2(n− 1)2 2n(n− 1)2

)
.

Proof. Let G be the Sudoku graph of the order n4 with the degree of all vertices
3n2 − 2n− 1. Thus, using Lemmas 1 and 3, we get the eigenvalues of G as follows

PG(λ) = (−1)n
4
(λ− n4 + 3n2 − 2n− 1 + 1

λ+ 3n2 − 2n− 1 + 1

)
PG(−λ− 1)

= (−1)n
4
(λ− n4 + 3n2 − 2n

λ+ 3n2 − 2n

)(
− λ− 3n2 + 2n+ 1− 1

)
(
− λ− 2n2 + 2n+ 1− 1

)2(n−1)(− λ− n2 + n+ 1− 1
)2n(n−1)

(
− λ− n2 + 2n+ 1− 1

)(n−1)2(− λ+ 1− 1
)n2(n−1)2(− λ+ 1 + n− 1

)2n(n−1)2

= (−1)2(n−1)
(
λ+ 2n2 − 2n

)2(n−1)
(−1)2n(n−1)

(
λ+ n2 − n

)2n(n−1)
(−1)(n−1)2(

λ+ n2 − 2n
)(n−1)2

(−1)n
2(n−1)2

(
λ
)n2(n−1)2

(−1)2n(n−1)2
(
λ− n

)2n(n−1)2

= (−1)
(
λ+ 2n2 − 2n

)2(n−1)(
λ+ n2n

)2n(n−1)(
λ+ n2 − 2n

)(n−1)2

(
λ
)n2(n−1)2(

λ− n
)2n(n−1)2

.

Since the roots of the characteristic polynomial of a graph G are the eigenvalues of G,

therefore, the eigenvalues of the complement of the Sudoku graph Sud(n) for n ≥ 2

are easily obtained from the above.

Theorem 5. The energy of the complement of the Sudoku graph Sud(n) for n ≥ 2, is
equal to 2n(n− 1)2(3n+ 2).

Proof. Let G be the Sudoku graph of the order n4. According to the definition of
graph energy and using Theorem 4, for n ≥ 2 we get

E(G) =
n4∑
i=1

∣∣λi(G)
∣∣

= (n4 − 3n2 + 2n) + 2(n− 1)(2n2 − 2n) + 2n(n− 1)(n2 − n)

+ (n− 1)2(n2 − 2n) + n2(n− 1)2(n− 1)2(0) + 2n(n− 1)2(n)

= 6n4 − 8n3 − 2n2 + 4n.

By simplifying the above relation, the result holds.

Finally, we obtain the edge energy of the complement of graph Sud(n), for n ≥ 2.

Theorem 6. The edge energy of the complement of the Sudoku graph Sud(n) of the order
n4, where n ≥ 2 is equal to 2n4(n4 − 3n2 + 2n− 2).
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Proof. Let G be the Sudoku graph Sud(n) of the order n4 for n ≥ 2. In Theorem 4,

the eigenvalues of the complement graphG are computed. SinceG is the (3n2−2n−1)-

regular graph, thus the degree of all vertices of G is equal to n4 − 3n2 + 2n. So, G is

the (n4 − 3n2 + 2n)-regular graph.
Therefore, using Lemma 2 and Theorem 4 we get the eigenvalues of G as follows.
i) λ1

(
L(G)

)
= (n4 − 3n2 + 2n) + (n4 − 3n2 + 2n)− 2 = 2n4 − 6n2 + 4n− 2.

ii) For 2 ≤ i ≤ 2n− 1,

λi
(
L(G)

)
= (−2n2 + 2n) + (n4 − 3n2 + 2n)− 2 = n4 − 5n2 + 4n− 2.

iii) For 2n ≤ i ≤ 2n2 − 1,

λi
(
L(G)

)
= (−n2 + n) + (n4 − 3n2 + 2n)− 2 = n4 − 4n2 + 3n− 2.

iv) For 2n2 ≤ i ≤ 3n2 − 2n,

λi
(
L(G)

)
= (−n2 + 2n) + (n4 − 3n2 + 2n)− 2 = n4 − 4n2 + 4n− 2.

v) For 3n2 − 2n+ 1 ≤ i ≤ n4 − 2n3 + 4n2 − 2n,

λi
(
L(G)

)
= 0 + (n4 − 3n2 + 2n)− 2 = n4 − 3n2 + 2n− 2.

vi) For n4 − 2n3 + 4n2 − 2n+ 1 ≤ i ≤ n4,

λi
(
L(G)

)
= n+ (n4 − 3n2 + 2n)− 2 = n4 − 3n2 + 3n− 2.

vii) For n4 + 1 ≤ i ≤ m =
n4(3n2−2n−1)

2
, λi
(
L(G)

)
= −2.

According to obtained eigenvalues above, the edge energy of the complement of
Sud(n) for n ≥ 2 is as follows

EE(G) = E(L(G)) =
m∑
i=1

|λi(L(G))|

= (2n4 − 6n2 + 4n− 2) + 2(n− 1)(n4 − 5n2 + 4n− 2)

+ 2n(n− 1)(n4 − 4n2 + 3n− 2) + (n− 1)2(n4 − 4n2 + 4n− 2)

+ n2(n− 1)2(n4 − 3n2 + 2n− 2) + 2n(n− 1)2(n4 − 3n2 + 3n− 2)

+
n4(3n2 − 2n− 3)

2
| − 2|.

By simplifying the above relation, the result holds.
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3. Energies of the positional Sudoku graph SudP(n)

In this section, we focus on investigating the graph energy and edge energy of the

positional Sudoku graph that is the Cayley graph on group Z4
n.

The positional Sudoku graph SudP (n) is a Cayley graph Cay(Z4
n, S̃) that has more

edges than Sud(n) and S̃ = S1 ∪ S2 ∪ S3 ∪ S4 where Si’s for i = 1, 2, 3 are defined in
(1) and

S4 = {(x1, x2, 0, 0) : x1, x2 ∈ Zn, x1, x2 6= 0}. (2)

The eigenvalues of Cay(Z4
n, S̃) = SudP (n) are obtained in [14]. In the following

Lemma, the spectrum of SudP (n) is stated.

Lemma 4. [14] For n ≥ 2, the spectrum of the positional Sudoku graph SudP (n) is as
follows (

4n(n− 1) 2n2 − 3n n(n− 2) 0 −n −2n

1 4(n− 1) 4(n− 1)2 (n− 1)4 4(n− 1)3 2(n− 1)2

)
.

First, we obtain the graph energy of the Cayley graph SudP (n) on group Z4
n for

n ≥ 2.

Theorem 7. Let SudP (n) = Cay(Z4
n, S̃) be the Cayley graph on the abelian group Z4

n

and S̃ =
⋃4

i=1 Si that Si’s are defined in (1) and (2). Then for n ≥ 2,

E(SudP (n)) = 8n2(n− 1)2.

Proof. Similar to Theorem 1 and using Lemma 4, we get

E(SudP (n)) =
n4∑
i=1

|λi|

= |4n(n− 1)|+ 4(n− 1)|2n3 − 3n|+ 4n(n− 1)2|n(n− 2)|

+ (n− 1)4|0|+ 4(n− 1)3| − n|+ 2(n− 1)2| − 2n|

= 4n(n− 1) + 4n(n− 1)2 + 4n(n− 2)(n− 1)2

+ 4n(n− 1)3 + (4n− 4)(2n2 − 3n).

By simplification the above relation, the result is completed.

For computing the edge energy of graph SudP (n), we need to obtain the eigenvalues

of the line graph of the positional Sudoku graph SudP (n). To do this, we first show

that SudP (n) is an (4n2 − 4n)-regular graph.

Theorem 8. The positional Sudoku graph SudP (n) for n ≥ 2 is an (4n2 − 4n)-regular
graph.
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Proof. According to the structure of the positional Sudoku graph SudP (n), in ad-

dition to the vertices that are adjacent in the Sudoku graph Sud(n), the vertices that

have the same numbers are also adjacent. Therefore, for the vertex v ∈ V (SudP (n)),

the number of the same digits is equal to n2 − (2n − 1). Thus, the degree of all

v ∈ V (SudP (n)), we get deg(v) = (3n2 − 2n − 1) + (n2 − 2n) + 1 = 4n2 − 4n.

Consequently, graph SudP (n) is the regular graph of degree (4n2 − 4n).

Theorem 9. The spectrum of the line graph of the positional Sudoku graph SudP (n) for
n ≥ 2 is as follows

(
8n2 − 8n − 2 6n2 − 7n − 2 5n2 − 6n − 2 4n2 − 4n − 2 4n2 − 5n − 2 4n2 − 6n − 2 −2

1 4(n − 1) 4(n − 1)2 (n − 1)4 4(n − 1)3 2(n − 1)2 1
2
n4(4n2 − 4n − 2)

)
.

Proof. Let G = SudP (n) be the positional Sudoku graph. By applying Theorem
8, G is the (4n2 − 4n)-regular graph. Thus using Lemmas 4 and 2, we compute the
eigenvalues of the line graph of SudP (n) for n ≥ 2 as follows
i) λ1(L(G)) = (4n2 − 4n) + (4n2 − 4n)− 2 = 8n2 − 4n− 2.

ii) For 2 ≤ i ≤ 4n− 3, then λi(L(G)) = (2n2 − 3) + (4n2 − 4n)− 2 = 6n2 − 7n− 2.

iii) For 4n− 2 ≤ i ≤ 2n2 − 1, then

λi(L(G)) = (n2 − n− 1) + (3n2 − 2n− 1)− 2 = 4n2 − 3n− 4.

iv) For 2n2 ≤ i ≤ 4n2 − 4n+ 1, then

λi(L(G)) = (n2 − 2n) + (4n2 − 4n)− 2 = 5n2 − 6n− 2.

v) For 4n2 − 4n+ 2 ≤ i ≤ n4 − 4n3 + 10n2 − 8n+ 2, then

λi(L(G)) = 0 + (4n2 − 4n)− 2 = 4n2 − 4n− 2.

vi) For n4 − 4n3 + 10n2 − 8n+ 3 ≤ i ≤ n4 − 2n2 + 4n− 2, then

λi(L(G)) = −n+ (4n2 − 4n)− 2 = 4n2 − 5n− 2.

vii) For n4 − 2n2 + 4n− 1 ≤ i ≤ n4, then

λi(L(G)) = −2n+ (4n2 − 4n)− 2 = 4n2 − 6n− 2.

viii) For n4 + 1 ≤ i ≤ (n4(4n2 − 4n− 2))/2, then λi(L(G)) = −2.

Therefore, according to the above eigenvalues and their multiplicities, the spectrum

of graph L(SudP (n)) is obtained.

Theorem 10. The edge energy of the positional Sudoku graph SudP (n), for n ≥ 2 is as
follows

EE(SudP (n)) = 4n2(2n6 − 4n5 + 4n4 − 2n3 − 3n2 + 4n− 2).
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Proof. Let G = SudP (n) be the positional Sudoku graph for n ≥ 2 of the order n4

and size m = (n4(4n2 − 3n− 2))/2. Similar to the proof Theorem 3, we have

EE(G) = E(L(G)) =

m∑
i=1

|λi(L(G))|

= |8n2 − 8n− 2|+ 4(n− 1)|6n2 − 7n− 2|+ 4(n− 1)2|5n2 − 6n− 2|

+ (n− 1)4|4n2 − 4n− 2|+ 4(n− 1)3|4n2 − 5n− 2|

+ 2(n− 1)2|4n2 − 6n− 2|+
n4(4n2 − 4n− 2)

2
| − 2|

By simplifying the above relation and since n ≥ 2, the result is completed.

Similar to the results for the complement of the Sudoku graph in Section 2, we are

interested in determining the graph energy and the edge energy of the complement of

the Cayley graph SudP (n).

Theorem 11. Let SudP (n) be the positional Sudoku graph of the order n4 where n ≥ 2.
Then, the spectrum of the complement of graph SudP (n) is as follows

(
n4 − 4n2 + 4n− 1 −2n2 + 3n− 1 −n2 + 2n− 1 −1 n− 1 2n− 1

1 4(n− 1) 4(n− 1)2 (n− 1)4 4(n− 1)3 2(n− 1)2

)
.

Proof. Let G be the positional Sudoku graph of the order n4 for n ≥ 2. Since G is
(4n2 − 4n)-regular graph, using Lemmas 3 and 4 we get

PG(λ) = (−1)n
4
(λ− n4 + 4n2 − 4n+ 1

λ+ 4n2 − 4n+ 1

)
PG(−λ− 1)

= (−1)n
4
(λ− n4 + 4n2 − 4n+ 1

λ+ 4n2 − 4n+ 1

)(
− λ− 4n2 + 4n− 1

)
(
− λ− 2n2 + 3n− 1

)4(n−1)(− λ− n2 + 2n− 1
)4(n−1)2

(
− λ− 1

)(n−1)4(− λ+ n− 1
)4(n−1)3(− λ+ 2n− 1

)2(n−1)2

= (−1)
(
λ− n4 + 4n2 − 4n+ 1

)(
λ+ 2n2 − 3n+ 1

)4(n−1)(
λ+ n2 − 2n+ 1

)4(n−1)2

(
λ+ 1

)(n−1)4(
λ− n+ 1

)4(n−1)3(
λ− 2n+ 1

)2(n−1)2
.

By computing the roots of the characteristic polynomial PG(λ) where G is the

positional Sudoku graph, the eigenvalues of the complement of the Sudoku graph

Sud(n) for n ≥ 2 are obtained.

Theorem 12. The energy of the complement of the positional Sudoku graph SudP (n)
for n ≥ 2, is equal to 2(n− 1)2(5n2 − 2n+ 1).
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Proof. Assume that G = SudP (n) is the positional Sudoku graph of the order n4.
Similar to the proof of Theorem 5 and by applying Theorem 11, we have

E(G) =

n4∑
i=1

∣∣λi(G)
∣∣

= (n4 − 4n2 + 4n− 1) + 4(n− 1)(2n2 − 3n+ 1) + 4(n− 1)2(n2 − 2n+ 1)

+ (n− 1)4(−1) + 4(n− 1)3(n− 1) + 2(n− 1)2(2n− 1)

= 10n4 − 24n3 + 20n2 − 8n+ 2.

By simplifying the above relation, the result holds.

The edge energy of the complement of graph SudP (n), where n ≥ 2, is computed

in the following theorem.

Theorem 13. The edge energy of the complement of the positional Sudoku graph SudP (n)
of the order n4, where n ≥ 2 is equal to 2n4(n4 − 4n2 + 4n− 3).

Proof. Suppose that G is the positional Sudoku graph SudP (n) of the order n4 for
n ≥ 2. Similar to the proof of Theorem 6, it is sufficient to obtain the eigenvalues
of the line graph of G. Since the complement of the positional Sudoku graph is
(n4 − 4n2 + 4n − 1)-regular graph, thus using Lemma 2 and Theorem 9, we get the
eigenvalues of the graph G.
i) λ1

(
L(G)

)
= (n4 − 4n2 + 4n− 1) + (n4 − 4n2 + 4n− 1)− 2 = 2n4 − 8n2 + 8n− 4.

ii) For 2 ≤ i ≤ 4n− 3, then

λi
(
L(G)

)
= (−n2 + 2n− 1) + (n4 − 4n2 + 4n− 1)− 2 = n4 − 5n2 + 6n− 4.

iii) For 4n2 − 4n+ 2 ≤ i ≤ n24− 4n3 + 10n2 − 8n+ 2, then

λi
(
L(G)

)
= (−1) + (n4 − 4n2 + 4n− 1)− 2 = n4 − 4n2 + 4n− 4.

iv) For n4 − 4n3 + 10n2 − 8n+ 3 ≤ i ≤ n4 − 2n2 + 4n− 2, then

λi
(
L(G)

)
= (n− 1) + (n4 − 4n2 + 4n− 1)− 2 == n4 − 4n2 + 5n− 4.

v) For 3n2 − 2n+ 1 ≤ i ≤ n4 − 2n3 + 4n2 − 2n, then

λi
(
L(G)

)
= 0 + (n4 − 3n2 + 2n)− 2 = n4 − 3n2 + 2n− 2.

vi) For n4 − 2n2 + 4n− 1 ≤ i ≤ n4, then

λi
(
L(G)

)
= (2n− 1) + (n4 − 4n2 + 4n− 1)− 2 = n4 − 4n2 + 6n− 4.

vii) For n4 + 1 ≤ i ≤ m =
n4(n4−4n2+4n−1)

2
, then λi

(
L(G)

)
= −2.
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Therefore, the edge energy of the complement of the positional Sudoku graph SudP (n)
for n ≥ 2 is as follows

EE(G) =

m∑
i=1

|λi(L(G))|

= (2n4 − 8n2 + 8n− 4) + 4(n− 1)(n4 − 6n2 + 7n− 4)

+ 4(n− 1)2(n4 − 5n2 + 6n− 4) + (n− 1)4(n4 − 4n2 + 4n− 4)

+ 4(n− 1)3(n4 − 4n2 + 5n− 4) + 2(n− 1)2(n4 − 4n2 + 6n− 4)

+
n4(n4 − 4n2 + 4n− 3)

2
| − 2|

By simplifying the above relation, the result is completed.
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[2] Ş.B. Bozkurt and D. Bozkurt, On incidence energy, MATCH Commun. Math.

Comput. Chem. 71 (2014), no. 1, 215–225.

[3] A. Cayley, Desiderata and suggestions: No. 2. The Theory of groups: graphical

representation, Amer. J. Math. 1 (1878), no. 2, 174–176

https://doi.org/10.2307/2369306.

[4] S. Chokani, F. Movahedi, and S.M. Taheri, Graph energies of zero-divisor graphs

of finite commutative rings, Int. J. Nonlinear Anal. Appl. 14 (2023), no. 7, 207–

216

https://doi.org/10.22075/ijnaa.2022.7136.

[5] , The minimum edge dominating energy of the Cayley graphs on some

symmetric groups, Algebr. Struct. their Appl. 10 (2023), no. 2, 15–30

https://doi.org/10.22034/as.2023.3001.
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