
CCO
Commun. Comb. Optim.

c© 2023 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization

Vol. 8, No. 4 (2023), pp. 751-757

DOI:10.22049/CCO.2023.28666.1662

Research Article

Lower bound on the KG-Sombor index

Saeed Kosari1, Nasrin Dehgardi2,∗, Aysha Khan3

1
Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China

saeedkosari38@gzhu.edu.cn

2
Department of Mathematics and Computer Science, Sirjan University of Technology,

Sirjan, I.R. Iran
∗n.dehgardi@sirjantech.ac.ir

3
Department of Mathematics, Prince Sattam bin Abdulaziz University,

Alkharj 11991, Saudi Arabia
a.aysha@psau.edu.sa

Received: 7 January 2023; Accepted: 20 May 2023
Published Online: 28 May 2023

Abstract: In 2021, a novel degree-based topological index was introduced by Gut-

man, called the Sombor index. Recently Kulli and Gutman introduced a vertex-edge
variant of the Sombor index, is caled KG-Sombor index. In this paper, we establish

lower bound on the KG-Sombor index and determine the extremal trees achieve this

bound.
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1. Introduction

Let G be a simple connected graph of order n with vertex set V (G) and edge set

E(G). For a vertex x ∈ V (G), we denote by NG(x) the open neighborhood of x in G

which is the set of vertices adjacent to x. The degree dG(x) of x in G is the cardinality

of NG(x). We write ∆ = ∆(G) for the maximum degree of a graph G. The distance

between the vertices x, y ∈ V (G), denoted by dG(x, y), is defined as the length of any

shortest path in G connecting x and y.
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752 Lower bound on the KG-Sombor index

In 2021, a novel degree-based topological index was introduced by Gutman [7], called

the Sombor index. The Sombor index is defined as:

SO(G) =
∑

uv∈E(G)

√
d2
G(u) + d2

G(v).

Recently Kulli and Gutman [10] was introduced the novel variant of Sombor index,
called the KG-Sombor index. The KG-Sombor index defined as:

KG(G) =
∑

uv∈E(G)

√
d2G(u) + (dG(u) + dG(v)− 2)2 +

∑
uv∈E(G)

√
d2G(v) + (dG(u) + dG(v)− 2)2.

For more information about Sombor index and its variants see [1–6, 8, 9, 11–23] and

the references therein.

In this paper we establish a best possible lower bound for the KG-Sombor index of

trees in terms of their order and maximum degree. Finally we determine the extremal

trees achieve this bound.

We will use the following result.

Observation 1. Let G be a graph. Then for every edge e /∈ E(G),

KG(G + e) > KG(G).

2. A lower bound on the KG-Sombor index

A tree is a connected simple graph with no cycles. A leaf of a tree T is a vertex of

degree 1 and a support vertex is a vertex adjacent to a leaf. A strong support vertex

is a support vertex adjacent to at least two leaves. A rooted tree is a tree in which a

distinguished vertex is selected as the root. A spider is a tree with at most one vertex

of degree greater than 2 which is known as the center of the spider. (If there exists

no vertex of degree more than two, then each vertex of degree 2 of the spider can be

assumed as its center. In P2, the only tree without vertices of degree two or more,

any vertex can be the center.) A leg of a spider is a path from the center to a leaf.

If this path is of length one, we say that the leg is short; otherwise, the leg is long.

Hence, a star graph with t edges can be considered as a spider with t short legs, and

a path of length at least two is a spider with 2 legs. P2 is the only one-legged spider.

Throughout this section, T denote a rooted tree with root v where v is a vertex of

maximum degree. We denote the set of all n-vertex trees with maximum degree ∆

by T (n,∆). We start with some lemmas.

Lemma 1. Let T ∈ T (n,∆). If T has a strong support vertex of degree at least three
different from v, then there is a tree T ′ ∈ T (n,∆) such that KG(T ′) < KG(T ).
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Proof. Let w be a strong support vertex of degree dT (w) ≥ 3 with maximum distance
from v and let dT (w) = α. Assume that NT (w) = {w1, w2, . . . , wα}, where wα lies
on the unique path from w to v. Under our assumption, all neighbors of w except
for wα are of degree 1 or 2 in T . Since w is a strong support vertex, without lack of
generality, let w1 and w2 be leaves. Let T ′ be the tree obtained from T by removing
the edge ww1 and adding the edge w1w2. Since α ≥ 3, we have

KG(T )−KG(T ′) =
√
d2T (w1) + (dT (w) + dT (w1)− 2)2 +

√
d2T (w) + (dT (w) + dT (w1)− 2)2

+
√
d2T (w2) + (dT (w) + dT (w2)− 2)2 +

√
d2T (w) + (dT (w) + dT (w2)− 2)2

+

α∑
i=3

√
d2T (wi) + (dT (w) + dT (wi)− 2)2 +

α∑
i=3

√
d2T (w) + (dT (w) + dT (wi)− 2)2

−
√
d2
T ′ (w1) + (dT ′ (w1) + dT ′ (w2)− 2)2 −

√
d2
T ′ (w2) + (dT ′ (w1) + dT ′ (w2)− 2)2

−
√
d2
T ′ (w2) + (dT ′ (w) + dT ′ (w2)− 2)2 −

√
d2
T ′ (w) + (dT ′ (w) + dT ′ (w2)− 2)2

−
α∑
i=3

√
d2
T ′ (wi) + (dT ′ (w) + dT ′ (wi)− 2)2

−
α∑
i=3

√
d2
T ′ (w) + (dT ′ (w) + dT ′ (wi)− 2)2

≥ 2
√
α2 + (α− 1)2 + 2

√
1 + (α− 1)2

−
√
2−
√
5−

√
2(α− 1)2 −

√
(α− 1)2 + 4

> 0.

This completes the proof.

Lemma 2. Let T ∈ T (n,∆). If T has a support vertex of degree at least three different
from v, then there is a tree T ′ ∈ T (n,∆) such that KG(T ′) < KG(T ).

Proof. Let w be a support vertex of degree dT (w) ≥ 3 with maximum distance from
v and let dT (w) = α. Assume that NT (w) = {w1, w2, . . . , wα}, where wα lies on the
unique path from w to v. Since w is a support vertex, without lack of generality, let
dT (w1) = 1 and by Lemma 1, dT (wi) = 2 for 2 ≤ i ≤ α − 1. Let wx1x2 . . . xl be a
path in T such that l ≥ 2 and x1 = w2. Assume that T ′ be the tree obtained from T
by removing the edge ww1 and adding the edge xlw1. Since α ≥ 3, we have

KG(T )−KG(T ′) =
√
d2T (w1) + (dT (w) + dT (w1)− 2)2 +

√
d2T (w) + (dT (w) + dT (w1)− 2)2

+
√
d2T (xl) + (dT (xl) + dT (xl−1)− 2)2 +

√
d2T (xl−1) + (dT (xl) + dT (xl−1)− 2)2

+
α∑
i=2

√
d2T (wi) + (dT (w) + dT (wi)− 2)2 +

α∑
i=2

√
d2T (w) + (dT (w) + dT (wi)− 2)2

−
√
d2
T ′ (w1) + (dT ′ (w1) + dT ′ (xl)− 2)2 −

√
d2
T ′ (xl) + (dT ′ (w1) + dT ′ (xl)− 2)2

−
√
d2
T ′ (xl) + (dT ′ (xl) + dT ′ (xl−1)− 2)2

−
√
d2
T ′ (xl−1) + (dT ′ (xl) + dT ′ (xl−1)− 2)2
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−
α∑
i=2

√
d2
T ′ (wi) + (dT ′ (w) + dT ′ (wi)− 2)2

−
α∑
i=2

√
d2
T ′ (w) + (dT ′ (w) + dT ′ (wi)− 2)2

≥
√
α2 + (α− 1)2 +

√
1 + (α− 1)2 +

√
2 +
√
5−
√
2−
√
5− 2

√
8

≥
√
13 +

√
5− 2

√
8 ≈ 0.1847 > 0.

This completes the proof.

Lemma 3. Let T ∈ T (n,∆). If T has a vertex of degree at least three different from v,
then there is a tree T ′ ∈ T (n,∆) such that KG(T ′) < KG(T ).

Proof. Let w be a vertex of degree dT (w) ≥ 3 with maximum distance from v and

let dT (w) = α. Assume that NT (w) = {w1, w2, . . . , wα}, where wα lies on the unique

path from w to v.
By Lemmas 1 and 2, dT (wi) = 2 for 1 ≤ i ≤ α− 1. Let wx1x2 . . . xt and wy1y2 . . . ys,
t, s ≥ 2, be two paths in T with x1 = w1 and y1 = w2. Let T ′ be the tree obtained
from T by removing the edge ww1 and adding the edge ysw1. Since α ≥ 3, then we
have

KG(T )−KG(T ′) =
√
d2T (w1) + (dT (w) + dT (w1)− 2)2 +

√
d2T (w) + (dT (w) + dT (w1)− 2)2

+
√
d2T (ys) + (dT (ys) + dT (ys−1)− 2)2 +

√
d2T (ys−1) + (dT (ys) + dT (ys−1)− 2)2

+

α∑
i=2

√
d2T (wi) + (dT (w) + dT (wi)− 2)2 +

α∑
i=2

√
d2T (w) + (dT (w) + dT (wi)− 2)2

−
√
d2
T ′ (w1) + (dT ′ (w1) + dT ′ (ys)− 2)2 −

√
d2
T ′ (ys) + (dT ′ (w1) + dT ′ (ys)− 2)2

−
√
d2
T ′ (ys) + (dT ′ (ys) + dT ′ (ys−1)− 2)2

−
√
d2
T ′ (ys−1) + (dT ′ (ys) + dT ′ (ys−1)− 2)2

−
α∑
i=2

√
d2
T ′ (wi) + (dT ′ (w) + dT ′ (wi)− 2)2

−
α∑
i=2

√
d2
T ′ (w) + (dT ′ (w) + dT ′ (wi)− 2)2

≥
√
α2 + α2 +

√
4 + α2 +

√
2 +
√
5

−
√
2−
√
5− 2

√
8

≥
√
18 +

√
13− 2

√
8 > 0.

This completes the proof.

Lemma 4. Let T be a spider of order n with k ≥ 3 legs. If T has a leg of length 1
and a leg of length at least 3, then there is a spider T ′ of order n with k legs such that
KG(T ) > KG(T ′).
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Proof. Let x be the center of T and NT (x) = {x1, . . . , xk}. Root T at x. We may

assume that d(x1) = 1 and let x2y1y2 . . . yt, t ≥ 2 be a longest leg of T . Let T ′ be the

tree obtained from T be deleting the edge ytyt−1 and adding the pendant edge x1yt.

By definition we have

KG(T )−KG(T ′) =
√

∆2 + (∆− 1)2 +
√

1 + (∆− 1)2 + 2
√

8

−
√

2∆2 −
√

∆2 + 4−
√

2−
√

5 > 0.

This complete the proof.

Now we prove the main theorems of this section.

Theorem 2. For any tree T ∈ T (n,∆) of order n ≥ 3,

KG(T ) ≥ ∆
√

∆2 + 4 +
√

2∆2 + 2
√

8(n− 2∆− 1) + [
√

2 +
√

5]∆,

when ∆ ≤ n−1
2

and

KG(T ) ≥ (2∆ + 1− n)[
√

∆2 + (∆− 1)2 +
√

1 + (∆− 1)2]

+(n−∆− 1)[
√

∆2 + 4 +
√

2∆ +
√

5 +
√

2],

when ∆ > n−1
2

and the equality holds if and only if T is a spider whose all legs have length
at most two or all legs have length at least two.

Proof. Let T ∗ ∈ T (n,∆) such that KG(T ∗) ≤ KG(T ) for each T ∈ T (n,∆).

Choose a vertex v of T ∗ with degree ∆ as the root of T ∗. If ∆ = 2, then T is a path

of order n and KG(T ) = (n − 3)
√

8 + 2
√

2 + 2
√

5 as desired. Let ∆ ≥ 3. By the

choice of T ∗, we deduce from Lemmas 1, 2 and 3 that T ∗ is a spider with center v. It

follows from Lemma 4 and the choice of T ∗ that all legs of T ∗ either have length at

most two or have length at least two. First let all legs of T ∗ have length at least two.

Then clearly ∆ ≤ n−1
2 and

KG(T ∗) = ∆
√

∆2 + 4 +
√

2∆2 + 2
√

8(n− 2∆− 1) + [
√

2 +
√

5]∆

as desired. Now let all legs of T ∗ have length at most two. Considering above case, we

may assume that T ∗ has a leg of length 1. If T ∗ is a star, then the result is immediate.

Assume T ∗ is not a star. Then the number of leaves adjacent to v is 2∆ + 1− n and

hence

KG(T ∗) = (2∆ + 1− n)[
√

∆2 + (∆− 1)2 +
√

1 + (∆− 1)2]

+(n−∆− 1)[
√

∆2 + 4 +
√

2∆ +
√

5 +
√

2].

This completes the proof.
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Figure 1. Trees with n = 8, 9, 10 and ∆ = 4

In Figure 1, three trees of orders n = 8, 9, 10 with maximum degree ∆ = 4 and with

minimum KG-Sombor index are illustrated..

By Observation 1, we obtain the following corollary.

Corollary 1. Let G be a graph of order n and maximum degree ∆. Then

KG(G) ≥ ∆
√

∆2 + 4 +
√

2∆2 + 2
√

8(n− 2∆− 1) + [
√

2 +
√

5]∆,

when ∆ ≤ n−1
2

and

KG(G) ≥ (2∆ + 1− n)[
√

∆2 + (∆− 1)2 +
√

1 + (∆− 1)2]

+(n−∆− 1)[
√

∆2 + 4 +
√

2∆ +
√

5 +
√

2],

when ∆ > n−1
2

and the equality holds if and only if G is a spider whose all legs have length
at most two or all legs have length at least two.
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