
CCO
Commun. Comb. Optim.

c© 2023 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization

Vol. ??, No. ?? (????), pp. 1-11

DOI:10.22049/CCO.2023.28591.1624

Research Article

Vector valued switching in signed graphs

Shahul Hameed K1, Albin Mathew2,†, Germina K A2,‡, Thomas Zaslavsky3,∗

1
Department of Mathematics, K M M Government Women’s College, Kannur - 670004, Kerala,

India
shabrennen@gmail.com

2
Department of Mathematics, Central University of Kerala, Kasaragod - 671316, Kerala, India

†albinmathewamp@gmail.com
‡srgerminaka@gmail.com

3
Department of Mathematics and Statistics, Binghamton University (SUNY), Binghamton, NY

13902-6000, USA
∗zaslav@math.binghamton.edu

Received: 20 April 2023; Accepted: 23 May 2023

Published Online: 28 May 2023

Abstract: A signed graph is a graph with edges marked positive and negative; it is

unbalanced if some cycle has negative sign product. We introduce the concept of vector

valued switching function in signed graphs, which extends the concept of switching
to higher dimensions. Using this concept, we define balancing dimension and strong

balancing dimension for a signed graph, which can be used for a new classification of

degree of imbalance of unbalanced signed graphs. We provide bounds for the balancing
and strong balancing dimensions, and calculate these dimensions for some classes of

signed graphs.
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1. Motivational Background and Introduction

The concept of switching in signed graphs was introduced by Zaslavsky in [2]. Given

a signed graph Σ = (G, σ) where G = (V,E) is the underlying graph (which we

assume is simple) and σ : E → {−1, 1} is the signing function, by switching Σ to a

signed graph Σζ = (G, σζ) using a switching function ζ : V → {−1, 1}, we mean the
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2 Vector valued switching in signed graphs

edge signing of Σζ satisfies the condition σζ(uv) = σ(uv)ζ(u)ζ(v). Switching does

not change the signs of cycles. We say two signed graphs Σ1 and Σ2 are switching

equivalent if one of them can be switched from the other.

Given a cycle C in a signed graph, the sign of this cycle σ(C) is defined as the

product of the edge signs on it. If σ(C) = 1, we say that the cycle C is positive. A

signed graph is said to be balanced if all cycles in it are positive. There are various

characterizations of balanced signed graphs; one of them is by switching (e.g., see [3]),

as follows.

Theorem 1. A signed graph Σ = (G, σ) is balanced if and only if it can be switched to
an all positive signed graph.

An undirected graph G can be considered as an all positive signed graph. This is a

more restrictive property than balance because no switching is required to make all

edges positive, but balance is still quite restrictive because it requires that all cycle

signs be positive. Indeed, balanced signed graphs are the signed graphs that are the

most like unsigned graphs.

If Σ = (G, σ) is a signed graph, then −Σ = (G,−σ) is the same signed graph with

all signs reversed. For example, −G means G with all negative edges. We say Σ

is antibalanced when −Σ is balanced. It is easy to see that −(Σζ) = (−Σ)ζ , so by

Theorem 1 Σ is antibalanced if and only if it switches to all negative signs.

Motivated from the above theorem, as the product ζ(u)ζ(v) can be viewed as the

inner product of ζ(u) and ζ(v) on R, we frame the following definitions to classify

unbalanced signed graphs extending the concept of switching to a higher dimension.

In what follows, Ω = {−1, 0, 1} and the inner product used is the same as that on Rk
restricted to Ωk.

Definition 1 (Vector Valued Switching or k-Switching). Let Σ = (G, σ) be
a given signed graph where G = (V,E). A vector valued switching function is a function
ζ : V → Ωk ⊂ Rk such that 〈ζ(u), ζ(v)〉 6= 0 for all edges uv ∈ E. The switched signed graph
Σζ = (G, σζ) has the signing

σζ(uv) = σ(uv) sgn(〈ζ(u), ζ(v)〉).

The switching considered so far in the literature, from now onwards will be referred to as
1-switching and the generalized switching introduced here will be mentioned as k-switching.

Remark 1. The zero vector is a possible value of ζ(v), but only if v is an isolated vertex.
Although an isolated vertex in 1-switching can take the value 0 so that the usual switching
is not precisely the same as 1-switching, the difference is not important.

The product of a 1-switching function η and a k-switching function ζ is defined by

(ηζ)(v) = η(v)ζ(v).
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Theorem 2. Let k, k′ ≥ 1. A k-switching function ζ, a k′-switching function ζ′, and a
1-switching function η satisfy (Σζ)ζ

′
= (Σζ

′
)ζ , Σηζ = (Ση)ζ = (Σζ)η, Σ−ζ = Σζ , (Σζ)ζ = Σ,

and −(Σζ) = (−Σ)ζ .

2. Balancing and Strong Balancing Dimensions

2.1. Definition and elementary properties

Definition 2 (Balancing Dimension). Let Σ = (G, σ) be a given signed graph where
G = (V,E). We say that the balancing dimension of Σ is k and write it as bdim(Σ) = k,
if k ≥ 1 is the least integer such that a vector valued switching function ζ : V → Ωk ⊂ Rk
switches Σ to an all positive signed graph. We call such a k-switching function ζ a positive
k-switching function (briefly a k-positive function) for Σ.

Lemma 1. A signed graph Σ has a k-positive function for every k ≥ bdim(Σ).

Proof. Let j < k and let ζ : V → Ωj be a j-positive function for Σ. Define

ζ ′(v) = (ζ1(v), . . . , ζj(v), 0, . . . , 0) ∈ Ωk. Then ζ ′ is a k-positive function for Σ. In

particular, take j = bdim(Σ).

Definition 3 (Strong Balancing Dimension). Let Σ = (G, σ) be a given signed
graph where G = (V,E). We say that the strong balancing dimension of Σ is k and write
it as sbdim(Σ), if k ≥ 1 is the least integer such that there is an injective vector valued
switching function ζ : V → Ωk which switches Σ to an all positive signed graph. However,
in case Σ is all positive, we define sbdim(Σ) = 1.
We call such a k-switching function ζ an injective positive k-switching function (briefly, a
strongly k-positive function) for Σ.

We chose to study injectivity because by allowing higher dimensional switching we

open the door to new variations on the definition of a switching function, and injec-

tivity seemed an interesting and attractive such variation.

Theorem 3. bdim(Σ) = 1 if and only if Σ is balanced. Contrastingly, sbdim(Σ) = 1 if
and only if Σ = K1, K1 ∪K1, K1 ∪K1 ∪K1, −K2, or −K2 ∪K1.

Proof. If sbdim(Σ) = 1, then Σ has at most 3 vertices and if it has 3, the one

with ζ(v) = 0 must be isolated. If there are two non-isolated vertices, they must be

negatively adjacent.

We note that sbdim(Σ) = 1 has a few more examples than would exist if 1-switching

were identical to ordinary switching.

Example 1. bdim(C−4 ) = sbdim(C−4 ) = 2. Take ζ(v1) = (−1, 0), ζ(v2) = (1,−1),
ζ(v3) = (0,−1) and ζ(v4) = (−1,−1) to see that both dimensions are 2.
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Figure 1. The negative cycle C−4

Theorem 4. bdim is 1-switching invariant.

Proof. This is a consequence of Theorem 2.

Remark 2. Strong balancing dimension need not be 1-switching invariant. Consider the
signed graph shown in Figure 2.

Figure 2. A signed graph Σ with sbdim(Σ) = 3

For any non-zero α ∈ Ω2, the cardinality of the set {β ∈ Ω2 : 〈α, β〉 < 0} is 3. Thus, there
does not exist an injective switching function from V (Σ) to Ω2 that switches Σ to all positive.
Consequently, sbdim(Σ) > 2. Now, the switching function ζ : V (Σ) → Ω3 defined by
ζ(v1) = (1, 0, 0), ζ(v2) = (0, 0, 1), ζ(v3) = (−1,−1,−1), ζ(v4) = (0, 1, 0), ζ(v5) = (−1, 1, 1),
ζ(v6) = (1,−1, 1) and ζ(v7) = (1, 1,−1) is injective, and switches Σ to all positive. Hence,
sbdim(Σ) = 3.
Let η be the 1-switching function defined on V (Σ) as follows: η(v1) = η(v2) = −1 and
η(v3) = η(v4) = η(v5) = η(v6) = η(v7) = 1. The corresponding switched signed graph Ση is
shown in Figure 3.
A simple computation shows that there is an injective switching function ζ′ : V (Ση) → Ω2

defined by ζ′(v1) = (1, 1), ζ′(v2) = (1,−1), ζ′(v3) = (1, 0), ζ′(v4) = (−1, 1), ζ′(v5) =
(−1,−1), ζ′(v6) = (0,−1) and ζ′(v7) = (0, 1). Consequently, sbdim(Ση) = 2 and hence
sbdim is not 1-switching invariant.

Theorem 5. For any subgraph Σ′ of Σ, bdim(Σ′) ≤ bdim(Σ) and sbdim(Σ′) ≤ sbdim(Σ).
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Figure 3. The 1-switched signed graph Ση with sbdim(Ση) = 2

Our next theorem shows how the balancing dimension of a disconnected signed graph

depends on its connected components.

Theorem 6. The balancing dimension of a disconnected graph is the largest balancing
dimension of its connected components.

Proof. Let Σ = (G, σ) be a signed graph having t components Σ1,Σ2, . . . ,Σt. Let n

be the largest balancing dimension of any component Σi. By Theorem 5, bdim(Σ) ≥
bdim(Σi) for all i. Thus, bdim(Σ) ≥ n. Since n ≥ bdim(Σi) for every i, by Lemma 1

there exists an n-positive function ζi for every component Σi. Define ζ : V (Σ)→ Ωn

by ζ(v) = ζi(v) if the component that contains vertex v is Σi. Since each ζi switches

Σi to all positive, ζ switches Σ to all positive. Thus, bdim(Σ) = n.

Remark 3. The above result will not hold for strong balancing dimension. As an il-
lustration, let us consider Σ as the signed graph that consists of 3 disjoint copies of the
negative cycle C−3 . Since Σ has 9 vertices, there does not exist an injective switching func-
tion ζ : V (Σ)→ Ω3.

Theorem 7. Adding pendant edges to a signed graph will not change its balancing
dimension.

2.2. Bounds for balancing dimensions

We begin with upper bounds. Let Σ = (G, σ) be a signed graph with n vertices

v1, v2, . . . , vn and m edges e1, e2, . . . , em. For each edge ek = vivj , we define a vector

b(ek) =

b1k...
bnk

 ∈ Rn×1, whose ith and jth entries are bik = ±1 and bjk = bikσ(ek),

respectively, and whose other entries are 0. We now define B as the n ×m matrix
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whose kth column is the column vector b(ek); that is,

B =
[
b(e1) b(e2) · · · b(em)

]
=
(
bij
)
n×m .

The matrix B is precisely an incidence matrix of the signed graph −Σ. We now define

a switching function µ : V (Σ)→ Ωm by

µ(vi) = (bi1, bi2, . . . , bim)

for i = 1, 2, . . . , n. Then, the function µ satisfies the following properties:

Property (i): 〈µ(vi), µ(vj)〉 = σ(vivj) for all edges vivj in Σ.

Property (ii): ‖µ(vi)‖2 = d(vi) for all vertices vi in Σ.

By Property (i),

σµ(vivj) = σ(vivj) sgn(〈µ(vi), µ(vj)〉)
= σ(vivj)

2 = 1.

Thus, for every signed graph Σ with m edges, there always exists a switching function

µ : V (Σ)→ Ωm that switches Σ to all positive, but µ is not always injective. This is

the first step towards the following theorem.

Theorem 8. Let Σ be a signed graph with m edges. It satisfies the inequalities 1 ≤
bdim(Σ) ≤ sbdim(Σ) and bdim(Σ) ≤ m. Furthermore, sbdim(Σ) ≤ m if Σ has at most one
isolated vertex and no component that is a positive edge.

Proof. The inequalities 1 ≤ bdim(Σ) ≤ sbdim(Σ) follow from the definitions. We

have already shown that bdim(Σ) ≤ m.
In order to bound sbdim(Σ) we need to know when µ is not injective. There are two

ways µ can fail to be injective. First, since µ(v) = 0 if v is isolated, µ(v) = µ(w) if both

v and w are isolated. Second, if G has a component K2, then µ(u) = σ(uv)µ(v) = the

vector with 1 in the position of edge uv and 0 in all other positions, so µ(u) = µ(v)

if uv is a positive edge. In all other cases, every vertex has a different set of incident

edges so all vectors µ(v) are distinct. This proves the third inequality.

Example 2. Let Σ be the unbalanced signed graph shown in Figure 4.
Then,

B =
[
b(e1) b(e2) b(e3) b(e4) b(e5)

]
=


1 1 1 0 0

σ(e1) 0 0 1 1
0 σ(e2) 0 σ(e4) 0
0 0 σ(e3) 0 σ(e5)

 =


1 1 1 0 0
1 0 0 1 1
0 1 0 −1 0
0 0 −1 0 1
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Figure 4. An illustration

Define µ : V (Σ)→ Ω5 as follows:

µ(v1) = (1, 1, 1, 0, 0),

µ(v2) = (1, 0, 0, 1, 1),

µ(v3) = (0, 1, 0,−1, 0),

µ(v4) = (0, 0,−1, 0, 1).

Then µ is injective and satisfies 〈µ(vi), µ(vj)〉 = σ(vivj) for all edges vivj in Σ. Thus µ
switches Σ to all positive. Also, we can observe that ‖µ(vi)‖2 = d(vi) for all vertices vi in Σ.

A lower bound exists in terms of the structure of the underlying graph G of Σ. The

clique number ω(G) denotes the largest order of a clique in G. Let λ(k) denote the

largest number of pairwise non-orthogonal lines generated by the vectors in Ωk. For

instance, λ(2) = 2. The largest number of pairwise non-orthogonal vectors in Ωk

equals 2λ(k). Computation of λ appears to be hard, but λ does give a lower bound

on balancing dimension.

Theorem 9. We have bdim(Σ) ≥ λ−1(d 1
2
ω(G)e).

Proof. Let ζ be a positive k-switching function for Σ. In a clique of order p all

the vectors ζ(v) for the vertices of the clique must be non-orthogonal. Therefore,

p ≤ 2λ(k), equivalently k ≥ λ−1(dp/2e). Considering a clique of maximum order

gives the theorem.

Negative triangles are important.

Theorem 10. If Σ contains a negative triangle, then bdim(Σ) ≥ 3.

Proof. Let C−3 be a negative triangle in Σ. First we prove that bdim(C−3 ) ≥ 3.

Suppose ζ is a 2-switching function that makes C−3 all positive. All vectors ζ(v) are

non-orthogonal because all vertices are adjacent. There are exactly 4 lines generated

by Ω2 and only two of them can be chosen to be non-orthogonal. Without loss of
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generality, let the lines be x2 = 0 and x1 = x2. The corresponding vectors are (1, 0),

(1, 1), (−1, 0), and (−1,−1). The first pair has positive inner product and the second

pair has positive inner product, but any one of the first pair has negative inner product

with each of the second pair. Therefore, the signs generated by ζ are the same as the

signs generated by the 1-switching function µ given by

µ(v) =

{
+1 if ζ(v) ∈ {(1, 0), (1, 1)},
−1 if ζ(v) ∈ {(−1, 0), (−1,−1)}.

Thus, µ is a 1-switching function that makes C−3 all positive, hence bdim(C−3 ) = 1,

i.e., C−3 is balanced, contrary to assumption.

Then bdim(Σ) ≥ bdim(C−3 ) ≥ 3 by Theorem 5.

There is a simple lower bound on strong balancing dimension.

Theorem 11. For a signed graph with n vertices, none of them being isolated, sbdim(Σ) ≥
log3(n+ 1).

Proof. All vectors ζ(v) must be distinct and non-zero. In Ωk there are 3k−1 distinct

non-zero vectors. Therefore, n ≤ 3k − 1, from which the result follows.

It would be interesting to know whether there are many signed graphs for which the

lower bound given in the previous theorem is attained, i.e., sbdim(Σ) = dlog3(n+1)e.
We present one such graph. Consider the unbalanced cycle C−8 = v1e1v2 · · · v8e8v1,

having only one positive edge e8. The function ζ : V (C−8 ) → Ω2 given by ζ(v1) =

(1, 0), ζ(v2) = (−1, 0), ζ(v3) = (1,−1), ζ(v4) = (−1, 1), ζ(v5) = (0,−1), ζ(v6) =

(0, 1), ζ(v7) = (−1,−1) and ζ(v8) = (1, 1) is injective and switches C−8 to all positive.

Thus sbdim(C−8 ) ≤ 2 = log3(9) and equality follows by Theorem 11.

3. Some Classes of Signed Graphs

In this section, we compute the balancing and strong balancing dimensions of certain

classes of unbalanced signed graphs.

3.1. Cycles and wheels

Proposition 1. For an unbalanced cycle C−n , bdim(C−n ) = 3 if n = 3, and 2 if n > 3.

Proof. Since balancing dimension is 1-switching invariant, we have only to consider

a signed cycle C−n = v1e1v2 · · · vnenv1 where σ(en) = −1 and other edges ei are all

positive.

If n > 3, define ζ : V (C−n ) → Ω2 by ζ(v1) = (1, 0), ζ(v2) = (1, 1), ζ(vn) = (−1, 1)

and for i = 3, 4, . . . , n− 1, ζ(vi) = (0, 1). This is the required 2-switching for making

bdim(C−n ) = 2.
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We know bdim(C−3 ) ≥ 3 by Theorem 10. Define ζ : V (C−3 ) → Ω3 by ζ(v1) =

(1, 0, 0), ζ(v2) = (1, 1, 1) and ζ(v3) = (−1, 1, 1). This 3-switching function shows that

bdim(C−3 ) ≤ 3.

Remark 4. The switching function ζ defined for C−3 in Proposition 1 is injective and hence
sbdim(C−3 ) = 3. If C−3 is all negative, then the injective switching function ζ : V (C−3 )→ Ω3

by ζ(v1) = (−1, 1, 1), ζ(v2) = (1,−1, 1) and ζ(v3) = (1, 1,−1) switches C−3 to all positive.
Thus, C−3 gives us an example for which the bound given in Theorem 8 is attained.

Example 3. The balancing dimension of a signed unicyclic graph Σ is that of the unique
cycle C in it. Let ζ : V (C)→ Ωk be the switching function for C. We can extend ζ to V (Σ)
by adding pendant edges. Hence, by Theorem 7, bdim(Σ) = bdim(C).

The wheel with n spokes is denoted by Wn+1.

Proposition 2. For an antibalanced signed wheel W−n+1 with n ≥ 3, bdim(W−n+1) = 3.

Proof. Since balancing dimension is 1-switching invariant, we let (W−n+1, σ) = (Cn∨
K1, σ) with the sign function σ given by σ(e) = −1 if and only if e ∈ E(Cn). Let

Cn = v1v2 · · · vn and vn+1 = K1. Define ζ : V (W−n+1) → Ω3 as follows: Choose

ζ(vn+1) = (1, 1, 1). If n = 3k or 3k+2, assign ζ(v1) = (−1, 1, 1) and for i = 2, 3, . . . , n,

ζ(vi) is obtained by performing one left circular shift to ζ(vi−1). If n = 3k+ 1, assign

ζ(v1) = (−1, 1, 1), ζ(vn) = (1, 1,−1) and for i = 2, 3, . . . , n − 1, ζ(vi) is obtained by

performing one left circular shift to ζ(vi−1).

Remark 5. For the antibalanced signed wheel W−4 defined above, sbdim(W−4 ) = 3 since
the switching function ζ defined in the proof of Proposition 2 is injective.

3.2. Complete graphs and antibalanced signed graphs

We now focus on the balancing dimension of unbalanced signed complete graphs.

Since any unbalanced signed complete graph Σ contains C−3 as a subgraph, bdim(Σ) ≥
3. The following is an example in which the lower bound for balancing dimension is

attained.

Example 4. Let Σ be a signed complete graph with n ≥ 3 vertices v1, v2, . . . , vn and
having only one negative edge, say v1vn. Then Σ is unbalanced. Define ζ : V (Σ) → Ω3 by,
ζ(v1) = (−1, 1, 1), ζ(vn) = (1, 1,−1) and for i = 2, 3, . . . , n − 1, ζ(vi) = (1, 1, 1). Then, ζ
switches Σ to all positive and hence bdim(Σ) = 3.

Example 5. We provide a class of signed graphs in which the balancing dimension and
strong balancing dimension coincide: if Σ is an all negative signed complete graph, then
bdim(Σ) = sbdim(Σ).
For the proof suppose bdim(Σ) = n and let ζ : V (Σ)→ Ωn be the corresponding switching
function. If ζ(vi) = ζ(vj) for some i 6= j, then sgn(〈ζ(vi), ζ(vj)〉) = +1 and hence σζ(vivj) =
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σ(vivj) sgn(〈ζ(vi), ζ(vj)〉) = −1, which is a contradiction. Thus ζ is injective and hence
bdim(Σ) = sbdim(Σ).
Note that these are not the only signed graphs satisfying bdim(Σ) = sbdim(Σ) (see Exam-
ple 1).

Example 6. The relationship between balancing dimensions of Σ and −Σ is an obvi-
ous question. We found that there exist signed graphs satisfying bdim(−Σ) = bdim(Σ).
Similarly, there exist signed graphs satisfying bdim(−Σ) 6= bdim(Σ).
(i) Every bipartite signed graph Σ satisfies bdim(−Σ) = bdim(Σ) since Σ can be 1-switched
to −Σ and bdim is 1-switching invariant.
The result doesn’t hold for the sbdim. For example, if we consider Σ as the all positive tree
with 3 vertices, then sbdim(Σ) = 1 and sbdim(−Σ) = 2.
(ii) Let Σ be an odd unbalanced cycle. Then −Σ is balanced and hence bdim(−Σ) = 1 <
bdim(Σ).

Definition 4 ([1]). Let W be a nonempty subset of a vector space over the field of real
numbers. W is called a negative inner product (NIP) set if 〈α, β〉 < 0 for all α and β in W
with α 6= β.

Lemma 2 ([1]). In a k-dimensional vector space, there are at most k + 1 vectors in an
NIP set.

Definition 5. We define ν(k) to be the largest size of an NIP set in Ωk. Thus, ν(k) ≤ k+1.
We define ν̄(n) = min{k : ν(k) ≥ n}.

It is easy to see that ν(2) = 2 but ν(3) is not as easy to determine. Gary Greaves

kindly provided the following numbers, which he computed with SageMath:

k 2 3 4 5 6 7

ν(k) 2 4 4 5 5 8

From this table we obtain values of ν̄(n):

n 2 3 4 5 6 7 8

ν̄(n) 2 3 3 5 7 7 7

Lemma 3. ν(k) ≥ n if and only if k ≥ ν̄(n). In particular, ν̄(n) ≥ n− 1.

Proof. We restate the definition of ν̄(n) as the minimum k such that there exists an

NIP set of n elements in Ωk. Thus, k ≥ ν̄(n) if and only if an NIP set of size n exists

in Ωk. This is equivalent to saying that n ≤ ν(k).

Choosing k = n− 1, we have ν(n− 1) ≤ n so, equivalently, ν̄(n) ≥ n− 1.

Theorem 12. Let Σ be an antibalanced signed complete graph on n vertices, where n ≥ 2.
Then bdim(Σ) = ν̄(n) ≥ n− 1.
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Proof. By 1-switching as necessary assume Σ is all negative. For switching Σ to

all positive, we must assign each vertex of Σ one element from an NIP set with

elements in Ωk for some k. Thus, by Lemma 2, it is necessary and sufficient that

n ≤ ν(k); equivalently by Lemma 3, ν̄(n) ≤ k. It follows that the smallest possible k

is ν̄(n) ≥ n− 1.

Example 7. Let Σ be the all-negative signed complete graph on 5 vertices. Then by
Theorem 12, we have bdim(Σ) ≥ 4. Let us define a 3-switching function µ : V (Σ) → Ω3 as
follows. Let µ(v1) = µ(v2) = µ(v3) = (1, 1, 1), µ(v4) = (−1, 1,−1) and µ(v5) = (−1,−1, 1).
We will show that the switched signed graph Σµ has balancing dimension 3. Since Σµ

contains C−3 as a subgraph, bdim(Σµ) ≥ 3. Now, the function ζ : V (Σµ) → Ω3, defined by
ζ(v1) = (1, 1,−1), ζ(v2) = (−1, 1, 1), ζ(v3) = (1,−1, 1) and ζ(v4) = ζ(v5) = (1, 1, 1) switches
Σµ to all positive. Hence bdim(Σµ) = 3.

This example leads us to the following conclusions.

1. Though balancing dimension is 1-switching invariant, the same need not be true

for a general k-switching, where k ≥ 2.

2. If bdim(Σ) = n, then for k = 2, 3, . . . , n−1, k-switching need not leave the signs

of all cycles unchanged.
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