
CCO
Commun. Comb. Optim.

c© 2023 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization

Vol. 8, No. 4 (2023), pp. 649-664

DOI: 10.22049/CCO.2023.28662.1657

Research Article

Independent Italian bondage of graphs

Saeed Kosari1,∗, Jafar Amjadi2, Aysha Khan3, Lutz Volkmann4

1
Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China

∗saeedkosari38@gzhu.edu.cn

2
Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran

j-amjadi@azaruniv.ac.ir

3
Department of Mathematics, Prince Sattam bin Abdulaziz University,

Alkharj 11991, Saudi Arabia
a.aysha@psau.edu.sa

4
Lehrstuhl II fur Mathematik, RWTH Aachen University, 52056 Aachen, Germany

volkm@math2.rwth-aachen.de

Received: 15 January 2023; Accepted: 19 May 2023
Published Online: 25 May 2023

Abstract: An independent Italian dominating function (IID-function) on a graph G

is a function f : V (G)→ {0, 1, 2} satisfying the conditions that (i)
∑

u∈N(v) f(u) ≥ 2

when f(v) = 0, and (ii) the set of all vertices assigned non-zero values under f is
independent. The weight of an IID-function is the sum of its function values over all

vertices, and the independent Italian domination number iI(G) of G is the minimum
weight of an IID-function on G. In this paper, we initiate the study of the independent

Italian bondage number biI(G) of a graph G having at least one component of order

at least three, defined as the smallest size of a set of edges of G whose removal from G
increases iI(G). We show that the decision problem associated with the independent
Italian bondage problem is NP-hard for arbitrary graphs. Moreover, various upper

bounds on biI(G) are established as well as exact values on it for some special graphs.
In particular, for trees T of order at least three, it is shown that biI(T ) ≤ 2.
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1. Introduction

We consider simple graphs G with vertex set V = V (G) and edge set E = E(G).

The order of G is n = n(G) = |V |. For a vertex x of V, let NG(x) denote the

set of neighbors of x and let NG[x] = NG(x) ∪ {x}. The degree of a vertex x is

dG(x) = |NG(x)|. The maximum degree and minimum degree of G are denoted by

∆(G) and δ(G), respectively. When no confusion arises, we write N, d, δ and ∆

instead of NG, dG, δ(G) and ∆(G), respectively. A universal vertex in a graph G is a

vertex adjacent to all vertices of G. A leaf is a vertex of degree one while its neighbor

is called a support vertex. If x is a support vertex, then we denote by L(x) the set of

leaves adjacent to x. For definitions and notations not given here we refer to [5].

As always, the path (cycle, complete graph, complete bipartite graph, respectively) of

order n is denoted by Pn (Cn, Kn, Kp,q, respectively). A tree is a connected acyclic

graph. A star of order n is the graph K1,n−1. A tree T is a double star if it contains

exactly two vertices that are not leaves. A double star with respectively p and q leaves

attached at each support vertex is denoted by DSp,q.

A set S ⊆ V (G) is a dominating set if every vertex not in S has at least one neighbor

in S. The domination number of G is the minimum cardinality of a dominating set

of G. In 1990, Fink et al. [3] introduced the bondage number b(G) to measure the

vulnerability or the stability of the domination number in an interconnection network

G under edge failure. The bondage number of a graph G has been defined in [3]

as the minimum number of edges whose removal from G increases the domination

number. Since then the concept of bondage has been widely studied for several

graph parameters, for instance see [1, 6–8, 13].

The concept of Italian domination has been introduced in 2016 by Chellali et al. [2]

as a new variation of Roman domination but called differently, namely Roman {2}-
domination. An Italian dominating function (ID-function) on a graph G is a function

f : V −→ {0, 1, 2} having the property that f(N [u]) ≥ 2 for each vertex u with

f(u) = 0. The weight of an ID-function f is the sum w(f) =
∑

v∈V (G) f(v), and

the minimum weight of an ID-function of G is the Italian domination number γI(G).

Some variants of Italian domination have been studied, for instance see [9, 12].

An ID-function f = (V0, V1, V2) on a graph G is an independent Italian dominating

function (IID-function) if the set V1 ∪ V2 is independent, that is no two vertices

in V1 ∪ V2 are adjacent. The independent Italian domination number iI(G) is the

minimum weight of an IID-function on G. Moreover, an IID-function of a graph G

with minimum weight is called an iI(G)-function. Independent Italian domination

was first defined and studied in [11] by Rahmouni and Chellali.

In this paper, we initiate the study of the independent Italian bondage number biI(G)

of a graph G defined as the smallest set of edges F ⊆ E(G) for which iI(G − F ) >

iI(G). Note that since the independent Italian domination number of a connected

graph of order two does not increase after the deletion of the unique edge, we will

assume that ∆(G) ≥ 2. We also note that Moradi et al. [10] have initiated in 2020

the study of the Italian bondage number of a graph G denoted by bI(G).

We start our results by showing that the decision problem associated with the inde-
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pendent Italian bondage number is NP-hard for general graphs. Then, we establish

several upper bounds for biI(G). In particular for trees T of order at least three it is

shown that biI(T ) ≤ 2. Furthermore, exact values of the independent Italian bondage

number are also given for some special graphs including paths, cycles and complete

bipartite graphs.

We close this section by mentioning that every connected graph G of order at least two

satisfies iI(G) ≥ 2. Extremal graphs attaining the bound are given by the following

result whose proof is omitted because of its easiness.

Proposition 1. Let G be a connected graph of order n ≥ 2. Then iI(G) = γI(G) = 2 if
and only if ∆(G) = n− 1 or ∆(G) = n− 2 and there are two non-adjacent vertices of degree
n− 2.

2. NP-hardness result

In this section, we will show that the problem of computing the independent Italian

bondage number is NP-hard. We first state it as the following decision problem.

Independent Italian bondage number (IIB):

Instance: A graph G and a positive integer k.

Question: Is biI(G) ≤ k ?

We show that the NP-hardness of the IIB problem by transforming the 3-SAT

problem to it in polynomial time. Recall that the 3-SAT problem specified below

was proven to be NP-complete in [4].

3-satisfiability problem (3SAT):

Instance: A collection C = {C1, C2, . . . , Cm} of clauses over a finite set U of

variables such that |Cj| = 3 for j = 1, 2, . . . ,m.

Question: Is there a truth assignment for U that satisfies all the clauses in C ?

Theorem 1. The IIB problem is NP-hard for general graphs.

Proof. Let U = {u1, u2, . . . , un} and C = {C1, C2, . . . , Cm} be an arbitrary instance

of 3SAT. We will construct a graph G and choose a positive integer k such that C

is satisfiable if and only if biI(G) ≤ k. For each i ∈ {1, 2, . . . , n}, we associate to

each variable ui ∈ U , a graph Hi obtained from a complete bipartite graph K2,3

with bipartite sets {xi, yi, zi} and {ui, ui} by adding the edge uiui. For each j ∈
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Figure 1. Graph F

{1, 2, . . . ,m}, we associate to the clause Cj = {pj , qj , rj} ∈ C , a single vertex cj
and we add the edge-set Ej = {cjpj , cjqj , cjrj}. Finally, add a graph F as depicted

in Figure 1 by joining s1 and s2 to every vertex cj . Clearly, G is a graph of order

5n + m + 6, and therefore it can be constructed in polynomial time. An example

of the constructed graph G when U = {u1, u2, u3, u4} and C = {C1, C2, C3}, where

C1 = {u1, u2, u3}, C2 = {u1, u2, u4}, C3 = {u2, u3, u4} is illustrated in Figure 2. Set

k = 1, and let us show that C is satisfiable if and only if biI(G) = 1. For this aim,

we need to show first the following claims.

x1 y1 z1

u1 u1

x2 y2 z2

u2 u2

x3 y3 z3

u3 u3

x4 y4 z4

u4 u4

c1 c2 c3
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Figure 2. NP-hardness for general graphs

Claim 1. iI(G) ≥ 2n + 3 and for any iI(G)-function f = (V0, V1, V2), we have
f(V (Hi)) ≥ 2. Moreover, if γiI(G) = 2n + 3, then f(V (Hi)) = 2, f(s3) = 2, f(s4) = 1
and f(s1) = f(s2) = f(s5) = f(s6) = 0 and |{ui, ui} ∩ V2| = 1 for each i ∈ {1, 2, . . . , n},
while

∑m
j=1 f(cj) = 0.
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Proof of Claim 1. Let f = (V0, V1, V2) be an iI(G)-function. By the construction of

G, we have f(V (Hi)) ≥ 2 for each i ∈ {1, 2, . . . , n}. Moreover, one can easily see that

f(V (F )) +
∑m

j=1 f(cj) ≥ 3, and therefore iI(G) ≥ 2n+ 3.

Suppose that iI(G) = 2n+3. Then f(V (Hi)) = 2 for each i ∈ {1, 2, . . . , n}. To Italian

dominate the vertices xi, yi, zi and noting that ui and ui are adjacent we must have

|{ui, ui}∩V2| = 1. Now, if f(s1) ≥ 1 (the case f(s2) ≥ 1 is similar), then to dominate

other vertices in F we must have f(V (F )) ≥ 4 which leads to the contradiction that

w(f) ≥ 2n + 4. Hence f(s1) = f(s2) = 0 and this implies that f(s4) ≥ 1 and

f(s3) + f(s5) + f(s6) ≥ 2. Therefore
∑m

j=1 f(cj) = 0, f(s3) = 2, f(s4) = 1 and

f(s5) = f(s6) = 0. �

Claim 2. iI(G) = 2n+ 3 if and only if C is satisfiable.

Proof of Claim 2. Suppose that iI(G) = 2n + 3 and let f = (V0, V1, V2) be an

iI(G)-function. By Claim 1, |{ui, ui} ∩ V2| = 1 for each i ∈ {1, 2, . . . , n}. Also,

f(s1) = f(s2) = 0,
∑m

j=1 f(cj) = 0, f(s3) = 2, f(s4) = 1 and f(s5) = f(s6) = 0.

Define a mapping t : U → {T, F} by

t(ui) =

{
T if f(ui) = 2,

F otherwise,
(1)

for i ∈ {1, . . . , n}. We now show that t is a satisfying truth assignment for C . It is

sufficient to show that every clause in C is satisfied by t. Since the vertex cj is not

adjacent to any member of {s3, s4}∪{xi, yi, zi}, there exists some i ∈ {1, . . . , n} such

that |N(cj)∩{ui, ui}| = 1 and one of ui and ui belongs to V2. Now, if cj is adjacent to

ui and f(ui) = 2, then let t(ui) = T , while if cj is adjacent to ui and f(ui) = 2, then

t(ui) = F and so t(ui) = T by (1). Hence, in either case the clause Cj is satisfied.

The arbitrariness of j ∈ {1, . . . ,m} shows that all the clauses in C are satisfied by t,

that is, C is satisfiable.

Conversely, suppose that C is satisfiable, and let t : U → {T, F} be a satisfying truth

assignment for C . We construct a subset D of vertices of G as follows. If t(ui) = T ,

then put the vertex ui in D; if t(ui) = F , then put the vertex ui in D. Hence |D| = n.

Now define the function h by h(x) = 2 for every x ∈ D, h(s3) = 2, h(s4) = 1 and

h(y) = 0 for any other vertex. Since t is a satisfying truth assignment for C , the

corresponding vertex cj in G is adjacent to at least one vertex in D. One can easy

check that h is IID-function of G of weight 2n+ 3 and so iI(G) ≤ 2n+ 3. By Claim

1, iI(G) ≥ 2n+ 3, and therefore iI(G) = 2n+ 3. �

Claim 3. For any edge e ∈ E(G), iI(G− e) ≤ 2n+ 4.

Proof of Claim 3. Assume first that e is an edge belonging to E(H) − {uiui}, and

since the edges of such a set play the same role, we take e = xiui. Then the function
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f defined by f(ui) = 2 for each i ∈ {1, . . . , n} and f(s2) = 2, f(s5) = f(s6) = 1

and f(y) = 0 for the remaining vertices is an IID-function of G− e of weight 2n+ 4.

The same function f as defined previously remains valid when the edge e to be

removed belongs to {s1s4, s3s5, s3s6, s1s3} or e has an endvertex in V (Hi) ∪ {s1}
and the other endvertex some cj . Assume now that e = ujuj for some j. Then the

function f defined by f(uj) = f(uj) = 1, f(ui) = 2 for each i ∈ {1, . . . , n} − {j},
f(s2) = 2, f(s5) = f(s6) = 1 and f(y) = 0 for the remaining vertices is an IID-

function of G−e of weight 2n+4. If e = s1s2, then the function f defined by f(ui) = 2

for each i, and f(s1) = f(s2) = f(s5) = f(s6) = 1 and f(y) = 0 for any other vertex

is an IID-function of G− e of weight 2n+ 4. If e = s2s4 or e = s2cj for some j, then

the function f defined by f(ui) = 2 for each i, f(s1) = 2 and f(s5) = f(s6) = 1 and

f(y) = 0 for any other vertex is an IID-function of G− e of weight 2n+ 4. In either

case, we deduce that for every edge e ∈ E(G), iI(G− e) ≤ 2n+ 4. �

Claim 4. iI(G) = 2n+ 3 if and only if biI(G) = 1.

Proof of Claim 4. Assume that iI(G) = 2n+3 and take e = s3s5. Let f = (V0, V1, V2)

be a iI(G − e)-function. Clearly f(s5) = 1, since the vertex s5 is isolated. Also,

f(V (Hi)) ≥ 2 for each i ∈ {1, . . . , n}, and thus the total weight for all Hi’s is at least

2n. Now, using the fact that iI(G) = 2n+ 3 and f(s5) = 1 we deduce that the sum of

the values assigned to the cj ’s and si’s except s5 is 2, which is impossible. Therefore,

we conclude that iI(G− e) > iI(G), and thus biI(G) = 1.

Now assume that biI(G) = 1 and let e be an edge such that iI(G − e) > iI(G). By

Claim 1, we have iI(G) ≥ 2n + 3 while by Claim 3, we have iI(G − e) ≤ 2n + 4.

Therefore 2n+ 3 ≤ iI(G) < iI(G− e) ≤ 2n+ 4, which yields 2n+ 3 = iI(G). �
It follows from Claim 2 and Claim 4, that biI(G) = 1 if and only if C is satisfiable

and the theorem follows. 2

3. Exact values of biI(G)

In this section, we determine the independent Roman bondage number for some

special graphs. We begin by recalling some useful results given in [10]. Moreover, we

gather some results in the following proposition whose its proof is omitted.

Proposition 2. 1. iI(Kn) = γI(Kn) = 2.

2. iI(Pn) = γI(Pn) = dn+1
2
e.

3. For n ≥ 3, iI(Cn) = γI(Cn) = n
2

if n is even and iI(Cn) = dn+2
2
e if n is odd.

4. If G = Kn1,n2,...,nt is a complete t-partite graph with t ≥ 2 such that 2 ≤ n1 < n2 ≤
n3 ≤ . . . ≤ nt, then iI(G) = n1.

5. If G is a connected graph of order at least three such that iI(G) = γI(G), then biI(G) ≤
bI(G).
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Proposition 3 ([10]). Let G be a graph of order n ≥ 3 with exactly t universal vertices
and ` non-adjacent pair vertices of degree n− 2 where n > k + 2`. Then

bI(G) ≤


b t
2
c+

⌊
b t
2
c+`

2

⌋
if both t and b t

2
c+ ` are even,

b t
2
c+

⌊
b t
2
c+`

2

⌋
+ 1 otherwise.

Proposition 4 ([10]). For n ≥ 3, bI(Pn) = 1.

Proposition 5 ([10]). For n ≥ 3, bI(Cn) = 1 if n ≡ 0 (mod 2).

As an immediate consequence of Propositions 4 and 2-(5), we have the following.

Corollary 1. For n ≥ 3, biI(Pn) = 1.

Proposition 6. Let G be a graph of order n ≥ 3 with exactly t ≥ 1 universal vertices
and ` non-adjacent pair vertices of degree n− 2 where n > k + 2` and t ≥ 1 or ` ≥ 2. Then

biI(G) ≤


b t
2
c+

⌊
b t
2
c+`

2

⌋
if both t and b t

2
c+ ` are even,

b t
2
c+

⌊
b t
2
c+`

2

⌋
+ 1 otherwise.

In particular, biI(Kn) = dn
2
e for n ≥ 3.

Proof. Since t ≥ 1 or ` ≥ 2, we have iI(G) = γI(G) = 2, and thus by Propositions

2-(5) and 3 the desired bound follows. 2

Proposition 7. For n ≥ 3, biI(Cn) =


1 if n ≡ 0 (mod 2),
2 if n = 3,
3 otherwise.

Proof. If n is even, then it follows from Propositions 2-(2,3,5) and 5 that biI(Cn) = 1.

Hence we can assume that n is odd. Since the result is immediate for n = 3, suppose

that n ≥ 5. Let Cn = v1v2 . . . vnv1 and let G be obtained from Cn by deleting

the edges v1vn, v2v3, v4v5. Then G = 2P2 ∪ Pn−4 and we deduce from Propositions

2-(2) that iI(G) = 4 + dn−32 e > iI(Cn) and hence biI(Cn) ≤ 3. To achieve the

proof it is enough to show that biI(Cn) ≥ 3 if n is odd and n ≥ 5. Assume Cn =

v1v2 . . . vnv1, and let e and e′ be two arbitrary edges of Cn. Clearly, Cn − {e, e′} is

the union of two disjoint paths P and Q such that n(P ) + n(Q) = n. Therefore

iI(Cn−{e, e′}) = iI(P )+iI(Q). Without loss of generality, we may assume that n(P )

is even and n(Q) is odd. It follows from Proposition 2-(2) that iI(Cn − {e, e′}) =

iI(P ) + iI(Q) = dn(P )+1
2 e + n(Q)+1

2 = dn+2
2 e = iI(Cn) which leads to biI(Cn) ≥ 3,

and hence biI(Cn) = 3. 2
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Proposition 8. Let G = Kn1,n2,...,nt be a complete t-partite graph with t ≥ 2 such that
2 ≤ n1 < n2 ≤ n3 ≤ . . . ≤ nt. Then biI(G) = n1 − 1.

Proof. Let X1, X2, . . . , Xt be the partite sets of G with |Xi| = ni for each i ∈
{1, . . . , t}, and let in particular X1 = {u1, u2, . . . , un1

} and X2 = {y1, y2, . . . , yn2
}.

We note that the function h defined on V (G) by h(ui) = 1 for each i ∈ {1, 2, . . . , n1}
and h(x) = 0 for any other vertex of G is the unique iI(G)-function. Let F =

{uiy1 | 1 ≤ i ≤ n1 − 1}, and let H be the spanning graph of G obtained from G

by removing all edges of F . We claim that iI(H) = n1 + 1 > iI(G). To show this,

let f = (V0, V1, V2) be an iI(H)-function. We examine the possibilities according to

whether f(y1) ∈ {0, 1, 2}.
If f(y1) = 0, then f(un1

) = 2 or f(w) ≥ 1 for some vertex w ∈ V (G) \ (X1 ∪X2). If

f(un1) = 2, then the condition that V1 ∪ V2 is independent implies V (G)−X1 ⊆ V0
and so {u1, u2, . . . , un1−1} ⊆ V1 ∪ V2 yielding iI(H) = ω(f) ≥ n1 + 1 > iI(G). Now

assume that f(w) ≥ 1 for some vertex w ∈ V (G) \ (X1 ∪ X2). If, without loss of

generality, w ∈ X3, then it follows that f(x) ≥ 1 for every vertex x ∈ X3 and thus

iI(H) = ω(f) = n3 ≥ n1 + 1 > iI(G).

If f(y1) = 1, then f(un1) = 0 and un1 needs another neighbor in V1 ∪ V2, but since

V1 ∪ V2 is independent we deduce that {y2, y3, . . . , yn2
} ⊆ V1 ∪ V2 and so iI(H) =

ω(f) ≥ n2 > iI(G).

Finally, assume that f(y1) = 2. Then f(un1
) = 0, and since V1 ∪ V2 is independent,

we must have either {y2, y3, . . . , yn2
} ⊆ V1 ∪ V2 or {u1, u2 . . . , un1−1} ⊆ V1 ∪ V2. In

either case iI(H) = ω(f) ≥ n1 + 1 > iI(G). Therefore biI(G) ≤ n1 − 1.

To prove the inverse inequality, let F ⊆ E(G) be an arbitrary subset of edges with

|F | < n1 − 1, and let H be the graph obtained from G by removing all edges of F .

Then clearly dH(ui) = dH(uj) = n2 +n3 + . . .+nt for some two distinct indices i and

j, and hence the function g defined on V (H) by g(ui) = 1 for each i ∈ {1, . . . , ni} and

g(x) = 0 otherwise, is an IID-function of H of weight n1, leading to biI(G) ≥ n1 − 1.

Therefore biI(G) = n1 − 1, and the proof is complete. 2

4. Bounds on biI(G)

In this section, we first present an upper for the independent Italian bondage number

for general graphs and then we show that the independent Italian bondage number

of any tree with at least three vertices is at most two.

Theorem 2. Let G be a connected graph. If x1x2x3 is a path of length 2 in G and G has
no iI(G)-function f assigning a 2 to some neighbor of xi for each i ∈ {1, 2, 3} simultaneously,
then

biI(G) ≤ d(x1) + d(x2) + d(x3)− 3− `(x1, x3),

where `(x1, x3) = 1 if x1x3 ∈ E(G) and `(x1, x3) = 0 otherwise.
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Proof. Let E′ ⊆ E(G) be the set of all edges incident with either x1, x2 or x3 except

the edge x2x3. Obviously, |E′| = d(x1) + d(x2) + d(x3) − 3 when x1x3 /∈ E(G) and

|E′| = d(x1) + d(x2) + d(x3) − 4 when x1x3 ∈ E(G). Let H be the graph obtained

from G by removing all edges of E′. We claim that iI(H) > iI(G), resulting in

biI(G) ≤ |E′|. Let f = (V f
0 , V

f
1 , V

f
2 ) be an iI(H)-function. Since x1 is isolated in

H and x2, x3 induce a path on two vertices, we have f(x1) = 1 and f(x2) = 2 or

f(x3) = 2. Without loss of generality, assume that f(x2) = 2 and f(x3) = 0. If

dG(x2) = 2 or
∑

x∈NG(x2)−{x1} f(x) = 0, then the function h defined on V (G) by

h(x1) = h(x3) = 0 and h(z) = f(z) for any other vertex z, is an IID-function of G of

weight less than iI(H). Hence we assume dG(x2) ≥ 3 and
∑

x∈NG(x2)−{x1} f(x) ≥ 1.

We consider the following cases.

Case 1.
∑

x∈NG(x2)−{x1} f(x) ≥ 2.

If
∑

x∈NG(x1)−{x2} f(x) ≥ 2 and
∑

x∈NG(x3)−{x1,x2} f(x) ≥ 2, then the function h

defined by f(x1) = f(x2) = f(x3) = 0 and h(z) = f(z) for any other vertex z,

is an IID-function of G of weight less than iI(H). If
∑

x∈NG(x1)−{x2} f(x) ≥ 2

and
∑

x∈NG(x3)−{x1,x2} f(x) = 1, then the function h defined by h(x1) = h(x2) =

h(x3) = 0, h(w) = 2 for some vertex w ∈ V f
1 ∩ (NG(x3)− {x1, x2}) and h(z) = f(z)

for any other vertex z, is an IID-function of G of weight less than iI(H). If∑
x∈NG(x1)−{x2} f(x) ≥ 2 and

∑
x∈NG(x3)−{x1,x2} f(x) = 0, then the function h de-

fined by h(x1) = h(x2) = 0, h(x3) = 1 and h(z) = f(z) for any other vertex z, is an

IID-function of G of weight less than iI(H).

If
∑

x∈NG(x1)−{x2} f(x) = 1 and
∑

x∈NG(x3)−{x1,x2} f(x) ≥ 1, then the function h

defined by h(x1) = h(x2) = h(x3) = 0, h(u) = 2 for some vertex u ∈ V f
1 ∩ NG(x1),

h(u′) = min{2, f(u′) + 1} for some vertex u′ ∈ (V f
1 ∪ V

f
2 ) ∩ (NG(x3) − {x1, x2})

and h(z) = f(z) otherwise, is an IID-function of G of weight less than iI(H).

If
∑

x∈NG(x1)−{x2} f(x) = 1,
∑

x∈NG(x3)−{x1,x2} f(x) = 0 and x1x3 ∈ E(G) then

the function h defined by h(x1) = h(x2) = 0, h(x3) = 1 and h(z) = f(z) other-

wise, is an IID-function of G of weight less than iI(H). If
∑

x∈NH(x1)
f(x) = 1,∑

x∈NG(x3)−{x1,x2} f(x) = 0 and x1x3 6∈ E(G), then the function h defined by

h(x1) = h(x2) = 0, h(x3) = 1, h(u) = 2 for some vertex u ∈ V f
1 ∩ NG(x1) and

h(z) = f(z) otherwise, is an IID-function of G of weight less than iI(H).

Based on the previous cases, we can assume now that
∑

x∈NG(x1)−{x2} f(x) = 0.

If
∑

x∈NG(x3)−{x1,x2} f(x) ≥ 1, then the function h defined by h(x2) = h(x3) =

0, h(u′) = min{2, f(u′) + 1} for some vertex u′ ∈ (V f
1 ∪ V

f
2 ) ∩ NG(x3) − {x1, x2}

and h(z) = f(z) otherwise, is an IID-function of G of weight less than iI(H). If∑
x∈NG(x3)−{x1,x2} f(x) = 0 and x1x2 ∈ E(G), then the function h defined by h(x1) =

2, h(x2) = 0 and h(z) = h(z) for the remaining vertices, is an IID-function of G of

weight less than iI(H). Finally, if
∑

x∈NG(x3)−{x1,x2} f(x) = 0 and x1x2 /∈ E(G),

then the function h defined by h(x1) = h(x3) = 1, h(x2) = 0 and h(z) = h(z) for the

remaining vertices, is an IID-function of G of weight less than iI(H). In any case

considered above, we have shown that iI(H) > iI(G).

Case 2.
∑

x∈NG(x2)−{x1} f(x) = 1.
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Assume that y ∈ V f
1 ∩ (NG(x2) − {x1}). If

∑
x∈NG(x1)−{x2} f(x) ≥ 2 and∑

x∈NG(x3)−{x1,x2} f(x) ≥ 2, then the function h defined by h(y) = 2, f(x1) =

f(x2) = 0 and h(z) = f(z) for any other vertex z, is an IID-function of G of

weight less than iI(H). If
∑

x∈NG(x1)−{x2} f(x) ≥ 2 and
∑

x∈NG(x3)−{x1,x2} f(x) = 1,

then the function h defined by h(x1) = h(x2) = 0, h(y) = 2, h(w) = 2 for some

vertex w ∈ (V f
1 − {x1}) ∩ NG(x3) and h(z) = f(z) for any other vertex z, is

an IID-function of G of weight less than iI(H). If
∑

x∈NG(x1)−{x2} f(x) ≥ 2 and∑
x∈NH(x3)−{x1,x2} f(x) = 0, then the function h defined by h(x1) = h(x2) = 0,

h(x3) = 1 and h(z) = f(z) for any other vertex z, is an IID-function of G of weight

less than iI(H). From the above, we can assume now that
∑

x∈NG(x1)−{x2} f(x) ≤ 1.

If
∑

x∈NG(x1)−{x2} f(x) = 1 and
∑

x∈NG(x3)−{x1,x2} f(x) ≥ 2, then the function h

defined by h(x1) = h(x2) = h(x3) = 0, f(y) = 2, f(w) = 2 for some vertex w ∈
V f
1 ∩ NG(x1) and h(z) = f(z) otherwise, is an IID-function of G of weight less

than iI(H). If
∑

x∈NG(x1)−{x2} f(x) = 1 and
∑

x∈NG(x3)−{x1,x2} f(x) = 1, then the

function h defined by h(x1) = h(x2) = 0, h(y) = 2, h(u) = 2 for some vertex

u ∈ V f
1 ∩ NG(x1), h(u′) = 2 for some vertex u′ ∈ V f

1 ∩ NG(x3) and h(z) = f(z)

otherwise, is an IID-function of G of weight ω(f) = iI(H) which assigns a 2 to some

neighbor of xi for each i ∈ {1, 2, 3}, resulting by assumption in iI(H) = ω(h) > iI(G).

If
∑

x∈NG(x1)−{x2} f(x) = 1,
∑

x∈NG(x3)−{x1,x2} f(x) = 0 and x1x3 ∈ E(G), then the

function h defined by h(x1) = h(x2) = 0, h(x3) = 1 and h(z) = f(z) otherwise,

is an IID-function of G of weight less than iI(H). If
∑

x∈NG(x1)−{x2} f(x) = 1,∑
x∈NG(x3)−{x1,x2} f(x) = 0 and x1x3 6∈ E(G), then the function h defined by h(x1) =

h(x2) = 0, h(x3) = 1, f(w) = 2 for some vertex w ∈ V f
1 ∩ NG(x1) and h(z) = f(z)

otherwise, is an IID-function of G of weight less than iI(H). Hence we assume that∑
x∈NG(x1)−{x2} f(x) = 0.

If
∑

x∈NG(x1)−{x2} f(x) = 0,
∑

x∈NG(x3)−{x1,x2} f(x) ≥ 1 and x1x3 ∈ E(G), then

the function h defined by h(x2) = h(x3) = 0 and h(z) = f(z) otherwise, is

an IID-function of G of weight less than iI(H). If
∑

x∈NG(x1)−{x2} f(x) = 0,∑
x∈NG(x3)−{x1,x2} f(x) ≥ 1 and x1x3 /∈ E(G), then the function h defined by

h(x2) = h(x3) = 0, h(w) = min{2, f(w)+1} for some w ∈ (V f
1 ∪V

f
2 )∩NG(x3)−{x2}

and h(z) = f(z) otherwise, is an IID-function of G of weight less than iI(H).

If
∑

x∈NH(x1)
f(x) = 0,

∑
x∈NH(x3)−{x1,x2} f(x) = 0 and x1x3 /∈ E(G), then the

function h defined by h(x2) = 0, h(x1) = h(x3) = 1, and h(z) = f(z) other-

wise, is an IID-function of G of weight less than iI(H). If
∑

x∈NH(x1)
f(x) = 0,∑

x∈NH(x3)−{x1,x2} f(x) = 0 and x1x2 ∈ E(G), then the function h defined by

h(x2) = 0, h(x1) = 2, and h(z) = f(z) otherwise, is an IID-function of G of weight

less than iI(H). 2

Let H be a bipartite graph with bipartite sets X = {y1, y2, y3} and Y = {ui, vi, wi |
1 ≤ i ≤ m} (m ≥ 5) and edge set E(G) = {y1ui, y2ui, y1vi, y3vi, y2wi, y3wi | 1 ≤
i ≤ m}, and let G be the graph obtained from H by adding a path x1x2x3 and

adding the disjoint edges xiyi for i ∈ {1, 2, 3}. Clearly, the function f defined by

f(y1) = f(y2) = f(y3) = 2 and f(z) = 0 otherwise, is the unique iI(G)-function.

Let F = {x1x2, x1y1, x2y2, x3y3} and define the function g on G − F by g(x1) = 1,
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g(x2) = 2, g(yi) = 1 for i ∈ {1, 2, 3}, is an IID-function of G − F of weight iI(G).

This example shows that the condition that G has no iI(G)-function f assigning a 2

to some neighbor of xi for each i ∈ {1, 2, 3} simultaneously, is necessary.

Theorem 2 and its proof result in the following corollaries.

Corollary 2. Let G be a connected graph. If x1x2x3 is a path of length 2 in G with
dG(x1) = 1, then biI(G) ≤ dG(x2) + dG(x3)− 2.

Proof. Let f be a iI(G)-function. If f(x2) ≥ 1, then we must have f(x) = 0

for each x ∈ N(x2), that is f does not assign 2 to no neighbor of x2. On the

other hand, if f(x2) = 0, then f does not assign 2 to no neighbor of x1. Hence

G satisfies the condition specified in the statement of Theorem 2, and consequently,

biI(G) ≤ dG(x1) + dG(x2) + dG(x3) − 3 = dG(x2) + dG(x3) − 2 and the proof is

complete. 2

Corollary 3. Let G be a connected graph. If x1x2x3 is a path of length 2 in G with
dG(x2) = 2, then biI(G) ≤ 2∆(G)− 1.

Restricted to the class of trees of order at least three, we will show that the indepen-

dent Italian bondage number is at most two. We note that such an upper bound has

been also proved for the Italian bondage number by Moradi et al. [10]. In the proof

we give, several cases are considered and discussed. But before presenting this proof,

we give some additional definitions and notations. A path joining two vertices x and

y is called a (x, y)-path. The diameter of a connected graph G, denoted diam(G),

is the length of the shortest path between the most distanced vertices. A diametral

path of a graph G is a shortest path whose length is equal to diam(G). We are also

considering rooted trees distinguished by one vertex r called the root. For a vertex

v 6= r in a rooted tree T , the parent of v is the neighbor of v on the unique (r, v)-path,

while a child of v is any other neighbor of v. A descendant of v is a vertex w 6= v such

that the unique (r, w)-path contains v. The set of children of a vertex v is denoted by

C(v) while D(v) denote the set of its descendants. The maximal subtree at v denoted

by Tv is the subtree of T induced by v and all its descendants. The depth of v is the

largest distance from v to a descendant of v.

Theorem 3. If T is a tree of order n ≥ 3, then

biI(T ) ≤ 2.

Furthermore, this bound is sharp for the double star DSp,p for p ≥ 2.

Proof. Obviously diam(T ) ≥ 2, since n ≥ 3. If diam(T ) = 2, then T is a star and for

any edge e of T we have iI(T −e) = 3 > iI(T ) = 2 leading to biI(T ) = 1. Assume now
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that diam(T ) = 3. Then T is a double star DSp,q for some integers q ≥ p ≥ 1. Let

x, y be the support vertices of the double star, and let x′, y′ be the leaf neighbors of x

and y, respectively. If p = 1, then iI(T − xy) = 4 > iI(T ) = 3 and hence biI(T ) = 1.

Thus let p ≥ 2. Then removing edges x′x and y′y provides a forest F with three

components consisting of the two single vertices and a double star DSp−1,q−1. In this

case, iI(F ) = 2 + (2 + (p − 1)) = 3 + p > iI(T ) = 2 + p yielding biI(T ) ≤ 2. In the

sequel, we can assume that diam(T ) ≥ 4. Let x1x2 . . . xk (k ≥ 5) be a diametral path

in T chosen so that (i) dT (x2) is as large as possible, and (ii) subject to (i) dT (x3) is

maximized. We root T at xk.

If dT (x3) = 2, then let F be the forest obtained from T by removing edges x3x4 and

x3x2. Clearly any iI(F )-function f such that f(x2) is maximized, assigns 1 to x3 and

2 to x2, and thus the function h defined on V (T ) by h(x3) = 0 and h(x) = f(x)

otherwise, is an IID-function of T of weight less than ω(f) leading to biI(T ) ≤ 2.

Therefore we can assume that dT (x3) ≥ 3 and by similarity, every child of x4 with

depth 2 has degree at least 3. Let NT (x3) − {x2, x4} = {y1, y2, . . . , yt}. We proceed

with the following cases.

Case 1. x3 has a child y with depth 1 and degree 3.

Let z1 and z2 be the leaf neighbors of y and let F be the forest obtained from T by

removing the edges yz1 and x3y. Note that z1 is isolated in F and the vertices z2
and y induce a P2 component in F. If f is an iI(F )-function, then we have f(z1) = 1

and either f(z2) = 2 or f(y) = 2, say f(z2) = 2 and thus f(y) = 0. In this case, the

function g defined on V (T ) by g(z2) = 1 and g(x) = f(x) otherwise, is an IID-function

of T of weight less than ω(f), leading to biI(T ) ≤ 2.

Thus we may assume that x3 has no child with depth 1 and degree 3. In particular,

dT (x2) 6= 3.

Case 2. dT (x2) ≥ 4 and x3 has a child of degree 2.

Without loss of generality, let y1 be a child of x3 with degree two and let y′1 be the leaf

neighbor of y1. Let F be the forest obtained from T by removing the edges x2x1 and

x3y1. As in Case 1, if f is an iI(F )-function such that f(x2) is as large as possible,

then f(x1) = 1 and either f(y1) = 2 or f(y′1) = 2, say f(y′1) = 2 and thus f(y1) = 0.

Now, if f(x3) ≥ 1, then the function g defined on V (T ) by g(y′1) = 1 and g(x) = f(x)

otherwise, is an IID-function of T of weight less than ω(f). Hence let f(x3) = 0.

Since x2 has at least two leaf neighbors in F , by the choice of f, we have f(x2) = 2

and thus the function g defined on V (T ) by g(x1) = 0 and g(x) = f(x) otherwise, is

an IID-function of T of weight less than ω(f). In either case, biI(T ) ≤ 2.

Case 3. dT (x2) ≥ 4 and x3 is a support vertex.

According to Cases 1 and 2 we may assume that each child of x3 is a leaf or has

degree at least four. Without loss of generality, let y1 be a leaf neighbor of x3, and

let F be the forest obtained from T by removing edges x1x2 and x3y1. Let f be an

iI(F )-function. Clearly, f(x1) = f(y1) = 1. Now, if f(x2) = 2, then f(x3) = 0

and the function g defined on V (T ) by g(x1) = 0 and g(x) = f(x) for the remaining

vertices, is an IID-function of T of weight less than ω(f). If f(x3) = 2, then f(x2) = 0

and the function g defined on V (T ) by g(y1) = 0 and g(x) = f(x) otherwise, is an
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IID-function of T of weight less than ω(f). Hence we can assume that f(x2) ≤ 1 and

f(x3) ≤ 1. Then all leaves adjacent to x2 in F must be assigned a 1 under f and thus

f(x2) = 0. Recall that dT (x2) ≥ 4. Now, if f(x3) = 0, then the function g defined

on V (T ) by g(x) = 0 for x ∈ NT (x2), g(x2) = 2 and g(x) = f(x) for the remaining

vertices, is an IID-function of T of weight less than ω(f). Thus we can assume that

f(x3) = 1. Then f(x4) = 0 and y1 is the unique leaf adjacent to x3. Thus x4 has a

neighbor w 6= x3 with positive weight. In this case, the function g defined on V (T )

by g(w) = 2, g(x3) = 0, g(x2) = 2, g(x) = 0 for x ∈ NT (x2)− {x3} and g(x) = f(x)

for the remaining vertices, is an IID-function of T of weight less than ω(f). All the

situations examined lead to biI(T ) ≤ 2.

Taking into account the above three cases, we conclude that if dT (x2) ≥ 4, then that

each child of x3 has degree at least four.

Case 4. dT (x2) ≥ 4 and every child of x3 has degree at least 4.

By the assumption, every yi has at least three leaf neighbors, say y1i , y
2
i , y

3
i . Let

F be the forest obtained from T by removing the edges x2x1 and y1y
1
1 and let f =

(V0, V1, V2) be an iI(F )-function F such that f(x2) + f(y1) is as large as possible.

Since x1 and y11 are isolated in F, f(x1) = f(y11) = 1. Note that since x2 has at least

two leaf neighbors in F, then f(x2) 6= 1, and likewise f(y1) 6= 1. Now, if f(x2) =

f(y1) = 2, then the function g defined on V (T ) by g(x1) = g(y11) = 0 and g(x) = f(x)

otherwise, is an IID-function of T of ω(f) − 2. Also, if f(x2) = 2 and f(y1) = 0

(the case f(x2) = 0 and f(y1) = 2 is similar), then the function g defined on V (T )

by g(x1) = 0 and g(x) = f(x) otherwise, is an IID-function of T of weight less

than ω(f) − 1. Hence we can assume that f(x2) = f(y1) = 0. The choice of f

implies that f(x3) ∈ {1, 2}, and thus f(yi) = 0 for each i, NT (x2) − {x3} ⊆ V1 and

NT (yi) − {x3} ⊆ V1 for each i ∈ {1, . . . , t}. If (NT (x4) − {x3}) ∩ V2 6= ∅, then the

function g defined on V (T ) by g(x3) = 0, g(x2) = g(yi) = 2 for all i ∈ {1, . . . , t},
g(x) = 0 for x ∈ L(v2)∪ (∪ti=1L(yi)) and g(x) = f(x) otherwise, is an IID-function of

T of weight less than ω(f). Therefore we may assume that (NT (x4)−{x3})∩V2 = ∅.
If (NT (x4) − {x3}) ∩ V1 6= ∅, then pick a vertex w ∈ (NT (x4) − {x3}) ∩ V1, and

consider the function g defined on V (T ) by g(w) = 2, g(x3) = 0, g(x2) = g(yi) = 2

for all i ∈ {1, . . . , t}, g(x) = 0 for x ∈ L(x2)∪ (∪ti=1L(yi)) and g(x) = f(x) otherwise.

One can see that g is an IID-function of T of weight less than ω(f). Hence we can

assume that (N(x4)− {x3}) ∩ (V1 ∪ V2) = ∅. Again one can define an IID-function g

on V (T ) of weight less than ω(f) by g(x4) = 1, g(x3) = 0, g(x2) = g(yi) = 2 for all

i ∈ {1, . . . , t}, g(x) = 0 for x ∈ L(x2)∪(∪ti=1L(yi)) and g(x) = f(x) otherwise. All the

situations that have been considered show that iI(T ) < iI(F ) and thus biI(T ) ≤ 2.

Case 5. dT (x2) = 2.

It follows from the choice of the diametral path that each child of v3 with depth

one has degree 2. Thus the maximal subtree rooted at x3 is a spider, that is a tree

obtained from a star of order at least three by subdividing at least one of its edges.

This remains valid for every maximal subtree rooted at any child of x4 with depth 2

is a spider. Let us examine the following situations.

Subcase 5.1. Assume first that dT (x3) = 3 and x3 has a leaf child.
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Let w be the leaf child of x3 and let F be the forest obtained from T by removing the

edges x3x2, x3x4. Let f be an iI(F )-function such that f(x2) + f(w) is maximized.

Since x3 and w as well as x1 and x2 induce a P2 component of F , by the choice of f

we have f(x2) = f(w) = 2. In this case, the function g defined on V (T ) by g(w) = 1

and g(x) = f(x) otherwise, is an IID-function of T of weight iI(F )− 1, implying that

biI(T ) ≤ 2.

By Subcase 5.1, we may assume that dT (x3) ≥ 4 or dT (x3) = 3 and x3 has two

children with depth 1 and degree 2.

Subcase 5.2. dT (x4) = 2.

Let F be the forest obtained from T by removing edges x3x2, x4x5. Clearly the com-

ponent of F containing x4 is a spider for which x3 is one of its central vertices. Note

that in this component x3 is a support vertex and x4 is its leaf neighbor. Let f be

an iI(F )-function such that f(x3) is maximized. Clearly f(x1) + f(x2) = 2 and by

the choice of f we must have f(x3) ≥ 1. Thus the function g defined on V (T ) by

g(x2) = 0 and g(x1) = 1 and g(x) = f(x) otherwise, is an IID-function of T of weight

iI(F )− 1, implying that biI(T ) ≤ 2.

Subcase 5.3. dT (x4) ≥ 3 and x4 has a child w which is a support vertex of degree

two.

Let w′ be a leaf neighbor of w and consider the forest F obtained from T by removing

edges wx4, x3x2. Let f be an iI(F )-function such that f(x1) + f(w′) is maximized.

Then f(x1) = f(w′) = 2. Now if f(x4) ≥ 1, then reassigning a 1 to w′ provides an

IID-function T of weight smaller than iI(F ). Likewise, if f(x3) ≥ 1, then reassigning

a 1 to x1 provides an IID-function of T of weight smaller than iI(F ). Hence we can

assume that f(x4) = f(x3) = 0. Thus the function g defined on V (T ) by g(x3) = 1,

g(x) = 0 for x ∈ NT (x3), g(x) = 1 for x ∈ D(x3)−C(x3) and g(x) = f(x) otherwise,

when x3 is not a support vertex, and by g(x3) = 2, g(x) = 0 for x ∈ NT (x3), g(x) = 1

for x ∈ D(x3)−C(x3) and g(x) = f(x) otherwise, when x3 is a support vertex, is an

IID-function of T of weight less than ω(f), and therefore biI(T ) ≤ 2.

Subcase 5.4. dT (x4) ≥ 3 and x4 is a support vertex.

Let w be a leaf neighbor of x4 and consider the forest F obtained from T by remov-

ing the edges wx4, x3x2. Let f be an iI(F )-function such that f(x1) is maximized.

Obviously, f(w) = 1 and f(x1) = 2. Now if f(x4) = 2, then reassigning a 0 to w we

get an IID-function T of weight iI(F ) − 1. Moreover, if f(x3) ≥ 1, then reassigning

a 1 to x1 provides again an IID-function of T of weight iI(F )− 1. Hence we assume

that f(x4) ≤ 1 and f(x3) = 0. Then f(z) = 1 for each leaf neighbor z of x3 and

f(a) + f(a′) = 2 for each child a of x3 with depth 1 and degree 2, where a′ is the leaf

adjacent to a. Now, if f(x4) = 0, then define the function g on V (T ) by g(x3) = 2,

g(x) = 0 or x ∈ N(x3), g(x) = 1 for x ∈ D(x3) − C(x3) and g(x) = f(x) otherwise,

when x3 is a support vertex, and g(x3) = 1, g(x) = 0 for x ∈ N(x3), g(x) = 1 for

x ∈ D(x3) − C(x3) and g(x) = f(x) otherwise, when x3 is not a support vertex.

Recall that dT (x3) ≥ 4 or dT (x3) = 3 and x3 is not a support vertex. In this case,

the function g defined above is an IID-function of T of weight less than iI(F ). Finally

let f(x4) = 1. It follows that w is the only leaf neighbor of x4. Also according to
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Subcase 5.3, we may assume that any child of x4 with depth 1 has degree at least

three. On the other hand, we may assume that the maximal subtree rooted at each

child of x4 with depth 2 is either a P5 whose center vertex is adjacent to x4 or a spider

with maximum degree at least three. Thus f can be chosen such that each child of

x4 with depth 2 is Italian dominated by its children. Now, if x5 has a neighbor in V2,

then define the function g on V (T ) by g(x4) = 0, g(x3) = 2, g(x) = 0 for x ∈ N(v3),

g(x) = 1 for x ∈ D(x3) − C(x3) and g(x) = f(x) otherwise, when x3 is a support

vertex, and g(x3) = 1, g(x) = 0 for x ∈ N(v3), g(x) = 1 for x ∈ D(x3) − C(x3)

and g(x) = f(x) otherwise, if x3 is not a support vertex. In either case, g is an

IID-function of T of weight less than iI(F ). If x5 has a neighbor z in V1 −{x4}, then

the function g on V (T ) by g(z) = 2, g(x4) = 0, g(x3) = 2, g(x) = 0 for x ∈ N(v3),

g(x) = 1 for x ∈ D(x3) − C(x3) and g(x) = f(x) otherwise, when x3 is a support

vertex, and g(x3) = 1, g(x) = 0 for x ∈ N(v3), g(x) = 1 for x ∈ D(x3) − C(x3) and

g(x) = f(x) otherwise, when x3 is not a support vertex, is an IID-function of T of

weight less than iI(F ). In either case, biI(T ) ≤ 2.

According to Subcases 5.1, 5.2, 5.3 and 5.4, we may assume that the maximal subtree

rooted at each child of x4 either is a star of order at least three or a path P5 whose

center vertex is adjacent to x4 or a spider with maximum degree at least 3. Consider

the tree F obtained from T by removing the edges x3x2 and let f be an iIF )-function

such that each child of x4 has positive weight under f or is Italian dominated by its

neighbor (such a property is possible seeing the subtrees rooted at any child of x4).

Clearly f(x1) + f(x2) = 2. If f(x3) ≥ 1, then the function g defined on V (T ) by

g(x1) = 1, g(x2) = 0 and g(x) = f(x) otherwise, is an IID-function of T of weight

less than ω(f). Hence we assume that f(x3) = 0. If f(x4) = 0, then the function

g on V (T ) by g(x3) = 2, g(x) = 0 for x ∈ N(x3), g(x) = 1 for x ∈ D(x3) − C(x3)

and g(x) = f(x) otherwise, when x3 is a support vertex, and g(x3) = 1, g(x) = 0

for x ∈ N(x3), g(x) = 1 for x ∈ D(x3) − C(x3) and g(x) = f(x) otherwise, when

x3 is not a support vertex, is an IID-function of T of weight less than iI(F ). Hence

we assume that f(x4) ≥ 1. Now, if x5 has a neighbor in V2 − {x4}, then define

the function g defined on V (T ) by g(x4) = 0, g(u) = min{2, 1 + |L(u)|} for each

u ∈ C(x4), g(x) = 0 for x ∈ ∪u∈C(x4)NT (u), g(x) = 1 for x ∈ ∪u∈C(x4)(D(u)−C(u))

and g(x) = f(x) otherwise, is an IID-function of T of weight less than iI(F ). If x5
has a neighbor in V1−{x4}, then define the function g defined on V (T ) by g(x4) = 0,

g(u) = min{2, 1 + |L(u)|} for each u ∈ C(x4), g(x) = 0 for x ∈ ∪u∈C(x4)NT (u),

g(x) = 1 for x ∈ ∪u∈C(x4)(D(u)−C(u)) and g(x) = f(x) otherwise, is an IID-function

of T of weight less than iI(F ). Finally, if x5 has no neighbor in V1 ∪ V2 − {x4}, then

we must have f(x4) = 2 (because of x5), and thus the function g defined on V (T )

by g(x5) = 1, g(x4) = 0, g(u) = min{2, 1 + |L(u)|} for each u ∈ C(x4), g(x) = 0

for x ∈ ∪u∈C(x4)NT (u), g(x) = 1 for x ∈ ∪u∈C(x4)(D(u) − C(u)) and g(x) = f(x)

otherwise, is an IID-function of T of weight less than iI(F ). For each of the situ-

ations discussed above, we conclude that biI(T ) ≤ 2, and this completes the proof. 2
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