Independent Italian bondage of graphs

Saeed Kosari ${ }^{1, *}$, Jafar Amjadi ${ }^{2}$, Aysha Khan ${ }^{3}$, Lutz Volkmann ${ }^{4}$
${ }^{1}$ Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
*saeedkosari38@gzhu.edu.cn
${ }^{2}$ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran
j-amjadi@azaruniv.ac.ir
${ }^{3}$ Department of Mathematics, Prince Sattam bin Abdulaziz University, Alkharj 11991, Saudi Arabia a.aysha@psau.edu.sa
${ }^{4}$ Lehrstuhl II fur Mathematik, RWTH Aachen University, 52056 Aachen, Germany volkm@math2.rwth-aachen.de

Received: 15 January 2023; Accepted: 19 May 2023
Published Online: 25 May 2023

Abstract

An independent Italian dominating function (IID-function) on a graph G is a function $f: V(G) \rightarrow\{0,1,2\}$ satisfying the conditions that (i) $\sum_{u \in N(v)} f(u) \geq 2$ when $f(v)=0$, and (ii) the set of all vertices assigned non-zero values under f is independent. The weight of an IID-function is the sum of its function values over all vertices, and the independent Italian domination number $i_{I}(G)$ of G is the minimum weight of an IID-function on G. In this paper, we initiate the study of the independent Italian bondage number $b_{i I}(G)$ of a graph G having at least one component of order at least three, defined as the smallest size of a set of edges of G whose removal from G increases $i_{I}(G)$. We show that the decision problem associated with the independent Italian bondage problem is NP-hard for arbitrary graphs. Moreover, various upper bounds on $b_{i I}(G)$ are established as well as exact values on it for some special graphs. In particular, for trees T of order at least three, it is shown that $b_{i I}(T) \leq 2$.

Keywords: Independent Italian dominating function, independent Italian domination number, independent Italian bondage number

AMS Subject classification: 05C69

[^0]
1. Introduction

We consider simple graphs G with vertex set $V=V(G)$ and edge set $E=E(G)$. The order of G is $n=n(G)=|V|$. For a vertex x of V, let $N_{G}(x)$ denote the set of neighbors of x and let $N_{G}[x]=N_{G}(x) \cup\{x\}$. The degree of a vertex x is $d_{G}(x)=\left|N_{G}(x)\right|$. The maximum degree and minimum degree of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. When no confusion arises, we write N, d, δ and Δ instead of $N_{G}, d_{G}, \delta(G)$ and $\Delta(G)$, respectively. A universal vertex in a graph G is a vertex adjacent to all vertices of G. A leaf is a vertex of degree one while its neighbor is called a support vertex. If x is a support vertex, then we denote by $L(x)$ the set of leaves adjacent to x. For definitions and notations not given here we refer to [5].
As always, the path (cycle, complete graph, complete bipartite graph, respectively) of order n is denoted by $P_{n}\left(C_{n}, K_{n}, K_{p, q}\right.$, respectively). A tree is a connected acyclic graph. A star of order n is the graph $K_{1, n-1}$. A tree T is a double star if it contains exactly two vertices that are not leaves. A double star with respectively p and q leaves attached at each support vertex is denoted by $D S_{p, q}$.
A set $S \subseteq V(G)$ is a dominating set if every vertex not in S has at least one neighbor in S. The domination number of G is the minimum cardinality of a dominating set of G. In 1990, Fink et al. [3] introduced the bondage number $b(G)$ to measure the vulnerability or the stability of the domination number in an interconnection network G under edge failure. The bondage number of a graph G has been defined in [3] as the minimum number of edges whose removal from G increases the domination number. Since then the concept of bondage has been widely studied for several graph parameters, for instance see $[1,6-8,13]$.
The concept of Italian domination has been introduced in 2016 by Chellali et al. [2] as a new variation of Roman domination but called differently, namely Roman \{2\}domination. An Italian dominating function (ID-function) on a graph G is a function $f: V \longrightarrow\{0,1,2\}$ having the property that $f(N[u]) \geq 2$ for each vertex u with $f(u)=0$. The weight of an ID-function f is the sum $w(f)=\sum_{v \in V(G)} f(v)$, and the minimum weight of an ID-function of G is the Italian domination number $\gamma_{I}(G)$. Some variants of Italian domination have been studied, for instance see [9, 12].
An ID-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ on a graph G is an independent Italian dominating function (IID-function) if the set $V_{1} \cup V_{2}$ is independent, that is no two vertices in $V_{1} \cup V_{2}$ are adjacent. The independent Italian domination number $i_{I}(G)$ is the minimum weight of an IID-function on G. Moreover, an IID-function of a graph G with minimum weight is called an $i_{I}(G)$-function. Independent Italian domination was first defined and studied in [11] by Rahmouni and Chellali.
In this paper, we initiate the study of the independent Italian bondage number $b_{i I}(G)$ of a graph G defined as the smallest set of edges $F \subseteq E(G)$ for which $i_{I}(G-F)>$ $i_{I}(G)$. Note that since the independent Italian domination number of a connected graph of order two does not increase after the deletion of the unique edge, we will assume that $\Delta(G) \geq 2$. We also note that Moradi et al. [10] have initiated in 2020 the study of the Italian bondage number of a graph G denoted by $b_{I}(G)$.
We start our results by showing that the decision problem associated with the inde-
pendent Italian bondage number is NP-hard for general graphs. Then, we establish several upper bounds for $b_{i I}(G)$. In particular for trees T of order at least three it is shown that $b_{i I}(T) \leq 2$. Furthermore, exact values of the independent Italian bondage number are also given for some special graphs including paths, cycles and complete bipartite graphs.
We close this section by mentioning that every connected graph G of order at least two satisfies $i_{I}(G) \geq 2$. Extremal graphs attaining the bound are given by the following result whose proof is omitted because of its easiness.

Proposition 1. Let G be a connected graph of order $n \geq 2$. Then $i_{I}(G)=\gamma_{I}(G)=2$ if and only if $\Delta(G)=n-1$ or $\Delta(G)=n-2$ and there are two non-adjacent vertices of degree $n-2$.

2. NP-hardness result

In this section, we will show that the problem of computing the independent Italian bondage number is NP-hard. We first state it as the following decision problem.

Independent Italian bondage number (IIB):

Instance: A graph G and a positive integer k.

Question: Is $b_{i I}(G) \leq k$?
We show that the NP-hardness of the IIB problem by transforming the 3-SAT problem to it in polynomial time. Recall that the 3-SAT problem specified below was proven to be NP-complete in [4].

3-satisfiability problem (3SAT):
Instance: A collection $\mathscr{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ of clauses over a finite set U of variables such that $|C j|=3$ for $j=1,2, \ldots, m$.

Question: Is there a truth assignment for U that satisfies all the clauses in \mathscr{C} ?

Theorem 1. The IIB problem is NP-hard for general graphs.

Proof. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\mathscr{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be an arbitrary instance of 3 SAT. We will construct a graph G and choose a positive integer k such that \mathscr{C} is satisfiable if and only if $b_{i I}(G) \leq k$. For each $i \in\{1,2, \ldots, n\}$, we associate to each variable $u_{i} \in U$, a graph H_{i} obtained from a complete bipartite graph $K_{2,3}$ with bipartite sets $\left\{x_{i}, y_{i}, z_{i}\right\}$ and $\left\{u_{i}, \overline{u_{i}}\right\}$ by adding the edge $u_{i} \overline{u_{i}}$. For each $j \in$

Figure 1. Graph F
$\{1,2, \ldots, m\}$, we associate to the clause $C_{j}=\left\{p_{j}, q_{j}, r_{j}\right\} \in \mathscr{C}$, a single vertex c_{j} and we add the edge-set $E_{j}=\left\{c_{j} p_{j}, c_{j} q_{j}, c_{j} r_{j}\right\}$. Finally, add a graph F as depicted in Figure 1 by joining s_{1} and s_{2} to every vertex c_{j}. Clearly, G is a graph of order $5 n+m+6$, and therefore it can be constructed in polynomial time. An example of the constructed graph G when $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $\mathscr{C}=\left\{C_{1}, C_{2}, C_{3}\right\}$, where $C_{1}=\left\{u_{1}, u_{2}, \overline{u_{3}}\right\}, C_{2}=\left\{\overline{u_{1}}, u_{2}, u_{4}\right\}, C_{3}=\left\{\overline{u_{2}}, u_{3}, u_{4}\right\}$ is illustrated in Figure 2. Set $k=1$, and let us show that \mathscr{C} is satisfiable if and only if $b_{i I}(G)=1$. For this aim, we need to show first the following claims.

Figure 2. NP-hardness for general graphs

Claim 1. $\quad i_{I}(G) \geq 2 n+3$ and for any $i_{I}(G)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$, we have $f\left(V\left(H_{i}\right)\right) \geq 2$. Moreover, if $\gamma_{i I}(G)=2 n+3$, then $f\left(V\left(H_{i}\right)\right)=2, f\left(s_{3}\right)=2, f\left(s_{4}\right)=1$ and $f\left(s_{1}\right)=f\left(s_{2}\right)=f\left(s_{5}\right)=f\left(s_{6}\right)=0$ and $\left|\left\{u_{i}, \overline{u_{i}}\right\} \cap V_{2}\right|=1$ for each $i \in\{1,2, \ldots, n\}$, while $\sum_{j=1}^{m} f\left(c_{j}\right)=0$.

Proof of Claim 1. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be an $i_{I}(G)$-function. By the construction of G, we have $f\left(V\left(H_{i}\right)\right) \geq 2$ for each $i \in\{1,2, \ldots, n\}$. Moreover, one can easily see that $f(V(F))+\sum_{j=1}^{m} f\left(c_{j}\right) \geq 3$, and therefore $i_{I}(G) \geq 2 n+3$.
Suppose that $i_{I}(G)=2 n+3$. Then $f\left(V\left(H_{i}\right)\right)=2$ for each $i \in\{1,2, \ldots, n\}$. To Italian dominate the vertices x_{i}, y_{i}, z_{i} and noting that u_{i} and $\overline{u_{i}}$ are adjacent we must have $\left|\left\{u_{i}, \overline{u_{i}}\right\} \cap V_{2}\right|=1$. Now, if $f\left(s_{1}\right) \geq 1$ (the case $f\left(s_{2}\right) \geq 1$ is similar), then to dominate other vertices in F we must have $f(V(F)) \geq 4$ which leads to the contradiction that $w(f) \geq 2 n+4$. Hence $f\left(s_{1}\right)=f\left(s_{2}\right)=0$ and this implies that $f\left(s_{4}\right) \geq 1$ and $f\left(s_{3}\right)+f\left(s_{5}\right)+f\left(s_{6}\right) \geq 2$. Therefore $\sum_{j=1}^{m} f\left(c_{j}\right)=0, f\left(s_{3}\right)=2, f\left(s_{4}\right)=1$ and $f\left(s_{5}\right)=f\left(s_{6}\right)=0$.

Claim 2. $i_{I}(G)=2 n+3$ if and only if \mathscr{C} is satisfiable.

Proof of Claim 2. Suppose that $i_{I}(G)=2 n+3$ and let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be an $i_{I}(G)$-function. By Claim 1, $\left|\left\{u_{i}, \overline{u_{i}}\right\} \cap V_{2}\right|=1$ for each $i \in\{1,2, \ldots, n\}$. Also, $f\left(s_{1}\right)=f\left(s_{2}\right)=0, \sum_{j=1}^{m} f\left(c_{j}\right)=0, f\left(s_{3}\right)=2, f\left(s_{4}\right)=1$ and $f\left(s_{5}\right)=f\left(s_{6}\right)=0$. Define a mapping $t: U \rightarrow\{T, F\}$ by

$$
t\left(u_{i}\right)=\left\{\begin{array}{lc}
T & \text { if } \quad f\left(u_{i}\right)=2 \tag{1}\\
F & \text { otherwise }
\end{array}\right.
$$

for $i \in\{1, \ldots, n\}$. We now show that t is a satisfying truth assignment for \mathscr{C}. It is sufficient to show that every clause in \mathscr{C} is satisfied by t. Since the vertex c_{j} is not adjacent to any member of $\left\{s_{3}, s_{4}\right\} \cup\left\{x_{i}, y_{i}, z_{i}\right\}$, there exists some $i \in\{1, \ldots, n\}$ such that $\left|N\left(c_{j}\right) \cap\left\{u_{i}, \overline{u_{i}}\right\}\right|=1$ and one of u_{i} and $\overline{u_{i}}$ belongs to V_{2}. Now, if c_{j} is adjacent to u_{i} and $f\left(u_{i}\right)=2$, then let $t\left(u_{i}\right)=T$, while if c_{j} is adjacent to $\overline{u_{i}}$ and $f\left(\overline{u_{i}}\right)=2$, then $t\left(u_{i}\right)=F$ and so $t\left(\overline{u_{i}}\right)=T$ by (1). Hence, in either case the clause C_{j} is satisfied. The arbitrariness of $j \in\{1, \ldots, m\}$ shows that all the clauses in \mathscr{C} are satisfied by t, that is, \mathscr{C} is satisfiable.
Conversely, suppose that \mathscr{C} is satisfiable, and let $t: U \rightarrow\{T, F\}$ be a satisfying truth assignment for \mathscr{C}. We construct a subset D of vertices of G as follows. If $t\left(u_{i}\right)=T$, then put the vertex u_{i} in D; if $t\left(u_{i}\right)=F$, then put the vertex $\overline{u_{i}}$ in D. Hence $|D|=n$. Now define the function h by $h(x)=2$ for every $x \in D, h\left(s_{3}\right)=2, h\left(s_{4}\right)=1$ and $h(y)=0$ for any other vertex. Since t is a satisfying truth assignment for \mathscr{C}, the corresponding vertex c_{j} in G is adjacent to at least one vertex in D. One can easy check that h is IID-function of G of weight $2 n+3$ and so $i_{I}(G) \leq 2 n+3$. By Claim $1, i_{I}(G) \geq 2 n+3$, and therefore $i_{I}(G)=2 n+3$.

Claim 3. For any edge $e \in E(G), i_{I}(G-e) \leq 2 n+4$.

Proof of Claim 3. Assume first that e is an edge belonging to $E(H)-\left\{u_{i} \overline{u_{i}}\right\}$, and since the edges of such a set play the same role, we take $e=x_{i} u_{i}$. Then the function
f defined by $f\left(\overline{u_{i}}\right)=2$ for each $i \in\{1, \ldots, n\}$ and $f\left(s_{2}\right)=2, f\left(s_{5}\right)=f\left(s_{6}\right)=1$ and $f(y)=0$ for the remaining vertices is an IID-function of $G-e$ of weight $2 n+4$. The same function f as defined previously remains valid when the edge e to be removed belongs to $\left\{s_{1} s_{4}, s_{3} s_{5}, s_{3} s_{6}, s_{1} s_{3}\right\}$ or e has an endvertex in $V\left(H_{i}\right) \cup\left\{s_{1}\right\}$ and the other endvertex some c_{j}. Assume now that $e=u_{j} \overline{u_{j}}$ for some j. Then the function f defined by $f\left(u_{j}\right)=f\left(\overline{u_{j}}\right)=1, f\left(\overline{u_{i}}\right)=2$ for each $i \in\{1, \ldots, n\}-\{j\}$, $f\left(s_{2}\right)=2, f\left(s_{5}\right)=f\left(s_{6}\right)=1$ and $f(y)=0$ for the remaining vertices is an IIDfunction of $G-e$ of weight $2 n+4$. If $e=s_{1} s_{2}$, then the function f defined by $f\left(\overline{u_{i}}\right)=2$ for each i, and $f\left(s_{1}\right)=f\left(s_{2}\right)=f\left(s_{5}\right)=f\left(s_{6}\right)=1$ and $f(y)=0$ for any other vertex is an IID-function of $G-e$ of weight $2 n+4$. If $e=s_{2} s_{4}$ or $e=s_{2} c_{j}$ for some j, then the function f defined by $f\left(\overline{u_{i}}\right)=2$ for each $i, f\left(s_{1}\right)=2$ and $f\left(s_{5}\right)=f\left(s_{6}\right)=1$ and $f(y)=0$ for any other vertex is an IID-function of $G-e$ of weight $2 n+4$. In either case, we deduce that for every edge $e \in E(G), i_{I}(G-e) \leq 2 n+4$.

Claim 4. $i_{I}(G)=2 n+3$ if and only if $b_{i I}(G)=1$.

Proof of Claim 4. Assume that $i_{I}(G)=2 n+3$ and take $e=s_{3} s_{5}$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $i_{I}(G-e)$-function. Clearly $f\left(s_{5}\right)=1$, since the vertex s_{5} is isolated. Also, $f\left(V\left(H_{i}\right)\right) \geq 2$ for each $i \in\{1, \ldots, n\}$, and thus the total weight for all H_{i} 's is at least $2 n$. Now, using the fact that $i_{I}(G)=2 n+3$ and $f\left(s_{5}\right)=1$ we deduce that the sum of the values assigned to the c_{j} 's and s_{i} 's except s_{5} is 2 , which is impossible. Therefore, we conclude that $i_{I}(G-e)>i_{I}(G)$, and thus $b_{i I}(G)=1$.
Now assume that $b_{i I}(G)=1$ and let e be an edge such that $i_{I}(G-e)>i_{I}(G)$. By Claim 1, we have $i_{I}(G) \geq 2 n+3$ while by Claim 3, we have $i_{I}(G-e) \leq 2 n+4$. Therefore $2 n+3 \leq i_{I}(G)<i_{I}(G-e) \leq 2 n+4$, which yields $2 n+3=i_{I}(G)$.
It follows from Claim 2 and Claim 4, that $b_{i I}(G)=1$ if and only if \mathscr{C} is satisfiable and the theorem follows.

3. Exact values of $b_{i I}(G)$

In this section, we determine the independent Roman bondage number for some special graphs. We begin by recalling some useful results given in [10]. Moreover, we gather some results in the following proposition whose its proof is omitted.

Proposition 2. 1. $i_{I}\left(K_{n}\right)=\gamma_{I}\left(K_{n}\right)=2$.
2. $i_{I}\left(P_{n}\right)=\gamma_{I}\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$.
3. For $n \geq 3, i_{I}\left(C_{n}\right)=\gamma_{I}\left(C_{n}\right)=\frac{n}{2}$ if n is even and $i_{I}\left(C_{n}\right)=\left\lceil\frac{n+2}{2}\right\rceil$ if n is odd.
4. If $G=K_{n_{1}, n_{2}, \ldots, n_{t}}$ is a complete t-partite graph with $t \geq 2$ such that $2 \leq n_{1}<n_{2} \leq$ $n_{3} \leq \ldots \leq n_{t}$, then $i_{I}(G)=n_{1}$.
5. If G is a connected graph of order at least three such that $i_{I}(G)=\gamma_{I}(G)$, then $b_{i I}(G) \leq$ $b_{I}(G)$.

Proposition 3 ([10]). Let G be a graph of order $n \geq 3$ with exactly t universal vertices and ℓ non-adjacent pair vertices of degree $n-2$ where $n>k+2 \ell$. Then

$$
b_{I}(G) \leq\left\{\begin{array}{lc}
\left\lfloor\frac{t}{2}\right\rfloor+\left\lfloor\frac{\left\lfloor\frac{t}{2}\right\rfloor+\ell}{2}\right\rfloor & \text { if } \\
\text { both } t \text { and }\left\lfloor\frac{t}{2}\right\rfloor+\ell \text { are even, } \\
\left\lfloor\frac{t}{2}\right\rfloor+\left\lfloor\frac{\left\lfloor\frac{t}{2}\right\rfloor+\ell}{2}\right\rfloor+1 & \text { otherwise. }
\end{array}\right.
$$

Proposition 4 ([10]). For $n \geq 3, b_{I}\left(P_{n}\right)=1$.
Proposition $5([10])$. For $n \geq 3, b_{I}\left(C_{n}\right)=1$ if $n \equiv 0(\bmod 2)$.

As an immediate consequence of Propositions 4 and 2-(5), we have the following.
Corollary 1. For $n \geq 3, b_{i I}\left(P_{n}\right)=1$.
Proposition 6. Let G be a graph of order $n \geq 3$ with exactly $t \geq 1$ universal vertices and ℓ non-adjacent pair vertices of degree $n-2$ where $n>k+2 \ell$ and $t \geq 1$ or $\ell \geq 2$. Then

$$
b_{i I}(G) \leq\left\{\begin{array}{lc}
\left\lfloor\frac{t}{2}\right\rfloor+\left\lfloor\frac{\left\lfloor\frac{t}{2}\right\rfloor+\ell}{2}\right\rfloor & \text { if } \\
\text { both } t \text { and }\left\lfloor\frac{t}{2}\right\rfloor+\ell \text { are even, } \\
\left\lfloor\frac{t}{2}\right\rfloor+\left\lfloor\frac{\left\lfloor\frac{t}{2}\right\rfloor+\ell}{2}\right\rfloor+1 & \text { otherwise. }
\end{array}\right.
$$

In particular, $b_{i I}\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ for $n \geq 3$.

Proof. Since $t \geq 1$ or $\ell \geq 2$, we have $i_{I}(G)=\gamma_{I}(G)=2$, and thus by Propositions $2-(5)$ and 3 the desired bound follows.

Proposition 7. For $n \geq 3, b_{i I}\left(C_{n}\right)=\left\{\begin{array}{lll}1 & \text { if } n \equiv 0(\bmod 2), \\ 2 & \text { if } n=3, \\ 3 & \text { otherwise. }\end{array}\right.$
Proof. If n is even, then it follows from Propositions 2-($2,3,5$) and 5 that $b_{i I}\left(C_{n}\right)=1$. Hence we can assume that n is odd. Since the result is immediate for $n=3$, suppose that $n \geq 5$. Let $C_{n}=v_{1} v_{2} \ldots v_{n} v_{1}$ and let G be obtained from C_{n} by deleting the edges $v_{1} v_{n}, v_{2} v_{3}, v_{4} v_{5}$. Then $G=2 P_{2} \cup P_{n-4}$ and we deduce from Propositions 2 -(2) that $i_{I}(G)=4+\left\lceil\frac{n-3}{2}\right\rceil>i_{I}\left(C_{n}\right)$ and hence $b_{i I}\left(C_{n}\right) \leq 3$. To achieve the proof it is enough to show that $b_{i I}\left(C_{n}\right) \geq 3$ if n is odd and $n \geq 5$. Assume $C_{n}=$ $v_{1} v_{2} \ldots v_{n} v_{1}$, and let e and e^{\prime} be two arbitrary edges of C_{n}. Clearly, $C_{n}-\left\{e, e^{\prime}\right\}$ is the union of two disjoint paths P and Q such that $n(P)+n(Q)=n$. Therefore $i_{I}\left(C_{n}-\left\{e, e^{\prime}\right\}\right)=i_{I}(P)+i_{I}(Q)$. Without loss of generality, we may assume that $n(P)$ is even and $n(Q)$ is odd. It follows from Proposition 2-(2) that $i_{I}\left(C_{n}-\left\{e, e^{\prime}\right\}\right)=$ $i_{I}(P)+i_{I}(Q)=\left\lceil\frac{n(P)+1}{2}\right\rceil+\frac{n(Q)+1}{2}=\left\lceil\frac{n+2}{2}\right\rceil=i_{I}\left(C_{n}\right)$ which leads to $b_{i I}\left(C_{n}\right) \geq 3$, and hence $b_{i I}\left(C_{n}\right)=3$.

Proposition 8. Let $G=K_{n_{1}, n_{2}, \ldots, n_{t}}$ be a complete t-partite graph with $t \geq 2$ such that $2 \leq n_{1}<n_{2} \leq n_{3} \leq \ldots \leq n_{t}$. Then $b_{i I}(G)=n_{1}-1$.

Proof. Let $X_{1}, X_{2}, \ldots, X_{t}$ be the partite sets of G with $\left|X_{i}\right|=n_{i}$ for each $i \in$ $\{1, \ldots, t\}$, and let in particular $X_{1}=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}}\right\}$ and $X_{2}=\left\{y_{1}, y_{2}, \ldots, y_{n_{2}}\right\}$. We note that the function h defined on $V(G)$ by $h\left(u_{i}\right)=1$ for each $i \in\left\{1,2, \ldots, n_{1}\right\}$ and $h(x)=0$ for any other vertex of G is the unique $i_{I}(G)$-function. Let $F=$ $\left\{u_{i} y_{1} \mid 1 \leq i \leq n_{1}-1\right\}$, and let H be the spanning graph of G obtained from G by removing all edges of F. We claim that $i_{I}(H)=n_{1}+1>i_{I}(G)$. To show this, let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be an $i_{I}(H)$-function. We examine the possibilities according to whether $f\left(y_{1}\right) \in\{0,1,2\}$.
If $f\left(y_{1}\right)=0$, then $f\left(u_{n_{1}}\right)=2$ or $f(w) \geq 1$ for some vertex $w \in V(G) \backslash\left(X_{1} \cup X_{2}\right)$. If $f\left(u_{n_{1}}\right)=2$, then the condition that $V_{1} \cup V_{2}$ is independent implies $V(G)-X_{1} \subseteq V_{0}$ and so $\left\{u_{1}, u_{2}, \ldots, u_{n_{1}-1}\right\} \subseteq V_{1} \cup V_{2}$ yielding $i_{I}(H)=\omega(f) \geq n_{1}+1>i_{I}(G)$. Now assume that $f(w) \geq 1$ for some vertex $w \in V(G) \backslash\left(X_{1} \cup X_{2}\right)$. If, without loss of generality, $w \in X_{3}$, then it follows that $f(x) \geq 1$ for every vertex $x \in X_{3}$ and thus $i_{I}(H)=\omega(f)=n_{3} \geq n_{1}+1>i_{I}(G)$.
If $f\left(y_{1}\right)=1$, then $f\left(u_{n_{1}}\right)=0$ and $u_{n_{1}}$ needs another neighbor in $V_{1} \cup V_{2}$, but since $V_{1} \cup V_{2}$ is independent we deduce that $\left\{y_{2}, y_{3}, \ldots, y_{n_{2}}\right\} \subseteq V_{1} \cup V_{2}$ and so $i_{I}(H)=$ $\omega(f) \geq n_{2}>i_{I}(G)$.
Finally, assume that $f\left(y_{1}\right)=2$. Then $f\left(u_{n_{1}}\right)=0$, and since $V_{1} \cup V_{2}$ is independent, we must have either $\left\{y_{2}, y_{3}, \ldots, y_{n_{2}}\right\} \subseteq V_{1} \cup V_{2}$ or $\left\{u_{1}, u_{2} \ldots, u_{n_{1}-1}\right\} \subseteq V_{1} \cup V_{2}$. In either case $i_{I}(H)=\omega(f) \geq n_{1}+1>i_{I}(G)$. Therefore $b_{i I}(G) \leq n_{1}-1$.
To prove the inverse inequality, let $F \subseteq E(G)$ be an arbitrary subset of edges with $|F|<n_{1}-1$, and let H be the graph obtained from G by removing all edges of F. Then clearly $d_{H}\left(u_{i}\right)=d_{H}\left(u_{j}\right)=n_{2}+n_{3}+\ldots+n_{t}$ for some two distinct indices i and j, and hence the function g defined on $V(H)$ by $g\left(u_{i}\right)=1$ for each $i \in\left\{1, \ldots, n_{i}\right\}$ and $g(x)=0$ otherwise, is an IID-function of H of weight n_{1}, leading to $b_{i I}(G) \geq n_{1}-1$. Therefore $b_{i I}(G)=n_{1}-1$, and the proof is complete.

4. Bounds on $b_{i I}(G)$

In this section, we first present an upper for the independent Italian bondage number for general graphs and then we show that the independent Italian bondage number of any tree with at least three vertices is at most two.

Theorem 2. Let G be a connected graph. If $x_{1} x_{2} x_{3}$ is a path of length 2 in G and G has no $i_{I}(G)$-function f assigning a 2 to some neighbor of x_{i} for each $i \in\{1,2,3\}$ simultaneously, then

$$
b_{i I}(G) \leq d\left(x_{1}\right)+d\left(x_{2}\right)+d\left(x_{3}\right)-3-\ell\left(x_{1}, x_{3}\right),
$$

where $\ell\left(x_{1}, x_{3}\right)=1$ if $x_{1} x_{3} \in E(G)$ and $\ell\left(x_{1}, x_{3}\right)=0$ otherwise.

Proof. Let $E^{\prime} \subseteq E(G)$ be the set of all edges incident with either x_{1}, x_{2} or x_{3} except the edge $x_{2} x_{3}$. Obviously, $\left|E^{\prime}\right|=d\left(x_{1}\right)+d\left(x_{2}\right)+d\left(x_{3}\right)-3$ when $x_{1} x_{3} \notin E(G)$ and $\left|E^{\prime}\right|=d\left(x_{1}\right)+d\left(x_{2}\right)+d\left(x_{3}\right)-4$ when $x_{1} x_{3} \in E(G)$. Let H be the graph obtained from G by removing all edges of E^{\prime}. We claim that $i_{I}(H)>i_{I}(G)$, resulting in $b_{i I}(G) \leq\left|E^{\prime}\right|$. Let $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be an $i_{I}(H)$-function. Since x_{1} is isolated in H and x_{2}, x_{3} induce a path on two vertices, we have $f\left(x_{1}\right)=1$ and $f\left(x_{2}\right)=2$ or $f\left(x_{3}\right)=2$. Without loss of generality, assume that $f\left(x_{2}\right)=2$ and $f\left(x_{3}\right)=0$. If $d_{G}\left(x_{2}\right)=2$ or $\sum_{x \in N_{G}\left(x_{2}\right)-\left\{x_{1}\right\}} f(x)=0$, then the function h defined on $V(G)$ by $h\left(x_{1}\right)=h\left(x_{3}\right)=0$ and $h(z)=f(z)$ for any other vertex z, is an IID-function of G of weight less than $i_{I}(H)$. Hence we assume $d_{G}\left(x_{2}\right) \geq 3$ and $\sum_{x \in N_{G}\left(x_{2}\right)-\left\{x_{1}\right\}} f(x) \geq 1$. We consider the following cases.
Case 1. $\sum_{x \in N_{G}\left(x_{2}\right)-\left\{x_{1}\right\}} f(x) \geq 2$.
If $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x) \geq 2$ and $\sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x) \geq 2$, then the function h defined by $f\left(x_{1}\right)=f\left(x_{2}\right)=f\left(x_{3}\right)=0$ and $h(z)=f(z)$ for any other vertex z, is an IID-function of G of weight less than $i_{I}(H)$. If $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x) \geq 2$ and $\sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x)=1$, then the function h defined by $h\left(x_{1}\right)=h\left(x_{2}\right)=$ $h\left(x_{3}\right)=0, h(w)=2$ for some vertex $w \in V_{1}^{f} \cap\left(N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}\right)$ and $h(z)=f(z)$ for any other vertex z, is an IID-function of G of weight less than $i_{I}(H)$. If $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x) \geq 2$ and $\sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x)=0$, then the function h defined by $h\left(x_{1}\right)=h\left(x_{2}\right)=0, h\left(x_{3}\right)=1$ and $h(z)=f(z)$ for any other vertex z, is an IID-function of G of weight less than $i_{I}(H)$.
If $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x)=1$ and $\sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x) \geq 1$, then the function h defined by $h\left(x_{1}\right)=h\left(x_{2}\right)=h\left(x_{3}\right)=0, h(u)=2$ for some vertex $u \in V_{1}^{f} \cap N_{G}\left(x_{1}\right)$, $h\left(u^{\prime}\right)=\min \left\{2, f\left(u^{\prime}\right)+1\right\}$ for some vertex $u^{\prime} \in\left(V_{1}^{f} \cup V_{2}^{f}\right) \cap\left(N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}\right)$ and $h(z)=f(z)$ otherwise, is an IID-function of G of weight less than $i_{I}(H)$. If $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x)=1, \sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x)=0$ and $x_{1} x_{3} \in E(G)$ then the function h defined by $h\left(x_{1}\right)=h\left(x_{2}\right)=0, h\left(x_{3}\right)=1$ and $h(z)=f(z)$ otherwise, is an IID-function of G of weight less than $i_{I}(H)$. If $\sum_{x \in N_{H}\left(x_{1}\right)} f(x)=1$, $\sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x)=0$ and $x_{1} x_{3} \notin E(G)$, then the function h defined by $h\left(x_{1}\right)=h\left(x_{2}\right)=0, h\left(x_{3}\right)=1, h(u)=2$ for some vertex $u \in V_{1}^{f} \cap N_{G}\left(x_{1}\right)$ and $h(z)=f(z)$ otherwise, is an IID-function of G of weight less than $i_{I}(H)$.
Based on the previous cases, we can assume now that $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x)=0$.
If $\sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x) \geq 1$, then the function h defined by $h\left(x_{2}\right)=h\left(x_{3}\right)=$ $0, h\left(u^{\prime}\right)=\min \left\{2, f\left(u^{\prime}\right)+1\right\}$ for some vertex $u^{\prime} \in\left(V_{1}^{f} \cup V_{2}^{f}\right) \cap N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}$ and $h(z)=f(z)$ otherwise, is an IID-function of G of weight less than $i_{I}(H)$. If $\sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x)=0$ and $x_{1} x_{2} \in E(G)$, then the function h defined by $h\left(x_{1}\right)=$ $2, h\left(x_{2}\right)=0$ and $h(z)=h(z)$ for the remaining vertices, is an IID-function of G of weight less than $i_{I}(H)$. Finally, if $\sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x)=0$ and $x_{1} x_{2} \notin E(G)$, then the function h defined by $h\left(x_{1}\right)=h\left(x_{3}\right)=1, h\left(x_{2}\right)=0$ and $h(z)=h(z)$ for the remaining vertices, is an IID-function of G of weight less than $i_{I}(H)$. In any case considered above, we have shown that $i_{I}(H)>i_{I}(G)$.
Case 2. $\sum_{x \in N_{G}\left(x_{2}\right)-\left\{x_{1}\right\}} f(x)=1$.

Assume that $y \in V_{1}^{f} \cap\left(N_{G}\left(x_{2}\right)-\left\{x_{1}\right\}\right)$. If $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x) \geq 2$ and $\sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x) \geq 2$, then the function h defined by $h(y)=2, f\left(x_{1}\right)=$ $f\left(x_{2}\right)=0$ and $h(z)=f(z)$ for any other vertex z, is an IID-function of G of weight less than $i_{I}(H)$. If $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x) \geq 2$ and $\sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x)=1$, then the function h defined by $h\left(x_{1}\right)=h\left(x_{2}\right)=0, h(y)=2, h(w)=2$ for some vertex $w \in\left(V_{1}^{f}-\left\{x_{1}\right\}\right) \cap N_{G}\left(x_{3}\right)$ and $h(z)=f(z)$ for any other vertex z, is an IID-function of G of weight less than $i_{I}(H)$. If $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x) \geq 2$ and $\sum_{x \in N_{H}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x)=0$, then the function h defined by $h\left(x_{1}\right)=h\left(x_{2}\right)=0$, $h\left(x_{3}\right)=1$ and $h(z)=f(z)$ for any other vertex z, is an IID-function of G of weight less than $i_{I}(H)$. From the above, we can assume now that $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x) \leq 1$. If $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x)=1$ and $\sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x) \geq 2$, then the function h defined by $h\left(x_{1}\right)=h\left(x_{2}\right)=h\left(x_{3}\right)=0, f(y)=2, f(w)=2$ for some vertex $w \in$ $V_{1}^{f} \cap N_{G}\left(x_{1}\right)$ and $h(z)=f(z)$ otherwise, is an IID-function of G of weight less than $i_{I}(H)$. If $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x)=1$ and $\sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x)=1$, then the function h defined by $h\left(x_{1}\right)=h\left(x_{2}\right)=0, h(y)=2, h(u)=2$ for some vertex $u \in V_{1}^{f} \cap N_{G}\left(x_{1}\right), h\left(u^{\prime}\right)=2$ for some vertex $u^{\prime} \in V_{1}^{f} \cap N_{G}\left(x_{3}\right)$ and $h(z)=f(z)$ otherwise, is an IID-function of G of weight $\omega(f)=i_{I}(H)$ which assigns a 2 to some neighbor of x_{i} for each $i \in\{1,2,3\}$, resulting by assumption in $i_{I}(H)=\omega(h)>i_{I}(G)$. If $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x)=1, \sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x)=0$ and $x_{1} x_{3} \in E(G)$, then the function h defined by $h\left(x_{1}\right)=h\left(x_{2}\right)=0, h\left(x_{3}\right)=1$ and $h(z)=f(z)$ otherwise, is an IID-function of G of weight less than $i_{I}(H)$. If $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x)=1$, $\sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x)=0$ and $x_{1} x_{3} \notin E(G)$, then the function h defined by $h\left(x_{1}\right)=$ $h\left(x_{2}\right)=0, h\left(x_{3}\right)=1, f(w)=2$ for some vertex $w \in V_{1}^{f} \cap N_{G}\left(x_{1}\right)$ and $h(z)=f(z)$ otherwise, is an IID-function of G of weight less than $i_{I}(H)$. Hence we assume that $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x)=0$.
If $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x)=0, \sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x) \geq 1$ and $x_{1} x_{3} \in E(G)$, then the function h defined by $h\left(x_{2}\right)=h\left(x_{3}\right)=0$ and $h(z)=f(z)$ otherwise, is an IID-function of G of weight less than $i_{I}(H)$. If $\sum_{x \in N_{G}\left(x_{1}\right)-\left\{x_{2}\right\}} f(x)=0$, $\sum_{x \in N_{G}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x) \geq 1$ and $x_{1} x_{3} \notin E(G)$, then the function h defined by $h\left(x_{2}\right)=h\left(x_{3}\right)=0, h(w)=\min \{2, f(w)+1\}$ for some $w \in\left(V_{1}^{f} \cup V_{2}^{f}\right) \cap N_{G}\left(x_{3}\right)-\left\{x_{2}\right\}$ and $h(z)=f(z)$ otherwise, is an IID-function of G of weight less than $i_{I}(H)$.
If $\sum_{x \in N_{H}\left(x_{1}\right)} f(x)=0, \sum_{x \in N_{H}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x)=0$ and $x_{1} x_{3} \notin E(G)$, then the function h defined by $h\left(x_{2}\right)=0, h\left(x_{1}\right)=h\left(x_{3}\right)=1$, and $h(z)=f(z)$ otherwise, is an IID-function of G of weight less than $i_{I}(H)$. If $\sum_{x \in N_{H}\left(x_{1}\right)} f(x)=0$, $\sum_{x \in N_{H}\left(x_{3}\right)-\left\{x_{1}, x_{2}\right\}} f(x)=0$ and $x_{1} x_{2} \in E(G)$, then the function h defined by $h\left(x_{2}\right)=0, h\left(x_{1}\right)=2$, and $h(z)=f(z)$ otherwise, is an IID-function of G of weight less than $i_{I}(H)$.

Let H be a bipartite graph with bipartite sets $X=\left\{y_{1}, y_{2}, y_{3}\right\}$ and $Y=\left\{u_{i}, v_{i}, w_{i} \mid\right.$ $1 \leq i \leq m\}(m \geq 5)$ and edge set $E(G)=\left\{y_{1} u_{i}, y_{2} u_{i}, y_{1} v_{i}, y_{3} v_{i}, y_{2} w_{i}, y_{3} w_{i} \mid 1 \leq\right.$ $i \leq m\}$, and let G be the graph obtained from H by adding a path $x_{1} x_{2} x_{3}$ and adding the disjoint edges $x_{i} y_{i}$ for $i \in\{1,2,3\}$. Clearly, the function f defined by $f\left(y_{1}\right)=f\left(y_{2}\right)=f\left(y_{3}\right)=2$ and $f(z)=0$ otherwise, is the unique $i_{I}(G)$-function. Let $F=\left\{x_{1} x_{2}, x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}\right\}$ and define the function g on $G-F$ by $g\left(x_{1}\right)=1$,
$g\left(x_{2}\right)=2, g\left(y_{i}\right)=1$ for $i \in\{1,2,3\}$, is an IID-function of $G-F$ of weight $i_{I}(G)$. This example shows that the condition that G has no $i_{I}(G)$-function f assigning a 2 to some neighbor of x_{i} for each $i \in\{1,2,3\}$ simultaneously, is necessary.
Theorem 2 and its proof result in the following corollaries.

Corollary 2. Let G be a connected graph. If $x_{1} x_{2} x_{3}$ is a path of length 2 in G with $d_{G}\left(x_{1}\right)=1$, then $b_{i I}(G) \leq d_{G}\left(x_{2}\right)+d_{G}\left(x_{3}\right)-2$.

Proof. Let f be a $i_{I}(G)$-function. If $f\left(x_{2}\right) \geq 1$, then we must have $f(x)=0$ for each $x \in N\left(x_{2}\right)$, that is f does not assign 2 to no neighbor of x_{2}. On the other hand, if $f\left(x_{2}\right)=0$, then f does not assign 2 to no neighbor of x_{1}. Hence G satisfies the condition specified in the statement of Theorem 2, and consequently, $b_{i I}(G) \leq d_{G}\left(x_{1}\right)+d_{G}\left(x_{2}\right)+d_{G}\left(x_{3}\right)-3=d_{G}\left(x_{2}\right)+d_{G}\left(x_{3}\right)-2$ and the proof is complete.

Corollary 3. Let G be a connected graph. If $x_{1} x_{2} x_{3}$ is a path of length 2 in G with $d_{G}\left(x_{2}\right)=2$, then $b_{i I}(G) \leq 2 \Delta(G)-1$.

Restricted to the class of trees of order at least three, we will show that the independent Italian bondage number is at most two. We note that such an upper bound has been also proved for the Italian bondage number by Moradi et al. [10]. In the proof we give, several cases are considered and discussed. But before presenting this proof, we give some additional definitions and notations. A path joining two vertices x and y is called a (x, y)-path. The diameter of a connected graph G, denoted $\operatorname{diam}(G)$, is the length of the shortest path between the most distanced vertices. A diametral path of a graph G is a shortest path whose length is equal to $\operatorname{diam}(G)$. We are also considering rooted trees distinguished by one vertex r called the root. For a vertex $v \neq r$ in a rooted tree T, the parent of v is the neighbor of v on the unique (r, v)-path, while a child of v is any other neighbor of v. A descendant of v is a vertex $w \neq v$ such that the unique (r, w)-path contains v. The set of children of a vertex v is denoted by $C(v)$ while $D(v)$ denote the set of its descendants. The maximal subtree at v denoted by T_{v} is the subtree of T induced by v and all its descendants. The depth of v is the largest distance from v to a descendant of v.

Theorem 3. If T is a tree of order $n \geq 3$, then

$$
b_{i I}(T) \leq 2
$$

Furthermore, this bound is sharp for the double star $D S_{p, p}$ for $p \geq 2$.

Proof. Obviously $\operatorname{diam}(T) \geq 2$, since $n \geq 3$. If $\operatorname{diam}(T)=2$, then T is a star and for any edge e of T we have $i_{I}(T-e)=3>i_{I}(T)=2$ leading to $b_{i I}(T)=1$. Assume now
that $\operatorname{diam}(T)=3$. Then T is a double star $D S_{p, q}$ for some integers $q \geq p \geq 1$. Let x, y be the support vertices of the double star, and let x^{\prime}, y^{\prime} be the leaf neighbors of x and y, respectively. If $p=1$, then $i_{I}(T-x y)=4>i_{I}(T)=3$ and hence $b_{i I}(T)=1$. Thus let $p \geq 2$. Then removing edges $x^{\prime} x$ and $y^{\prime} y$ provides a forest F with three components consisting of the two single vertices and a double star $D S_{p-1, q-1}$. In this case, $i_{I}(F)=2+(2+(p-1))=3+p>i_{I}(T)=2+p$ yielding $b_{i I}(T) \leq 2$. In the sequel, we can assume that $\operatorname{diam}(T) \geq 4$. Let $x_{1} x_{2} \ldots x_{k}(k \geq 5)$ be a diametral path in T chosen so that (i) $d_{T}\left(x_{2}\right)$ is as large as possible, and (ii) subject to (i) $d_{T}\left(x_{3}\right)$ is maximized. We root T at x_{k}.
If $d_{T}\left(x_{3}\right)=2$, then let F be the forest obtained from T by removing edges $x_{3} x_{4}$ and $x_{3} x_{2}$. Clearly any $i_{I}(F)$-function f such that $f\left(x_{2}\right)$ is maximized, assigns 1 to x_{3} and 2 to x_{2}, and thus the function h defined on $V(T)$ by $h\left(x_{3}\right)=0$ and $h(x)=f(x)$ otherwise, is an IID-function of T of weight less than $\omega(f)$ leading to $b_{i I}(T) \leq 2$. Therefore we can assume that $d_{T}\left(x_{3}\right) \geq 3$ and by similarity, every child of x_{4} with depth 2 has degree at least 3 . Let $N_{T}\left(x_{3}\right)-\left\{x_{2}, x_{4}\right\}=\left\{y_{1}, y_{2}, \ldots, y_{t}\right\}$. We proceed with the following cases.
Case 1. x_{3} has a child y with depth 1 and degree 3 .
Let z_{1} and z_{2} be the leaf neighbors of y and let F be the forest obtained from T by removing the edges $y z_{1}$ and $x_{3} y$. Note that z_{1} is isolated in F and the vertices z_{2} and y induce a P_{2} component in F. If f is an $i_{I}(F)$-function, then we have $f\left(z_{1}\right)=1$ and either $f\left(z_{2}\right)=2$ or $f(y)=2$, say $f\left(z_{2}\right)=2$ and thus $f(y)=0$. In this case, the function g defined on $V(T)$ by $g\left(z_{2}\right)=1$ and $g(x)=f(x)$ otherwise, is an IID-function of T of weight less than $\omega(f)$, leading to $b_{i I}(T) \leq 2$.
Thus we may assume that x_{3} has no child with depth 1 and degree 3 . In particular, $d_{T}\left(x_{2}\right) \neq 3$.
Case 2. $d_{T}\left(x_{2}\right) \geq 4$ and x_{3} has a child of degree 2 .
Without loss of generality, let y_{1} be a child of x_{3} with degree two and let y_{1}^{\prime} be the leaf neighbor of y_{1}. Let F be the forest obtained from T by removing the edges $x_{2} x_{1}$ and $x_{3} y_{1}$. As in Case 1, if f is an $i_{I}(F)$-function such that $f\left(x_{2}\right)$ is as large as possible, then $f\left(x_{1}\right)=1$ and either $f\left(y_{1}\right)=2$ or $f\left(y_{1}^{\prime}\right)=2$, say $f\left(y_{1}^{\prime}\right)=2$ and thus $f\left(y_{1}\right)=0$. Now, if $f\left(x_{3}\right) \geq 1$, then the function g defined on $V(T)$ by $g\left(y_{1}^{\prime}\right)=1$ and $g(x)=f(x)$ otherwise, is an IID-function of T of weight less than $\omega(f)$. Hence let $f\left(x_{3}\right)=0$. Since x_{2} has at least two leaf neighbors in F, by the choice of f, we have $f\left(x_{2}\right)=2$ and thus the function g defined on $V(T)$ by $g\left(x_{1}\right)=0$ and $g(x)=f(x)$ otherwise, is an IID-function of T of weight less than $\omega(f)$. In either case, $b_{i I}(T) \leq 2$.
Case 3. $d_{T}\left(x_{2}\right) \geq 4$ and x_{3} is a support vertex.
According to Cases 1 and 2 we may assume that each child of x_{3} is a leaf or has degree at least four. Without loss of generality, let y_{1} be a leaf neighbor of x_{3}, and let F be the forest obtained from T by removing edges $x_{1} x_{2}$ and $x_{3} y_{1}$. Let f be an $i_{I}(F)$-function. Clearly, $f\left(x_{1}\right)=f\left(y_{1}\right)=1$. Now, if $f\left(x_{2}\right)=2$, then $f\left(x_{3}\right)=0$ and the function g defined on $V(T)$ by $g\left(x_{1}\right)=0$ and $g(x)=f(x)$ for the remaining vertices, is an IID-function of T of weight less than $\omega(f)$. If $f\left(x_{3}\right)=2$, then $f\left(x_{2}\right)=0$ and the function g defined on $V(T)$ by $g\left(y_{1}\right)=0$ and $g(x)=f(x)$ otherwise, is an

IID-function of T of weight less than $\omega(f)$. Hence we can assume that $f\left(x_{2}\right) \leq 1$ and $f\left(x_{3}\right) \leq 1$. Then all leaves adjacent to x_{2} in F must be assigned a 1 under f and thus $f\left(x_{2}\right)=0$. Recall that $d_{T}\left(x_{2}\right) \geq 4$. Now, if $f\left(x_{3}\right)=0$, then the function g defined on $V(T)$ by $g(x)=0$ for $x \in N_{T}\left(x_{2}\right), g\left(x_{2}\right)=2$ and $g(x)=f(x)$ for the remaining vertices, is an IID-function of T of weight less than $\omega(f)$. Thus we can assume that $f\left(x_{3}\right)=1$. Then $f\left(x_{4}\right)=0$ and y_{1} is the unique leaf adjacent to x_{3}. Thus x_{4} has a neighbor $w \neq x_{3}$ with positive weight. In this case, the function g defined on $V(T)$ by $g(w)=2, g\left(x_{3}\right)=0, g\left(x_{2}\right)=2, g(x)=0$ for $x \in N_{T}\left(x_{2}\right)-\left\{x_{3}\right\}$ and $g(x)=f(x)$ for the remaining vertices, is an IID-function of T of weight less than $\omega(f)$. All the situations examined lead to $b_{i I}(T) \leq 2$.
Taking into account the above three cases, we conclude that if $d_{T}\left(x_{2}\right) \geq 4$, then that each child of x_{3} has degree at least four.
Case 4. $d_{T}\left(x_{2}\right) \geq 4$ and every child of x_{3} has degree at least 4 .
By the assumption, every y_{i} has at least three leaf neighbors, say $y_{i}^{1}, y_{i}^{2}, y_{i}^{3}$. Let F be the forest obtained from T by removing the edges $x_{2} x_{1}$ and $y_{1} y_{1}^{1}$ and let $f=$ $\left(V_{0}, V_{1}, V_{2}\right)$ be an $i_{I}(F)$-function F such that $f\left(x_{2}\right)+f\left(y_{1}\right)$ is as large as possible. Since x_{1} and y_{1}^{1} are isolated in $F, f\left(x_{1}\right)=f\left(y_{1}^{1}\right)=1$. Note that since x_{2} has at least two leaf neighbors in F, then $f\left(x_{2}\right) \neq 1$, and likewise $f\left(y_{1}\right) \neq 1$. Now, if $f\left(x_{2}\right)=$ $f\left(y_{1}\right)=2$, then the function g defined on $V(T)$ by $g\left(x_{1}\right)=g\left(y_{1}^{1}\right)=0$ and $g(x)=f(x)$ otherwise, is an IID-function of T of $\omega(f)-2$. Also, if $f\left(x_{2}\right)=2$ and $f\left(y_{1}\right)=0$ (the case $f\left(x_{2}\right)=0$ and $f\left(y_{1}\right)=2$ is similar), then the function g defined on $V(T)$ by $g\left(x_{1}\right)=0$ and $g(x)=f(x)$ otherwise, is an IID-function of T of weight less than $\omega(f)-1$. Hence we can assume that $f\left(x_{2}\right)=f\left(y_{1}\right)=0$. The choice of f implies that $f\left(x_{3}\right) \in\{1,2\}$, and thus $f\left(y_{i}\right)=0$ for each $i, N_{T}\left(x_{2}\right)-\left\{x_{3}\right\} \subseteq V_{1}$ and $N_{T}\left(y_{i}\right)-\left\{x_{3}\right\} \subseteq V_{1}$ for each $i \in\{1, \ldots, t\}$. If $\left(N_{T}\left(x_{4}\right)-\left\{x_{3}\right\}\right) \cap V_{2} \neq \emptyset$, then the function g defined on $V(T)$ by $g\left(x_{3}\right)=0, g\left(x_{2}\right)=g\left(y_{i}\right)=2$ for all $i \in\{1, \ldots, t\}$, $g(x)=0$ for $x \in L\left(v_{2}\right) \cup\left(\cup_{i=1}^{t} L\left(y_{i}\right)\right)$ and $g(x)=f(x)$ otherwise, is an IID-function of T of weight less than $\omega(f)$. Therefore we may assume that $\left(N_{T}\left(x_{4}\right)-\left\{x_{3}\right\}\right) \cap V_{2}=\emptyset$. If $\left(N_{T}\left(x_{4}\right)-\left\{x_{3}\right\}\right) \cap V_{1} \neq \emptyset$, then pick a vertex $w \in\left(N_{T}\left(x_{4}\right)-\left\{x_{3}\right\}\right) \cap V_{1}$, and consider the function g defined on $V(T)$ by $g(w)=2, g\left(x_{3}\right)=0, g\left(x_{2}\right)=g\left(y_{i}\right)=2$ for all $i \in\{1, \ldots, t\}, g(x)=0$ for $x \in L\left(x_{2}\right) \cup\left(\cup_{i=1}^{t} L\left(y_{i}\right)\right)$ and $g(x)=f(x)$ otherwise. One can see that g is an IID-function of T of weight less than $\omega(f)$. Hence we can assume that $\left(N\left(x_{4}\right)-\left\{x_{3}\right\}\right) \cap\left(V_{1} \cup V_{2}\right)=\emptyset$. Again one can define an IID-function g on $V(T)$ of weight less than $\omega(f)$ by $g\left(x_{4}\right)=1, g\left(x_{3}\right)=0, g\left(x_{2}\right)=g\left(y_{i}\right)=2$ for all $i \in\{1, \ldots, t\}, g(x)=0$ for $x \in L\left(x_{2}\right) \cup\left(\cup_{i=1}^{t} L\left(y_{i}\right)\right)$ and $g(x)=f(x)$ otherwise. All the situations that have been considered show that $i_{I}(T)<i_{I}(F)$ and thus $b_{i I}(T) \leq 2$.
Case 5. $d_{T}\left(x_{2}\right)=2$.
It follows from the choice of the diametral path that each child of v_{3} with depth one has degree 2. Thus the maximal subtree rooted at x_{3} is a spider, that is a tree obtained from a star of order at least three by subdividing at least one of its edges. This remains valid for every maximal subtree rooted at any child of x_{4} with depth 2 is a spider. Let us examine the following situations.
Subcase 5.1. Assume first that $d_{T}\left(x_{3}\right)=3$ and x_{3} has a leaf child.

Let w be the leaf child of x_{3} and let F be the forest obtained from T by removing the edges $x_{3} x_{2}, x_{3} x_{4}$. Let f be an $i_{I}(F)$-function such that $f\left(x_{2}\right)+f(w)$ is maximized. Since x_{3} and w as well as x_{1} and x_{2} induce a P_{2} component of F, by the choice of f we have $f\left(x_{2}\right)=f(w)=2$. In this case, the function g defined on $V(T)$ by $g(w)=1$ and $g(x)=f(x)$ otherwise, is an IID-function of T of weight $i_{I}(F)-1$, implying that $b_{i I}(T) \leq 2$.
By Subcase 5.1, we may assume that $d_{T}\left(x_{3}\right) \geq 4$ or $d_{T}\left(x_{3}\right)=3$ and x_{3} has two children with depth 1 and degree 2.
Subcase 5.2. $d_{T}\left(x_{4}\right)=2$.
Let F be the forest obtained from T by removing edges $x_{3} x_{2}, x_{4} x_{5}$. Clearly the component of F containing x_{4} is a spider for which x_{3} is one of its central vertices. Note that in this component x_{3} is a support vertex and x_{4} is its leaf neighbor. Let f be an $i_{I}(F)$-function such that $f\left(x_{3}\right)$ is maximized. Clearly $f\left(x_{1}\right)+f\left(x_{2}\right)=2$ and by the choice of f we must have $f\left(x_{3}\right) \geq 1$. Thus the function g defined on $V(T)$ by $g\left(x_{2}\right)=0$ and $g\left(x_{1}\right)=1$ and $g(x)=f(x)$ otherwise, is an IID-function of T of weight $i_{I}(F)-1$, implying that $b_{i I}(T) \leq 2$.
Subcase 5.3. $d_{T}\left(x_{4}\right) \geq 3$ and x_{4} has a child w which is a support vertex of degree two.
Let w^{\prime} be a leaf neighbor of w and consider the forest F obtained from T by removing edges $w x_{4}, x_{3} x_{2}$. Let f be an $i_{I}(F)$-function such that $f\left(x_{1}\right)+f\left(w^{\prime}\right)$ is maximized. Then $f\left(x_{1}\right)=f\left(w^{\prime}\right)=2$. Now if $f\left(x_{4}\right) \geq 1$, then reassigning a 1 to w^{\prime} provides an IID-function T of weight smaller than $i_{I}(F)$. Likewise, if $f\left(x_{3}\right) \geq 1$, then reassigning a 1 to x_{1} provides an IID-function of T of weight smaller than $i_{I}(F)$. Hence we can assume that $f\left(x_{4}\right)=f\left(x_{3}\right)=0$. Thus the function g defined on $V(T)$ by $g\left(x_{3}\right)=1$, $g(x)=0$ for $x \in N_{T}\left(x_{3}\right), g(x)=1$ for $x \in D\left(x_{3}\right)-C\left(x_{3}\right)$ and $g(x)=f(x)$ otherwise, when x_{3} is not a support vertex, and by $g\left(x_{3}\right)=2, g(x)=0$ for $x \in N_{T}\left(x_{3}\right), g(x)=1$ for $x \in D\left(x_{3}\right)-C\left(x_{3}\right)$ and $g(x)=f(x)$ otherwise, when x_{3} is a support vertex, is an IID-function of T of weight less than $\omega(f)$, and therefore $b_{i I}(T) \leq 2$.
Subcase 5.4. $d_{T}\left(x_{4}\right) \geq 3$ and x_{4} is a support vertex.
Let w be a leaf neighbor of x_{4} and consider the forest F obtained from T by removing the edges $w x_{4}, x_{3} x_{2}$. Let f be an $i_{I}(F)$-function such that $f\left(x_{1}\right)$ is maximized. Obviously, $f(w)=1$ and $f\left(x_{1}\right)=2$. Now if $f\left(x_{4}\right)=2$, then reassigning a 0 to w we get an IID-function T of weight $i_{I}(F)-1$. Moreover, if $f\left(x_{3}\right) \geq 1$, then reassigning a 1 to x_{1} provides again an IID-function of T of weight $i_{I}(F)-1$. Hence we assume that $f\left(x_{4}\right) \leq 1$ and $f\left(x_{3}\right)=0$. Then $f(z)=1$ for each leaf neighbor z of x_{3} and $f(a)+f\left(a^{\prime}\right)=2$ for each child a of x_{3} with depth 1 and degree 2 , where a^{\prime} is the leaf adjacent to a. Now, if $f\left(x_{4}\right)=0$, then define the function g on $V(T)$ by $g\left(x_{3}\right)=2$, $g(x)=0$ or $x \in N\left(x_{3}\right), g(x)=1$ for $x \in D\left(x_{3}\right)-C\left(x_{3}\right)$ and $g(x)=f(x)$ otherwise, when x_{3} is a support vertex, and $g\left(x_{3}\right)=1, g(x)=0$ for $x \in N\left(x_{3}\right), g(x)=1$ for $x \in D\left(x_{3}\right)-C\left(x_{3}\right)$ and $g(x)=f(x)$ otherwise, when x_{3} is not a support vertex. Recall that $d_{T}\left(x_{3}\right) \geq 4$ or $d_{T}\left(x_{3}\right)=3$ and x_{3} is not a support vertex. In this case, the function g defined above is an IID-function of T of weight less than $i_{I}(F)$. Finally let $f\left(x_{4}\right)=1$. It follows that w is the only leaf neighbor of x_{4}. Also according to

Subcase 5.3 , we may assume that any child of x_{4} with depth 1 has degree at least three. On the other hand, we may assume that the maximal subtree rooted at each child of x_{4} with depth 2 is either a P_{5} whose center vertex is adjacent to x_{4} or a spider with maximum degree at least three. Thus f can be chosen such that each child of x_{4} with depth 2 is Italian dominated by its children. Now, if x_{5} has a neighbor in V_{2}, then define the function g on $V(T)$ by $g\left(x_{4}\right)=0, g\left(x_{3}\right)=2, g(x)=0$ for $x \in N\left(v_{3}\right)$, $g(x)=1$ for $x \in D\left(x_{3}\right)-C\left(x_{3}\right)$ and $g(x)=f(x)$ otherwise, when x_{3} is a support vertex, and $g\left(x_{3}\right)=1, g(x)=0$ for $x \in N\left(v_{3}\right), g(x)=1$ for $x \in D\left(x_{3}\right)-C\left(x_{3}\right)$ and $g(x)=f(x)$ otherwise, if x_{3} is not a support vertex. In either case, g is an IID-function of T of weight less than $i_{I}(F)$. If x_{5} has a neighbor z in $V_{1}-\left\{x_{4}\right\}$, then the function g on $V(T)$ by $g(z)=2, g\left(x_{4}\right)=0, g\left(x_{3}\right)=2, g(x)=0$ for $x \in N\left(v_{3}\right)$, $g(x)=1$ for $x \in D\left(x_{3}\right)-C\left(x_{3}\right)$ and $g(x)=f(x)$ otherwise, when x_{3} is a support vertex, and $g\left(x_{3}\right)=1, g(x)=0$ for $x \in N\left(v_{3}\right), g(x)=1$ for $x \in D\left(x_{3}\right)-C\left(x_{3}\right)$ and $g(x)=f(x)$ otherwise, when x_{3} is not a support vertex, is an IID-function of T of weight less than $i_{I}(F)$. In either case, $b_{i I}(T) \leq 2$.
According to Subcases 5.1, 5.2, 5.3 and 5.4, we may assume that the maximal subtree rooted at each child of x_{4} either is a star of order at least three or a path P_{5} whose center vertex is adjacent to x_{4} or a spider with maximum degree at least 3. Consider the tree F obtained from T by removing the edges $x_{3} x_{2}$ and let f be an $i_{I} F$)-function such that each child of x_{4} has positive weight under f or is Italian dominated by its neighbor (such a property is possible seeing the subtrees rooted at any child of x_{4}). Clearly $f\left(x_{1}\right)+f\left(x_{2}\right)=2$. If $f\left(x_{3}\right) \geq 1$, then the function g defined on $V(T)$ by $g\left(x_{1}\right)=1, g\left(x_{2}\right)=0$ and $g(x)=f(x)$ otherwise, is an IID-function of T of weight less than $\omega(f)$. Hence we assume that $f\left(x_{3}\right)=0$. If $f\left(x_{4}\right)=0$, then the function g on $V(T)$ by $g\left(x_{3}\right)=2, g(x)=0$ for $x \in N\left(x_{3}\right), g(x)=1$ for $x \in D\left(x_{3}\right)-C\left(x_{3}\right)$ and $g(x)=f(x)$ otherwise, when x_{3} is a support vertex, and $g\left(x_{3}\right)=1, g(x)=0$ for $x \in N\left(x_{3}\right), g(x)=1$ for $x \in D\left(x_{3}\right)-C\left(x_{3}\right)$ and $g(x)=f(x)$ otherwise, when x_{3} is not a support vertex, is an IID-function of T of weight less than $i_{I}(F)$. Hence we assume that $f\left(x_{4}\right) \geq 1$. Now, if x_{5} has a neighbor in $V_{2}-\left\{x_{4}\right\}$, then define the function g defined on $V(T)$ by $g\left(x_{4}\right)=0, g(u)=\min \{2,1+|L(u)|\}$ for each $u \in C\left(x_{4}\right), g(x)=0$ for $x \in \cup_{u \in C\left(x_{4}\right)} N_{T}(u), g(x)=1$ for $x \in \cup_{u \in C\left(x_{4}\right)}(D(u)-C(u))$ and $g(x)=f(x)$ otherwise, is an IID-function of T of weight less than $i_{I}(F)$. If x_{5} has a neighbor in $V_{1}-\left\{x_{4}\right\}$, then define the function g defined on $V(T)$ by $g\left(x_{4}\right)=0$, $g(u)=\min \{2,1+|L(u)|\}$ for each $u \in C\left(x_{4}\right), g(x)=0$ for $x \in \cup_{u \in C\left(x_{4}\right)} N_{T}(u)$, $g(x)=1$ for $x \in \cup_{u \in C\left(x_{4}\right)}(D(u)-C(u))$ and $g(x)=f(x)$ otherwise, is an IID-function of T of weight less than $i_{I}(F)$. Finally, if x_{5} has no neighbor in $V_{1} \cup V_{2}-\left\{x_{4}\right\}$, then we must have $f\left(x_{4}\right)=2$ (because of x_{5}), and thus the function g defined on $V(T)$ by $g\left(x_{5}\right)=1, g\left(x_{4}\right)=0, g(u)=\min \{2,1+|L(u)|\}$ for each $u \in C\left(x_{4}\right), g(x)=0$ for $x \in \cup_{u \in C\left(x_{4}\right)} N_{T}(u), g(x)=1$ for $x \in \cup_{u \in C\left(x_{4}\right)}(D(u)-C(u))$ and $g(x)=f(x)$ otherwise, is an IID-function of T of weight less than $i_{I}(F)$. For each of the situations discussed above, we conclude that $b_{i I}(T) \leq 2$, and this completes the proof.

Acknowledgements. This research was financially supported by fund from Hubei Province Key Laboratory of Intelligent Information Processing and Real-time In-
dustrial System (Wuhan University of Science and Technology) (under grant 622274).
Conflict of interest. The authors declare that they have no conflict of interest.

Data Availability. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] A. Bahremandpour, F.T. Hu, S.M. Sheikholeslami, and J.M. Xu, On the Roman bondage number of a graph, Discrete Math. Algorithms Appl. 5 (2013), no. 1, Article ID: 1350001.
[2] M. Chellali, T.W. Haynes, S.T. Hedetniemi, and A.A. McRae, Roman \{2\}domination, Discrete Appl. Math. 204 (2016), 22-28.
[3] J.F. Fink, M.S. Jacobson, L.F. Kinch, and J. Roberts, The bondage number of a graph, Discrete Math. 86 (1990), no. 1-3, 47-57.
[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completness, Freeman, San Francisco, 1979.
[5] T.W. Haynes, S.T. Hedetniemi, and P.J. Salter, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[6] J. Hou and G. Liu, A bound on the bondage number of toroidal graphs, Discrete Math. Algorithms Appl. 4 (2012), no. 3, Article ID: 1250046.
[7] N. Jafari Rad, H.R. Maimani, M. Momeni, and F.R. Mahid, On the double Roman bondage numbers of graphs, Discrete Math. Algorithms Appl. 14 (2022), no. 8, Article ID: 2250046.
[8] N. Jafari Rad and L. Volkmann, Roman bondage in graphs, Discuss. Math. Graph Theory 31 (2011), no. 4, 763-773.
[9] J. Lyle, Regular graphs with large Italian domatic number, Commun. Comb. Optim. 7 (2022), no. 2, 257-271.
[10] A. Moradi, D.A. Mojdeh, and O. Sharifi, Roman \{2\}-bondage number of a graph, Discuss. Math. Graph Theory 40 (2020), no. 1, 255-268.
[11] A. Rahmouni and M. Chellali, Independent Roman \{2\}-domination in graphs, Discrete Appl. Math. 236 (2018), 408-414.
[12] L. Volkmann, The Italian domatic number of a digraph, Commun. Comb. Optim. 4 (2019), no. 1, 61-70.
[13] W. Zhao and H. Zhang, The bondage number of the strong product of a complete graph with a path and a special starlike tree, Discrete Math. Algorithms Appl. 8 (2016), no. 1, Article ID: 1650006.

[^0]: * Corresponding Author

