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Abstract: For any two vertices u and v in a connected graph G, the monophonic
distance dm(u, v) from u to v is defined as the length of a longest u − v monophonic

path in G. The monophonic eccentricity em(v) of a vertex v in G is the maximum

monophonic distance from v to a vertex of G. A vertex v in G is a monophonic
eccentric vertex of a vertex u in G if em(u) = dm(u, v). A set S ⊆ V is a monophonic

eccentric dominating set if every vertex in V − S has a monophonic eccentric vertex

in S. The monophonic eccentric domination number γme(G) is the cardinality of a
minimum monophonic eccentric dominating set of G. We investigate some properties of

monophonic eccentric dominating sets. Also, we determine the bounds of monophonic

eccentric domination number and find the same for some standard graphs.

Keywords: monophonic path, monophonic distance, monophonic eccentric vertex,
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1. Introduction

By a graph G = (V,E) we mean a non-trivial finite undirected connected graph

without loops and multiple edges. The order and size of G are denoted by p and

q respectively. For basic graph theoretic terminology and results we refer to [1, 5].

For any two vertices u and v in G, the distance d(u, v) is the length of a shortest

u − v path in G. The open neighborhood N(v) of a vertex v is defined by N(v) =

{u ∈ V | uv ∈ E}. A subset S of V is called a dominating set of G if N(v) ∩ S 6= ∅
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2 Monophonic eccentric domination in graphs

for all v ∈ V − S. A dominating set of G with minimum cardinality is a minimum

dominating set and this cardinality is the domination number γ(G). The topic of

domination began with Berge in [1] and Ore in [13]. In 1998, a text book devoted

to domination was written by Haynes et. al. [6]. A set D ⊂ V (G) is an eccentric

dominating set if D is a dominating set of G and for every v ∈ V −D, there exists

at least one eccentric vertex of v in D. The eccentric domination number γed(G) of a

graph G equals the minimum cardinality of an eccentric dominating set. The eccentric

domination number was introduced in [11] and further studied in [2, 3, 8–10, 12, 14].

For any two vertices u and v in G, the detour distance D(u, v) is the length of a longest

u−v path in G. For each vertex v in G, define D−(v) = min {D(u, v) : u ∈ V −{v}}.
A vertex u (6= v) is called a detour neighbor of v if D(u, v) = D−(v). A vertex

v is said to detour dominate a vertex u if u = v or u is a detour neighbor of v.

A set S of vertices of G is called a detour dominating set if every vertex of G is

detour dominated by some vertex in S. A detour dominating set of G with minimum

cardinality is a minimum detour dominating set and this cardinality is the detour

domination number γD(G). These concepts were introduced and studied in [4]. Also,

detour eccentric domination number was introduced and studied in [7].

A chord of a path P is an edge joining two non-adjacent vertices of P. A path P

is called a monophonic path if it is a chordless path. For any two vertices u and v

in a connected graph G, the monophonic distance dm(u, v) from u to v is defined as

the length of a longest u − v monophonic path in G. The monophonic eccentricity

em(v) of a vertex v in G is em(v) = max {dm(u, v) : u ∈ V }. A vertex v in G is a

monophonic eccentric vertex of a vertex u in G if em(u) = dm(u, v). The monophonic

distance was introduced in [15] and further studied in [16].

In this paper, we introduce the concept of monophonic eccentric domination and

present a few basic results on the corresponding parameter. Also, we found one more

variant of this new parameter called total monophonic eccentric domination number

[18] and further studied in [17, 19].

2. Monophonic Eccentric Domination Number

Definition 1. Let v be any vertex of a connected graph G. The set of all monophonic
eccentric vertices of v is called the monophonic eccentric neighborhood of v and it is denoted
by Nem(v). The monophonic eccentric degree of a vertex v is defined as degem

(v) = |Nem(v)|.
The minimum monophonic eccentric degree δem(G) is defined as δem(G) = min{degem

(v) :
v ∈ V } and the maximum monophonic eccentric degree ∆em(G) is defined as ∆em(G) =
max{degem

(v) : v ∈ V }.

Remark 1. In a graph G, if u is a monophonic eccentric vertex of v, then v need not
be a monophonic eccentric vertex of u. Hence if u is an element of Nem(v), then v need
not be an element of Nem(u). For example consider the path P3 := v1v2v3. It is clear that
v1 ∈ Nem(v2) and v2 /∈ Nem(v1).

Definition 2. A set S ⊆ V in a graph G is a monophonic eccentric dominating set if every
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vertex in V −S has a monophonic eccentric vertex in S. The monophonic eccentric domina-
tion number γme(G) is the cardinality of a minimum monophonic eccentric dominating set
of G.

Example 1. Consider the graph G given in Figure 1. For the vertices of the graph G
given in Figure 1, the monophonic eccentric vertices are given in Table 1. From the Table
1, it is easily seen that no 1-element or 2-element subset of G is a monophonic eccentric
dominating set of G and so γme(G) ≥ 3. Now, the set {v1, v2, v3} is a monophonic eccentric
dominating set of G and so γme(G) = 3.

v1

v2

v4

v5 v6 v3

Figure 1. A graph G with monophonic eccentric domination number 3

Vertex v1 v2 v3 v4 v5 v6

Monophonic eccentric vertices v3, v6 v4 v1, v5 v2 v3, v6 v1, v5

Table 1. Monophonic eccentric vertices of the graph illustrated in Figure 1

Remark 2. For the path Pn = v1v2 . . . vn, n ≥ 6, S = {v1, vn} is the unique mini-
mum monophonic eccentric dominating set and hence it follows that the complement of a
monophonic eccentric dominating set need not be a monophonic eccentric dominating set.

Theorem 1. Let G = Kr,s (2 ≤ r ≤ s) be a complete bipartite graph. Then∑
v∈V degem

(v) = r2 + s2 − (r + s). Moreover, if S is any minimum monophonic eccentric
dominating set of G, then

∑
v∈S degem

(v) = r + s− 2.

Proof. Let V1 = {u1, u2, . . . , ur} and V2 = {v1, v2, . . . , vs} be the partite sets of

G. For a vertex ui ∈ V1, degem(ui) = r − 1 and for a vertex vi ∈ V2, degem(vi) =

s− 1. Then
∑

v∈V degem(v) =
∑

v∈V1
degem(v) +

∑
v∈V2

degem(v) =
∑

v∈V1
(r− 1) +∑

v∈V2
(s− 1) = r(r − 1) + s(s− 1) = r2 + s2 − (r + s).

It is clear that S = {ui, vj} (1 ≤ i ≤ r, 1 ≤ j ≤ s) is a minimum monophonic eccentric

dominating set of G. Hence
∑

v∈S degem(v) = degem(ui)+degem(vj) = r−1+s−1 =

r + s− 2.

Since no cut-vertex of a connected graph G is a monophonic eccentric vertex of any

vertex in G, the following result is clear.
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Remark 3. No cut-vertex of a connected graph G belongs to any minimum monophonic
eccentric dominating set of G.

Theorem 2. If G = H +K1, where H is any connected graph, then γme(G) = γme(H).

Proof. Let u be the vertex of K1. Since dmG
(u, z) = 1 for any vertex z in H, every

vertex of H is a monophonic eccentric vertex of u in G. Also, if x, y ∈ V (H), then P

is a longest x−y monophonic path in H if and only if P is a longest x−y monophonic

path in G. Hence x is a monophonic eccentric vertex of y in H if and only if x is a

monophonic eccentric vertex of y in G. Hence any minimum monophonic eccentric

dominating set of H is also a minimum monophonic eccentric dominating set of G.

It follows that γme(G) ≤ γme(H).

Now, let S1 be any minimum monophonic eccentric dominating set of G. If u /∈ S1,

then S1 is also a monophonic eccentric dominating set of H. If u ∈ S1, then S2 =

(S1 − {u}) ∪ {v}, where v ∈ V (G) is a monophonic eccentric dominating set of H.

Hence γme(H) ≤ γme(G).

Next theorem gives the bounds of the monophonic eccentric domination number of

a graph.

Theorem 3. If k is the number of cut vertices of a connected graph G of order p ≥ 2,
then 1 ≤ γme(G) ≤ p− k.

Proof. Let T be the set of all cut vertices of G. It is clear that no cut vertex is a

monophonic eccentric vertex of any vertex in G and every cut vertex has a monophonic

eccentric vertex in G. Hence S = V (G) − T is a monophonic eccentric dominating

set of G and so γme(G) ≤ |S| = p− k. The lower bound is obvious.

Remark 4. The bounds in Theorem 3 are sharp. For the complete graph Kp (p ≥ 2),
γme(Kp) = 1, and for the path Pp (p ≥ 4), γme(Pp) = 2 = p− k.

Theorem 4. Let v be a vertex of a connected graph G of order p ≥ 2 with degem
(v) =

∆em(G). If v is a monophonic eccentric vertex of every vertex in Nem(v), then γme(G) ≤
p−∆em(G).

Proof. Let S = V (G) −Nem(v). Since v is a monophonic eccentric vertex of every

vertex in Nem(v), S is a monophonic eccentric dominating set of G and so γme(G) ≤
|S| = p−∆em(G).

Remark 5. The converse of Theorem 4 is false. For the graph G given in Figure 2,
degem

(v) = ∆em(G) = 3 and p = 4. Also, S = {u} is the unique minimum monophonic
eccentric dominating set of G and so γme(G) = 1 = p−∆em(G). But v is not a monophonic
eccentric vertex of any vertex in Nem(v) = {u, x, y}.
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u v
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x

Figure 2. The graph G given in Remark 5

Based on Theorems 3 and 4 we leave the following problem as an open question.

Problem 1. Characterize graphs G of order p ≥ 2 for which
(i) γme(G) = 1.
(ii) γme(G) = p− k, where k is the number of cut vertices of G.
(iii) γme(G) = p−∆em(G).

3. Monophonic Eccentric Domination Number of Some Stan-
dard Graphs

Theorem 5. For the complete graph Kp (p ≥ 2), γme(Kp) = 1.

Proof. Since every vertex of the complete graph Kp (p ≥ 2) is a monophonic eccen-

tric vertex of other vertices in Kp, any single vertex set is a minimum monophonic

eccentric dominating set of Kp. Thus γme(Kp) = 1.

Theorem 6. For the path G = Pn, γme(G) =

{
1 if n = 2, 3

2 if n ≥ 4.

Proof. Let Pn := v1v2 . . . vn be a path of order n. If n = 2 or 3, then S1 = {v1}
and S2 = {vn} are the minimum monophonic eccentric dominating sets of G and so

γme(G) = 1. If n = 4 or 5, then S1 = {v1, vn}, S2 = {v1, v2} and S3 = {vn−1, vn}
are the minimum monophonic eccentric dominating sets of G and so γme(G) = 2. If

n ≥ 6, then S = {v1, vn} is the unique minimum monophonic eccentric dominating

set of G and so γme(G) = 2.

Theorem 7. For the star G = K1,n, γme(G) = 1.

Proof. Let V1 = {u1} and V2 = {v1, v2, . . . , vn} be the partite sets of G. If n = 1,

then G = K1,1 = K2 and so by Theorem 5, γme(G) = 1. If n ≥ 2, then S =

{v}, where v ∈ V2, is a minimum monophonic eccentric dominating set of G and so

γme(G) = 1.
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Theorem 8. Let T be a tree with monophonic diameter at least 3. Then γme(T ) = 2.

Proof. Let T be a tree with monophonic diameter d ≥ 3. Let x and y be any

two monophonic diametral vertices of T such that dm(x, y) = d. Claim that for any

vertex u in T , dm(u, x) = em(u) or dm(u, y) = em(u). If dm(u, x) 6= em(u) and

dm(u, y) 6= em(u), then there exists a monophonic eccentric vertex of u, say v, such

that v is not an element of the x− y monophonic path. Therefore, dm(u, v) = em(u) >

max {dm(u, x), dm(u, y)}. When we consider x and y, assume that u lies nearer to x.

Case 1. u is a vertex of the x− y monophonic path. Then

dm(x, y) = dm(x, u) + dm(u, y) < dm(x, u) + dm(u, v) = dm(x, v),

which is a contradiction.

Case 2. u is not a vertex of the x− y monophonic path.

Since u and v do not lie on the x− y monophonic path, let u1 be the last common

vertex of both x− u and x− y monophonic paths and let v1 be the last common

vertex of both y − v and y − x monophonic paths. It is clear that v1 is the last

common vertex of both u− x and u− v monophonic paths and u1 is the last common

vertex of both v − y and v − u monophonic paths. Therefore, dm(x, v1) < dm(v1, v)

and dm(y, u1) < dm(u1, u). Now, dm(x, y) = dm(x, v1) + dm(v1, u1) + dm(u1, y) <

dm(v1, v) + dm(v1, u1) + dm(u1, u) = dm(u, v), which is a contradiction. Hence any

vertex u in T is monophonic eccentric dominated by either x or y. Thus S = {x, y}
is a minimum monophonic eccentric dominating set of T and so γme(T ) = 2.

The next results follows from Theorem 7 and Theorem 8.

A forest is an acyclic graph in which each component is a tree.

Corollary 1. If G is a forest containing k trees, then γme(G) ≤ 2k.

A galaxy is a forest in which each component is a star.

Corollary 2. If G is a galaxy containing k components, then γme(G) = k.

Theorem 9. For the complete bipartite graph G = Kr,s(2 ≤ r ≤ s), γme(G) = 2.

Proof. Let V1 = {u1, u2, . . . , ur} and V2 = {v1, v2, . . . , vs} be the partite sets of G.

It is clear that no single vertex set is a minimum monophonic eccentric dominating

set of G. Then S = {ui, vj}(1 ≤ i ≤ r, 1 ≤ j ≤ s) is a minimum monophonic eccentric

dominating set of G and so γme(G) = 2.

Theorem 10. If G = K1 + ∪mjKj, then γme(G) =

{
2 if j ≥ 2 and

∑
mj ≥ 2

1 otherwise.



P. Titus, J.A. Fancy 7

Proof. Let G = K1 +∪mjKj and let x be the vertex of K1. We prove this theorem

by considering three cases.

Case 1. j ≥ 2 and
∑
mj ≥ 2.

It is clear that x is not a monophonic eccentric vertex of any vertex in G. Since∑
mj ≥ 2, G− x has at least two components. Let u 6= x be a monophonic eccentric

vertex of some vertex in G. Then u is a vertex of a component, say G1, of G − x.

Since j ≥ 2, G1 has at least one more vertex other than u, say v. It is clear that u

is not a monophonic eccentric vertex of v. Hence a monophonic eccentric dominating

set contains at least two vertices. Let S = {u,w}, where u and w belong to two

different components, say G1 and G2, respectively. Then every vertex of G − G1

is monophonic eccentric dominated by the vertex u and every vertex of G − G2 is

monophonic eccentric dominated by the vertex w. Hence S is a minimum monophonic

eccentric dominating set of G and so γme(G) = 2.

Case 2. At least one j = 1 and
∑
mj ≥ 2.

The graph G contains at least one end vertex, say u. It is clear that every vertex of

G− u is monophonic eccentric dominated by the vertex u and so γme(G) = 1.

Case 3. j ≥ 1 and
∑
mj = 1.

The graph G = K1 + ∪mjKj is a complete graph. Then by Theorem 5, γme(G) =

1.

Theorem 11. Let G = Cp (p ≥ 6) and let p ≡ l (mod 6). Then

γme(G) =

{
dp/3e+ 1 if l = 2

dp/3e otherwise.

Proof. Let Cp : v1, v2, . . . , vp, v1 be a cycle having p vertices. Since every vertex in

Cp has exactly two monophonic eccentric vertices, every vertex in Cp can monophonic

eccentric dominates itself and at most two vertices in Cp, we have γme(G) ≥ p/3. Let

p ≡ l (mod 6). We prove this theorem by considering six cases.

Case 1. l = 0.

It is clear that S = {v1, v2, v7, v8, . . . , vp−5, vp−4} is a monophonic eccentric dominat-

ing set of Cp. Since γme(Cp) ≥ p/3, we have γme(Cp) = p/3 = dp/3e.
Case 2. l = 1.

Let S = {v1, v4, v7, v10, . . . , vp−3, vp}. It is easily verified that the vertices v3 and vp−1
are monophonic eccentric dominated by v1, the vertices v2 and v6 are monophonic

eccentric dominated by v4, the vertices v5 and v9 are monophonic eccentric dominated

by v7,. . . , the vertices vp−5 and vp−1 are monophonic eccentric dominated by vp−3,

and the vertices v2 and vp−2 are monophonic eccentric dominated by vp. It is clear that

S is a minimum monophonic eccentric dominating set of Cp and so γme(Cp) = dp/3e.
Case 3. l = 2.

Let S = {v1, v4, v7, v10, . . . , vp−4, vp−1}. It is easily verified that the vertices v3 and

vp−1 are monophonic eccentric dominated by v1, the vertices v2 and v6 are monophonic
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eccentric dominated by v4, the vertices v5 and v9 are monophonic eccentric dominated

by v7,. . . , the vertices vp−6 and vp−2 are monophonic eccentric dominated by vp−4
and the vertices vp−3 and v1 are monophonic eccentric dominated by vp−1. But vp
is not monophonic eccentric dominated by any element in S. In a similar way it can

be verified that no dp/3e element subset of V is a monophonic eccentric dominating

set of Cp and hence γme(Cp) > dp/3e. Let S
′

= S ∪ {vp}. It is clear that S
′

is a

monophonic eccentric dominating set of Cp and so γme(Cp) = dp/3e+ 1.

Case 4. l = 3.

Let S = {v1, v4, v7, v10, . . . , vp−5, vp−2}. It is clear that S is a minimum monophonic

eccentric dominating set of Cp and so γme(Cp) = p/3 = dp/3e.
Case 5. l = 4.

Let S = {v1, v4, v7, v10, . . . , vp−3, vp}. It is clear that S is a minimum monophonic

eccentric dominating set of Cp and so γme(Cp) = dp/3e.
Case 6. l = 5.

Let S = {v1, v2, v7, v8, v13, v14, . . . , vp−4, vp−3}. It is clear that S is a minimum mono-

phonic eccentric dominating set of Cp and so γme(Cp) = dp/3e.

Theorem 12. Let G = Wp (p ≥ 7), and let p ≡ l (mod 6).Then

γme(G) =

{
p/3 + 1 if l = 3

d(p− 1)/3e otherwise.

Proof. Let G = Wp = K1 + Cp−1 be the wheel with V (K1) = {x} and V (Cp−1) =

{v1, v2, . . . , vp−1}. It is clear that x is not a monophonic eccentric vertex of any

vertex in G, but any vertex in Cp−1 is a monophonic eccentric vertex of x. Hence any

monophonic eccentric dominating set of Wp is a monophonic eccentric dominating set

of Cp−1 and vice versa. Then by Theorem 11, we have

γme(Wp) =

{
d(p− 1)/3e+ 1 if l = 3

d(p− 1)/3e otherwise.

If l = 3, then p is a multiple of 3 and so d(p− 1)/3e = p/3 and the result follows.
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