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Abstract: A Roman dominating function (RDF) on a graph G is a function f :

V (G)→ {0, 1, 2} satisfying the condition that every vertex u with f(u) = 0 is adjacent

to at least one vertex v for which f(v) = 2. The weight of an RDF f is the sum of
the weights of the vertices under f . The Roman domination number, γR(G) of G is

the minimum weight of an RDF in G. The Roman domination polynomial of a graph
G of order n is the polynomial RD(G, x) =

∑2n
i=γR(G) dR(G, i)x

i, where dR(G, i) is

the number of RDFs of G with weight i. In this paper we prove properties of Roman

domination polynomials and determine RD(G, x) in several classes of graphs G by
new approaches. We also present bounds on the number of all Roman domination

polynomials in a graph.

Keywords: Roman domination polynomial, Roman dominating function, Roman

domination number

AMS Subject classification: 05C69

1. Introduction

For notations and definitions not given here we refer to [13]. We consider simple and

finite graphs G = (V,E), where V = V (G) is the vertex set and E = E(G) is the

edge set. The order of G, denoted |V (G)| = n, is the number of vertices in G and

the size of G, denoted |E(G)| = m, is the number of edges in G. For any two vertices

x, y ∈ V (G), x and y are adjacent if the edge xy ∈ E(G). The degree of a vertex v,

denoted by deg(v) (or degG(v)), is the number of vertices adjacent to v. A vertex

of degree zero is called an isolated vertex. We denote by ∆ and δ, respectively, the

maximum degree and minimum degree among the vertices of G. An induced subgraph

∗ Corresponding Author



2 On the Roman Domination Polynomials

of a graph G is a graph formed from a subset D of vertices of G and all of the edges in

G connecting pairs of vertices in that subset, denoted by 〈D〉. An independent set is

a set of vertices any two of which are not adjacent. A graph G is bipartite if V (G) can

be partitioned into two independent sets called partite sets. The join of two graphs

G1 and G2, denoted by G1 ∨G2 is a graph with vertex set V (G1) ∪ V (G2) and edge

set E(G1) ∪ E(G2) ∪ {uv|u ∈ V (G1) and v ∈ V (G2)}.
A dominating set of a graph G is a subset D of vertices such that every vertex

outside D has a neighbor in D. The domination number of G, denoted by γ(G),

is the minimum cardinality amongst all dominating sets of G. Cockayne et al. [9]

introduced the mathematical definition of Roman domination. This concept was

subsequently developed very vastly, and to see the latest progress until 2020 we refer

to [6–8]. A function f : V −→ {0, 1, 2} is called a Roman dominating function or just

an RDF for G if for every vertex v ∈ V with f(v) = 0 there exists a vertex u ∈ N(v)

such that f(u) = 2. The weight of an RDF f is the sum f(V ) =
∑
v∈V f(v). The

minimum weight of an RDF on G is called the Roman domination number of G and

is denoted by γR(G).

Graph polynomials play an important role in studying the structure of a graph, and

there are some polynomials associated to graphs such as Chromatic polynomial, clique

polynomial, characteristic polynomial and Tutte polynomial. Alikhani and Peng [4]

introduced the concept of domination polynomials in graphs. This concept was further

studied in [1, 3] and has been considered for some other types of dominating sets, for

example, for total dominating sets ([2]), connected dominating sets ([14]) and hope

dominating sets ([15]).

Gangabylaiah et al. [12] introduced the concept of Roman domination polynomial

of a graph. For a graph G of order n with Roman domination number γR(G), the

Roman domination polynomial of a graph G, denoted RD(G, x), is defined as follows

RD(G, x) =

2n∑
i=γR(G)

dR(G, i)xi,

where, dR(G, i) is the number of all Roman dominating functions on the graph G

with weight i. They presented several basic properties and exact values of the Roman

domination polynomial of a graph. This concept was further studied by Deepak et

al. [10, 11].

In this paper we prove some further properties of Roman domination polynomial in

graphs. We prove some previous results given in [11, 12] by new and easier approach.

We also present bounds for the number of all RDFs of graph G.

We recall that the number of solutions of the equation x1+x2+ · · ·+xn = r, xi ∈ Z+,

is (
r + n− 1

r

)
=

(
r + n− 1

n− 1

)
(see e.g. [5]), and thus we have the following proposition:
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Proposition 1. The number of integral solutions of x1 +x2 + ...+xn = r, a ≤ xi ≤ b, is(
r − na+ n− 1

n− 1

)
+

n∑
k=1

(−1)k
(
n

k

)(
r − na− k(b− a+ 1) + n− 1

n− 1

)
.

We also make use of the following.

Proposition 2 ([9]). For a path Pn, γR(Pn) = d 2n
3
e.

2. Roman domination polynomial in join of graphs

Roman domination polynomial in join of two graphs was studied in [12]. In this

section, we determine the Roman domination polynomial in join of two graphs by

a new approach and then using it we determine the Roman domination polynomial

in the complete and complete bipartite graphs. For this purpose, we first introduce

some notations. For a graph G of order n, let:

• DR(G, k) stands for the set of all RDFs on the graph G with weight k, and let

dR(G, k) = |DR(G, k)|.

• DnR(G, k) stands for the set of all functions f : V (G)→ {0, 1, 2} on the graph

G with weight k such that f is not an RDF, and let dnR(G, k) = |DnR(G, k)|.

• D(G, k) stands for the set of all functions f : V (G)→ {0, 1, 2} on the graph G

with weight k, and let d(G, k) = |D(G, k)|.

• P (G, x) =
∑2|V (G)|
i=0 d(G, i)xi.

Clearly, d(G, k) = dR(G, k) + dnR(G, k). Furthermore, the following is easily verified.

Observation 1. If G1 and G2 are two graphs of order n1 and n2, respectively, then

P (G1 ∨G2, x) = P (G1, x)P (G2, x).

We now determine the Roman domination polynomial in join of two graphs.

Theorem 2. If G1 and G2 are two connected graphs of order n1 and n2, respectively, then

RD(G1 ∨G2, x) =

n1∑
p=1

n1−p∑
r=0

n2∑
q=1

n2−q∑
s=0

(
n1

p

)(
n1 − p
r

)(
n2

q

)(
n2 − q
s

)
x2p+r+2q+s

+ RD(G1, x)

n2∑
i=0

(
n2

i

)
xi − xn1

n2−1∑
i=0

(
n2

i

)
xi

+ RD(G2, x)

n1∑
i=0

(
n1

i

)
xi − xn2

n1−1∑
i=0

(
n1

i

)
xi − xn1+n2 .



4 On the Roman Domination Polynomials

Proof. For an RDF f in a graph G, we denote by Vi the set of all vertices of G with

label i under f . Thus an RDF f can be represented by a triplet (V0, V1, V2), and

we use the notation f = (V0, V1, V2). In order to enumerate the RDFs of the graph

G1∨G2, for any RDF f : V (G1∨G2)→ {0, 1, 2} put p = |{v : v ∈ V (G1), f(v) = 2}|
and q = |{v : v ∈ V (G2), f(v) = 2}|. Now we enumerate all RDFs on G1 ∨ G2 by

dividing them into the following types:

Type-1: RDFs f = (V0, V1, V2), where V2 = ∅.
Note that there is only one Type-1 RDF assigning 1 to every vertex of G1∨G2. Thus

we obtain the term xn1+n2 of the Roman domination polynomial.

Type-2: RDFs f = (V0, V1, V2), where V2 ∩ V (G1) 6= ∅ and V2 ∩ V (G2) = ∅.
Observe that f is Type-2 RDF for G1 ∨G2 if and only if f |V (G1) is an RDF for G1.
Note that a typical RDF of G1 is a Type-2 RDF of G1 ∨G2 with exception that all
the vertices of G1 assigned value 1 and there is at least one vertex in G2 with weight
0. Thus, we obtain the following terms of the Roman domination polynomial.

RD(G1, x)

n2∑
i=0

(n2

i

)
xi − xn1

n2∑
i=0

(n2

i

)
xi = RD(G1, x)

n2∑
i=0

(n2

i

)
xi − xn1

n2−1∑
i=0

(n2

i

)
xi − xn1+n2 ,

where i is the number of vertices of G2 with weight one.

Type-3: RDFs f = (V0, V1, V2), where V2 ∩ V (G1) = ∅ and V2 ∩ V (G2) 6= ∅.
Similar to Type-2 RDFs, we find the following terms of the Roman domination poly-
nomial.

RD(G2, x)

n1∑
i=0

(n1

i

)
xi − xn2

n1∑
i=0

(n1

i

)
xi = RD(G2, x)

n1∑
i=0

(n1

i

)
xi − xn2

n1−1∑
i=0

(n1

i

)
xi − xn1+n2 ,

where i is the number of vertices of G1 with weight one.

Type-4: RDFs f = (V0, V1, V2), where V2 ∩ V (G1) 6= ∅ and V2 ∩ V (G2) 6= ∅.
We enumerate the number of Type-4 RDFs on G1∨G2 by summing all such RDFs that

assign 2 to p vertices of G1 and q vertices of G2, where 1 ≤ p ≤ n1 and 1 ≤ q ≤ n2.

For a fixed p ∈ {1, . . . , n1} and fixed q ∈ {1, . . . , n2}, and a fixed Type-4 RDF f

on G1 ∨ G2, it may be possible that f assign 1 to some vertices of G1 or G2. We

enumerate Type-4 RDFs on G1 ∨G2 assigning 2 to p vertices of G1 and q vertices of

G2, by summing all such RDFs assigning 1 to r vertices of G1 and s vertices of G2,

where 0 ≤ r ≤ n1 − p and 0 ≤ s ≤ n2 − q.
There are

(
n1

p

)(
n1−p
r

)
functions on G1 such that p vertices are assigned 2 and r vertices

are assigned 1. For each such choice, there are
(
n2

q

)(
n2−q
s

)
functions on the graph G2,

such that q vertices are assigned 2 and s vertices are assigned 1. Thus we obtain the

term

n1∑
p=1

n1−p∑
r=0

n2∑
q=1

n2−q∑
s=0

(
n1
p

)(
n1 − p
r

)(
n2
q

)(
n2 − q
s

)
x2p+r+2q+s.
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Therefore

RD(G1 ∨G2, x) = xn1+n2 +RD(G1, x)

n2∑
i=0

(
n2
i

)
xi − xn1

n2−1∑
i=0

(
n2
i

)
xi − xn1+n2

+ RD(G2, x)

n1∑
i=0

(
n1
i

)
xi − xn2

n1−1∑
i=0

(
n1
i

)
xi − xn1+n2

+

n1∑
p=1

n1−p∑
r=0

n2∑
q=1

n2−q∑
s=0

(
n1
p

)(
n1 − p
r

)(
n2
q

)(
n2 − q
s

)
x2p+r+2q+s

=

n1∑
p=1

n1−p∑
r=0

n2∑
q=1

n2−q∑
s=0

(
n1
p

)(
n1 − p
r

)(
n2
q

)(
n2 − q
s

)
x2p+r+2q+s

+ RD(G1, x)

n2∑
i=0

(
n2
i

)
xi − xn1

n2−1∑
i=0

(
n2
i

)
xi

+ RD(G2, x)

n1∑
i=0

(
n1
i

)
xi − xn2

n1−1∑
i=0

(
n1
i

)
xi − xn1+n2 .

Thus the proof is complete.

Since RD(Kn, x) = xn(1 + x)n (see [12]), Kn = K1 ∨K1 ∨ · · · ∨K1︸ ︷︷ ︸
n times

, and Km,n =

Km ∨Kn, we obtain the following.

Corollary 1 ([12]).

1. RD(Kn, x) = (1 + x+ x2)n − (1 + x)n + xn.

2. RD(Km,n, x) = xm+n + (1 + x)m+n(xm + xn)− xm(1 + x)n − xn(1 + x)m

+

m∑
p=1

m−p∑
r=0

n∑
q=1

n−q∑
s=0

(
m

p

)(
m− p
r

)(
n

q

)(
n− q
s

)
x2p+r+2q+s.

3. Roman domination polynomial in Paths

The Roman domination polynomial for a path Pn is determined in [11] in which the

authors employed the results of Alikhani and Peng [3] on the domination polynomials

of graphs. In this section we determine the Roman domination polynomial for a path

Pn without the need of domination polynomials. For this purpose, we need some

notations. For any vertex v of a graph G, let:

• d0k(G, v) = |{f : V (G)→ {0, 1, 2} | f is an RDF with f(V ) = k, f(v) = 0}|.

• d1k(G, v) = |{f : V (G)→ {0, 1, 2} | f is an RDF with f(V ) = k, f(v) = 1}|.
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• d2k(G, v) = |{f : V (G)→ {0, 1, 2} | f is an RDF with f(V ) = k, f(v) = 2}|.

Then d0k(G, v) + d1k(G, v) + d2k(G, v) is equal to the number of all RDFs with weight

k. That is,

dR(G, k) = d0k(G, v) + d1k(G, v) + dki
2(G, v).

So the coefficients of xi in the polynomial
2n∑

i=γR(G)

(d0i (G, v)+d1i (G, v)+d2i (G, v))xi, are

independent of the choice of the vertex v, and so the Roman domination polynomial

of graph G can be written as

RD(G, x) =

2n∑
i=γR(G)

(d0i (G, v) + d1i (G, v) + d2i (G, v))xi,

where v is a vertex in V (G).

Lemma 1. Let G = Pn, V (Pn) = {v1, v2, . . . , vn} and E(Pn) = {v1v2, v2v3, . . . , vn−1vn}.
Then

d0i (Pn, v1) = d2i (Pn−1, v1),

d1i (Pn, v1) = d0i−1(Pn−1, v1) + d1i−1(Pn−1, v1) + d2i−1(Pn−1, v1),

d2i (Pn, v1) = d0i−2(Pn−2, v1) + d1i−2(Pn−2, v1) + d2i−2(Pn−2, v1) + d1i−2(Pn−1, v1)

+ d2i−2(Pn−1, v1),

where Pn−1 = G[{v1, v2, . . . , vn−1}] and Pn−2 = G[{v1, v2, . . . , vn−2}].

Proof. Let Qn−1 = G[{v2, v3, . . . , vn}] and Rn−2 = G[{v3, v4, . . . , vn}]. For any

RDF f for Pn, if f(v1) = 0 then f(v2) = 2. So the number of RDFs on Pn with

f(v1) = 0 is equal to the number of RDFs on Qn−1 with f(v2) = 2. Therefore

d0i (Pn, v1) = d2i (Qn−1, v2).

Assume that f is an RDF for Pn with weight i and f(v1) = 1. Then g = f |{v2,v3,...,vn}
is an RDF for Qn−1, g(V ) = i− 1 and g(v2) ∈ {0, 1, 2}. Conversely, suppose that g is

an RDF for Qn−1 with weight i− 1. Then the function f : V (Pn)→ {0, 1, 2} defined

by f(v1) = 1 and f(vj) = g(vj) for 2 ≤ j ≤ n, is an RDF for Pn with weight i. Thus

in this case, d1i (Pn, v1) = d0i−1(Qn−1, v2) + d1i−1(Qn−1, v2) + d2i−1(Qn−1, v2).

Assume that f is an RDF for Pn with weight i and f(v1) = 2. Assume that f(v2) = 0.

With a similar argument to that used for the calculation of d1i (Pn, v1), we obtain that

d2i (Pn, v1) = d0i−2(Rn−2, v3) + d1i−2(Rn−2, v3) + d2i−2(Rn−2, v3). Next assume that

f(v2) = 1. It is evident that the restriction of g to V (Pn)−{v1} is an RDF for Qn−1,

g(V ) = i−2 and g(v2) = 1. Conversely, if g is an RDF for Qn−1 with weight i−2 and

g(v2) = 1, then f(v1) = 2 and f(vj) = g(vj) for 2 ≤ j ≤ n, and so f is an RDF for Pn
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with weight i. Thus in this case d2i (Pn, v1) = d1i−2(Qn−1, v2). Similarly, if f(v2) = 2,

then d2i (Pn, v1) = d2i−2(Qn−1, v2). We thus have the following:

d2i (Pn, v1) = d0i−2(Rn−2, v3) + d1i−2(Rn−2, v3) + d2i−2(Rn−2, v3)

+ d1i−2(Qn−1, v2) + d2i−2(Qn−1, v2).

Now, let Pn−1 and Pn−2 be obtained by relabeling the vertices of Qn−1 and Rn−2
as V (Pn−1) = {u1 = v2, u2 = v3, . . . , un−1 = vn|vi ∈ V (Qn−1), i = 2, 3, . . . , n},
and V (Pn−2) = {u1 = v3, u2 = v4, . . . , un−2 = vn|vi ∈ V (Rn−2), i = 3, 4, . . . , n}.
Then d0i (Pn, v1) = d2i (Pn−1, u1), d1i (Pn, v1) = d0i−1(Pn−1, u1) + d1i−1(Pn−1, u1) +

d2i−1(Pn−1, u1) and d2i (Pn, v1) = d0i−2(Pn−2, u1) + d1i−2(Pn−2, u1) + d2i−2(Pn−2, u1) +

d1i−2(Pn−1, u1) + d2i−2(Pn−1, u1), as desired.

Note that Lemma 1 expresses a recursive relation to obtain the values d0i (Pn, v1),

d1i (Pn, v1) and d2i (Pn, v1). In a recursive relationship, it is essential to know the initial

conditions as well as the end condition. By Proposition 2 we obtain the following.

Proposition 3. If Pn is a path graph with n vertices then

1) d02n−2(Pn, v1) = 1, d0m(Pn, v1) = 0 for m > 2n− 2 or m < d 2n
3
e.

2) d12n−1(Pn, v1) = 1, d1m(Pn, v1) = 0 for m > 2n− 1 or m < d 2n
3
e.

3) d22n(Pn, v1) = 1, d2m(Pn, v1) = 0 for m > 2n or m < d 2n
3
e.

Theorem 3. For n ≥ 4, let G = Pn with V (G) = {v1, v2, . . . , vn} and E(G) =
{v1v2, v2v3, . . . , vn−1vn}. Then,

RD(Pn, x) = RD(P1, x)RD(Pn−1, x) + x2RD(Pn−2, x) + xRD(P1, x)RD(Pn−3, x),

with the initial values RD(P1, x) = x + x2, RD(P2, x) = 3x2 + 2x3 + x4, RD(P3, x) =
x2 + 5x3 + 6x4 + 3x5 + x6.

Proof. It is evident that

RD(Pn, x) =
2n∑

i=γR(Pn)

(d0i (Pn, v1) + d1i (Pn, v1) + d2i (Pn, v1))x
i

=
2n∑

i=d 2n
3
e

(d0i (Pn, v1) + d1i (Pn, v1) + d2i (Pn, v1))x
i.

Using Lemma 1, it can be written:
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RD(Pn, x) =

2n∑
i=d(2n)/3e

(d2i (Pn−1, v1) + d0i−1(Pn−1, v1) + d1i−1(Pn−1, v1) + d2i−1(Pn−1, v1)

+ d0i−2(Pn−2, v1) + d1i−2(Pn−2, v1) + d2i−2(Pn−2, v1) + d1i−2(Pn−1, v1)

+ d2i−2(Pn−1, v1))x
i

=

2n∑
i=d(2n)/3e

(d0i−1(Pn−1, v1) + d1i−1(Pn−1, v1) + d2i−1(Pn−1, v1))x
i

+

2n∑
i=d(2n)/3e

(d0i−2(Pn−2, v1) + d1i−2(Pn−2, v1) + d2i−2(Pn−2, v1))x
i

+
2n∑

i=d(2n)/3e
(d2i (Pn−1, v1) + d1i−2(Pn−1, v1) + d2i−2(Pn−1, v1))x

i

= xRD(Pn−1, x) + x2RD(Pn−2, x) +

2n∑
i=d(2n)/3e

(d2i (Pn−1, v1) + d1i−2(Pn−1, v1)

+ d2i−2(Pn−1, v1))x
i

= xRD(Pn−1, x) + x2RD(Pn−2, x) +

2n∑
i=d(2n)/3e

(d2i (Pn−1, v1) + d1i−2(Pn−1, v1)

+ d2i−2(Pn−1, v1) + d0i−2(Pn−1, v1)− d0i−2(Pn−1, v1))x
i

= xRD(Pn−1, x) + x2RD(Pn−2, x) + x2RD(Pn−1, x) +
2n∑

i=d(2n)/3e
(d2i (Pn−1, v1)

− d0i−2(Pn−1, v1))x
i

= (x+ x2)RD(Pn−1, x) + x2RD(Pn−2, x) +

2n∑
i=d(2n)/3e

(d2i (Pn−1, v1)

− d0i−2(Pn−1, v1))x
i

= RD(P1, x)RD(Pn−1, x) + x2RD(Pn−2, x) +
2n∑

i=d(2n)/3e
(d0i−2(Pn−3, v1)

+ d1i−2(Pn−3, v1) + d2i−2(Pn−3, v1) + d1i−2(Pn−2, v1) + d2i−2(Pn−2, v1)

− d2i−2(Pn−2, v1))x
i

= RD(P1, x)RD(Pn−1, x) + x2RD(Pn−2, x)

+
2n∑

i=d(2n)/3e
(d0i−2(Pn−3, v1) + d1i−2(Pn−3, v1) + d2i−2(Pn−3, v1) + d1i−2(Pn−2, v1))x

i

= RD(P1, x)RD(Pn−1, x) + x2RD(Pn−2, x) + x2RD(Pn−3, x)

+

2n∑
i=d 2n

3
e

(d0i−3(Pn−3, v1) + d1i−3(Pn−3, v1) + d2i−3(Pn−3, v1))x
i

= RD(P1, x)RD(Pn−1, x) + x2RD(Pn−2, x) + x2RD(Pn−3, x) + x3RD(Pn−3, x)

= RD(P1, x)RD(Pn−1, x) + x2RD(Pn−2, x) + (x2 + x3)RD(Pn−3, x)

= RD(P1, x)RD(Pn−1, x) + x2RD(Pn−2, x) + xRD(P1, x)RD(Pn−3, x),
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as desired.

4. A bound for the total number of Roman domination poly-
nomial

In this section, we prove an upper bound as well as a lower bound for the number of

all RDFs of a graph and characterize graphs achieving equality for the lower bound.

Theorem 4. Let G be an arbitrary graph with n vertices. Then

2n ≤ dR(G) ≤ 3n −
n∑
k=0

(−1)k
(
n

k

)(
2n− 2k − 1

n

)
.

Equality for the lower bound holds if and only if G = K̄n.

Proof. Any function that assigns the values 1 or 2 to the vertices of a graph is an

RDF, and so the number of such functions is equal to 2n. So 2n ≤ dR(G). On the

other hand, the total number of functions such as f : V (G)→ {0, 1, 2} is equal to 3n,

as a result dR(G) ≤ 3n − |A|, where A = {f : V (G)→ {0, 1, 2}|f is not an RDF}. It

is enough to calculate the value of |A|. For every function f : V (G) → {0, 1, 2}, let

x1 = f(v1), x2 = f(v2), . . . , xn = f(vn). Then, |A| is at least equal to the number of

non-negative integer solutions of the inequality

x1 + x2 + · · ·+ xn ≤ n− 1,

where 0 ≤ xi ≤ 1, 0 ≤ i ≤ n. The number of solutions of x1 + x2 + · · ·+ xn ≤ n− 1,

0 ≤ xi ≤ 1, 0 ≤ i ≤ n is(
2n− 1

n

)
+

n∑
k=1

(−1)k
(
n

k

)(
2n− 2k − 1

n

)
=

n∑
k=0

(−1)k
(
n

k

)(
2n− 2k − 1

n

)
.

Thus
∑n
k=0(−1)k

(
n
k

)(
2n−2k−1

n

)
≤ |A|.

We next prove the equality part. Let G = K̄n and f be an arbitrary RDF on G. Then

f(v) = 1 or f(v) = 2 for each vertex v. The number of these functions is equal to

2n. Conversely, suppose that G is an arbitrary graph with dR(G) = 2n. If G 6= K̄n,

then G has at least one edge vtvs. Set A = {f : V (G)→ {0, 1, 2} | f(vi) ≥ 1, 1 ≤ i ≤
n} ∪ {g : V (G) → {0, 1, 2} | f(vt) = 0, f(vs) = 2, f(vi) = 1, 1 ≤ i ≤ n, i 6= t, i 6= s}.
Clearly, every member of A is an RDF for G and |A| = 2n + 1. This contradicts the

assumption dR(G) = 2n. This completes the proof.

Note that the upper bound of Theorem 4 is sharp, as can be seen in the graph K3.
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