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Abstract: A Roman dominating function (RDF) on a graph G is a function f :
V(G) — {0, 1, 2} satisfying the condition that every vertex u with f(u) = 0 is adjacent
to at least one vertex v for which f(v) = 2. The weight of an RDF f is the sum of
the weights of the vertices under f. The Roman domination number, yg(G) of G is
the minimum weight of an RDF in G. The Roman domination polynomial of a graph
G of order n is the polynomial RD(G,z) = ZZZQ,YR(G) dr(G,i)z?, where dr(G,1) is
the number of RDF's of G with weight 4. In this paper we prove properties of Roman
domination polynomials and determine RD(G,z) in several classes of graphs G by
new approaches. We also present bounds on the number of all Roman domination
polynomials in a graph.

Keywords: Roman domination polynomial, Roman dominating function, Roman
domination number

AMS Subject classification: 05C69

1. Introduction

For notations and definitions not given here we refer to [13]. We consider simple and
finite graphs G = (V, E), where V = V(G) is the vertex set and E = E(G) is the
edge set. The order of G, denoted |V(G)| = n, is the number of vertices in G and
the size of G, denoted |E(G)| = m, is the number of edges in G. For any two vertices
x,y € V(G), z and y are adjacent if the edge xy € E(G). The degree of a vertex v,
denoted by deg(v) (or degs(v)), is the number of vertices adjacent to v. A vertex
of degree zero is called an isolated vertex. We denote by A and §, respectively, the
mazimum degree and minimum degree among the vertices of G. An induced subgraph
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596 On the Roman domination polynomials

of a graph G is a graph formed from a subset D of vertices of G and all of the edges in
G connecting pairs of vertices in that subset, denoted by (D). An independent set is
a set of vertices any two of which are not adjacent. A graph G is bipartite if V(G) can
be partitioned into two independent sets called partite sets. The join of two graphs
G1 and G2, denoted by G; V G5 is a graph with vertex set V(G1) UV (G2) and edge
set E(G1) U E(G2) U {uvlu € V(G1) and v € V(G2)}.

A dominating set of a graph G is a subset D of vertices such that every vertex
outside D has a neighbor in D. The domination number of G, denoted by v(G),
is the minimum cardinality amongst all dominating sets of G. Cockayne et al. [9]
introduced the mathematical definition of Roman domination. This concept was
subsequently developed very vastly, and to see the latest progress until 2020 we refer
to [6-8]. A function f:V — {0,1,2} is called a Roman dominating function or just
an RDF for G if for every vertex v € V with f(v) = 0 there exists a vertex u € N(v)
such that f(u) = 2. The weight of an RDF f is the sum f(V) = > . f(v). The
minimum weight of an RDF on G is called the Roman domination number of G and
is denoted by vr(G).

Graph polynomials play an important role in studying the structure of a graph, and
there are some polynomials associated to graphs such as Chromatic polynomial, clique
polynomial, characteristic polynomial and Tutte polynomial. Alikhani and Peng [4]
introduced the concept of domination polynomials in graphs. This concept was further
studied in [1, 3] and has been considered for some other types of dominating sets, for
example, for total dominating sets ([2]), connected dominating sets ([14]) and hope
dominating sets ([15]).

Gangabylaiah et al. [12] introduced the concept of Roman domination polynomial
of a graph. For a graph G of order n with Roman domination number vz(G), the
Roman domination polynomial of a graph G, denoted RD(G, z), is defined as follows

2n
D(G,z) = Z dr(G,i)z’,

i=vr(G)

where, dr(G,1) is the number of all Roman dominating functions on the graph G
with weight i. They presented several basic properties and exact values of the Roman
domination polynomial of a graph. This concept was further studied by Deepak et
al. [10, 11].

In this paper we prove some further properties of Roman domination polynomial in
graphs. We prove some previous results given in [11, 12] by new and easier approach.
We also present bounds for the number of all RDFs of graph G.

We recall that the number of solutions of the equation 1 +xzo+---+x, =7, 2; € ZT,

is
r+n—1\ (r4+n-1
r B n—1

(see e.g. [5]), and thus we have the following proposition:
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Proposition 1. The number of integral solutions of x1 + T2+ ...+ zn =7, a < x; < b, is

r—na+mn—1 = n\f(r—na—kb—a+1)+n-1
() )

We also make use of the following.

Proposition 2 ([9]). For a path P., yr(Pn) = [3*].

2. Roman domination polynomial in join of graphs

Roman domination polynomial in join of two graphs was studied in [12]. In this
section, we determine the Roman domination polynomial in join of two graphs by
a new approach and then using it we determine the Roman domination polynomial
in the complete and complete bipartite graphs. For this purpose, we first introduce
some notations. For a graph G of order n, let:

e Dg(G, k) stands for the set of all RDFs on the graph G with weight k, and let
dr(G,k) = |Dgr(G, k)|.

e D, r(G, k) stands for the set of all functions f : V(G) — {0,1,2} on the graph
G with weight k such that f is not an RDF, and let d,r(G, k) = |Dnr(G, k)|.

e D(G, k) stands for the set of all functions f : V(G) — {0,1,2} on the graph G
with weight k, and let d(G, k) = |D(G, k)|.

o P(G,z) =YV, iyat,
Clearly, d(G, k) = dr(G, k) + dnr(G, k). Furthermore, the following is easily verified.
Observation 1. If G; and Gs are two graphs of order n; and ns, respectively, then
P(G1 Vv Gg,m) = P(Gl,m)P(Gg,x).

We now determine the Roman domination polynomial in join of two graphs.

Theorem 2. IfG; and G2 are two connected graphs of order n1 and nz, respectively, then

nip ni—p

RD(G,V Gay2) = Z Z inzﬂz (7;1) <n1rp) (Zz) (nzs (J> L 2P H20+s
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Proof. For an RDF f in a graph G, we denote by V; the set of all vertices of G with
label ¢ under f. Thus an RDF f can be represented by a triplet (Vp, Vi, Va), and
we use the notation f = (Vp, V1, Va). In order to enumerate the RDF's of the graph
G1V Ga, for any RDF f: V(G1VG2) — {0,1,2} put p = [{v: v € V(G1), f(v) =2}
and ¢ = |[{v : v € V(Gs), f(v) = 2}|. Now we enumerate all RDFs on G; V G5 by
dividing them into the following types:

Type-1: RDFs f = (Vy, V4, V2), where V5 = 0.

Note that there is only one Type-1 RDF assigning 1 to every vertex of G; V G3. Thus
we obtain the term z™1%"2 of the Roman domination polynomial.

Type-2: RDFs f = (Vy, Vi, Va), where Vo NV(G1) # 0 and Vo NV (G2) = 0.
Observe that f is Type-2 RDF for G V Gy if and only if f|y(q,) is an RDF for G;.

Note that a typical RDF of G is a Type-2 RDF of G; V G2 with exception that all
the vertices of (G; assigned value 1 and there is at least one vertex in G, with weight
0. Thus, we obtain the following terms of the Roman domination polynomial.

ng na no—1
Gl,x)z< )x — " ;(T?)x = RD(G1,z ;( ) ; <n;2>xi,xn1+nz7

where i is the number of vertices of G2 with weight one.

Type-3: RDFs f = (Vp, V1, Vo), where Vo NV (G1) = 0 and Vo NV (Gs) # 0.
Similar to Type-2 RDF's, we find the following terms of the Roman domination poly-
nomial.

Ga,a:)Z( et —an i(n;) = RD(G,x nz( et - nlil(zl)xi_xnl+wl2’
1=0 1=0 1=0

where ¢ is the number of vertices of G; with weight one.

Type-4: RDFs f = (Vy, V1, Va), where Vo NV (G1) # 0 and Vo NV (Gs) # 0.

We enumerate the number of Type-4 RDFs on G;VGs by summing all such RDFs that
assign 2 to p vertices of G; and ¢ vertices of Go, where 1 < p <nj and 1 < g < ns.
For a fixed p € {1,...,n1} and fixed ¢ € {1,...,n2}, and a fixed Type-4 RDF f
on G1 V G, it may be possible that f assign 1 to some vertices of G; or Go. We
enumerate Type-4 RDFs on G V G5 assigning 2 to p vertices of G; and ¢ vertices of
G5, by summing all such RDFs assigning 1 to r vertices of G; and s vertices of Ga,
where 0 <7r<n;—pand 0 < s<ns—q.

There are (”pl) (™ 7P) functions on Gy such that p vertices are assigned 2 and  vertices
are assigned 1. For each such choice, there are (’ff) (”2 q) functions on the graph G,
such that q vertices are assigned 2 and s vertices are assigned 1. Thus we obtain the

term
niy Ni1—p n2 N2—q
ni ny —p n2 ng —q 2P H20+s
P r q s '
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Therefore
no n ] n2—1 n )
D(Gl V Go, CC) — pmtna + RD(Gl,CL') Z ( ?) xt — ™ ( .2>.7J2 _ pratnz
1 7
=0 =0

ni n1—1
+ RD(GQ,.’L‘) Z (T?):L'Z — "2 Z (77;1
=0 3

nip Mi—p n2 N2—q

LD IDID B D

2R E s ()0
G

ng — Q> 2Pt 20+

)
(
(nzs— q) JESIETE
)
)

Thus the proof is complete. O

Since RD(K,,x) = 2™(1 + x)" (see [12]), K,, = K1V Ky V-V K, and Ky, ,, =

n times

K,, V K,,, we obtain the following.
Corollary 1 ([12]).

| RD(Knya) = (1+2+2%)" — (1+2)" + "
2. RD(Kmp,z) = "+ (1 +2)"™@" +2") —z"(14+2)" —z"(1+z)"

SRR

3. Roman domination polynomial in Paths

The Roman domination polynomial for a path P, is determined in [11] in which the
authors employed the results of Alikhani and Peng [3] on the domination polynomials
of graphs. In this section we determine the Roman domination polynomial for a path
P,, without the need of domination polynomials. For this purpose, we need some
notations. For any vertex v of a graph G, let:

o dU(G,v) = |{f:V(G) —{0,1,2} | fisan RDF with f(V) =k, f(v) = 0}|.
o di(G,v) = |{f:V(G) = {0,1,2} | fisan RDF with f(V) =k, f(v) = 1}|.
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o d2(G,v) = |{f: V(G) = {0,1,2} | fis an RDF with f(V) =k, f(v) = 2}|.

Then d)(G,v) + d}(G,v) + di(G,v) is equal to the number of all RDFs with weight
k. That is,

dr(G,k) = d)(G,v) + di.(G,v) + dii*(G, v).

So the coefficients of z° in the polynomial > (d9(G,v)+d}(G,v)+d?(G,v))x?, are
i=vr(G)
independent of the choice of the vertex v, and so the Roman domination polynomial

of graph G can be written as

2n
RD(G,z)= Y (d)(G,v)+d}(G,v)+d}(G,v))a,
i=vr(G)

where v is a vertex in V(G).

Lemma 1. Let G = P,, V(P,) = {v1,v2,...,0n} and E(P,) = {v1v2, 0203, ..., Un—1Vn}.
Then

4} (Pp,01) = di(Pa_1,01),

di(Po,v1) = di—y(Poo1,v1) 4+ di_i(Pa—1,01) + di—y (Pa-1,v1),

4} (Pp,v1) = di—s(Pa—2,01) + di_2(Pn2,v1) + di—2(Pa—2,01) + di_5(Pn_1,v1)
+ d?72(Pn—17U1)7

where P,_1 = G[{v1,v2,...,vn—1}] and Pr—2 = G[{v1,v2,...,vn—2}].

Proof. Let Qn_1 = G[{v2,vs,...,0,}] and R,_o = G[{vs,v4,...,v,}]. For any
RDF f for P,, if f(vi) = 0 then f(ve) = 2. So the number of RDFs on P, with
f(v1) = 0 is equal to the number of RDFs on @,_; with f(vy) = 2. Therefore
A} (Pn,v1) = dF (Qn—1,v2).

Assume that f is an RDF for P,, with weight i and f(v1) = 1. Then g = f[{v, vs,...,00}
is an RDF for Q,,—1, (V) =i—1 and g(v2) € {0,1,2}. Conversely, suppose that g is
an RDF for Q),,—1 with weight ¢ — 1. Then the function f : V(P,) — {0,1,2} defined
by f(v1) =1 and f(v;) = g(v;) for 2 < j < n, is an RDF for P, with weight i. Thus
in this case, d} (P, v1) = d? 1 (Qn_1,v2) + d} | (Qn_1,v2) +d? (Qn_1,v2).

Assume that f is an RDF for P, with weight ¢ and f(v1) = 2. Assume that f(v2) = 0.
With a similar argument to that used for the calculation of d}(P,,v1), we obtain that
d?(Py,v1) = d9 5(Rp_2,v3) + d} 5(Rp_2,v3) + d? 5(R,_2,v3). Next assume that
f(v2) = 1. Tt is evident that the restriction of g to V(P,) — {v1} is an RDF for Q,_1,
g(V) =i—2and g(vy) = 1. Conversely, if g is an RDF for @),,_; with weight i —2 and
g(ve) =1, then f(v1) =2 and f(v;) = g(v;) for 2 < j <n, and so f is an RDF for P,
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with weight i. Thus in this case d?(P,,v1) = d}_5(Qn_1,v2). Similarly, if f(v2) = 2,
then d? (P, v1) = d?_5(Qn_1,v2). We thus have the following:

A7 (Pp,v1) = di_o(Ru—2,v3) + di_5(Rn_2,v3) + di_5(Rn_2,v3)
+ d}_5(Qn-1,v2) + d7_5(Qn—1,v2).

Now, let P,_1 and P,,_o be obtained by relabeling the vertices of @),,_1 and R, _o
as V(P,—1) = {u1 = vo,us = vs,...,Up—1 = Vylv; € V(Qn-1),i = 2,3,...,n},
and V(P,—2) = {u1 = vs,us = v4,...,Up—2 = Up|v; € V(R,_2),7 = 3,4,...,n}.
Then d?(Pn,'Ul) = d?(Pnfl,Ul), d%(Pn,’Ul) = d?_l(Pn,l,ul) + d}_l(Pn,l,ul) —+
A7y (Pa—1,u1) and df (Pn,v1) = df_o(Pn_2,u1) + dj_o(Pn_2,u1) + di_5(Pn_2,u1) +
d} 5(Pu_1,u1) + d?_o(Pn_1,u1), as desired. O

Note that Lemma 1 expresses a recursive relation to obtain the values d?(P,,vy),
d}(Pp,v1) and d?(P,,v1). In a recursive relationship, it is essential to know the initial
conditions as well as the end condition. By Proposition 2 we obtain the following.

Proposition 3. If P, is a path graph with n vertices then
1) d3_2(Pp,v1) = 1, dp(Pa,v1) = 0 for m > 2n—2 or m < [34].
2) dyy_1(Pn,v1) =1, djp(Pn,v1) =0 for m > 2n—1 or m < [2].

8) d5,,(Pn,v1) =1, dp,(Pn,v1) =0 for m > 2n or m < [22].

Theorem 3.  Forn > 4, let G = P, with V(G) = {v1,v2,...,vn} and E(G)
{v1v2,v203, ..., Vn—10n}. Then,

RD(P,,z) = RD(Py,2)RD(P,_1,2) + 2> RD(P,_2,x) + RD(Py,2)RD(P,_3, ),

with the initial values RD(Pi,z) = = + 2°, RD(P2,x) = 322 + 22° + 2*, RD(Ps,z) =
2?4 5 4 62* + 32° + 28,

Proof. 1t is evident that

2n
RD(Pp,z) = > (d}(Pn,v1) +d} (Pn,v1) + d; (Pp, v1))a’
i=vR(Pn)
2n
D> (d(Po,v1) + df (Pr,v1) + df (Po,v1))a

=221

Using Lemma 1, it can be written:
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2n
RD(Pn,z) = > (i (Pa—1,01) +d)_1(Pa—1,01) + d}_1 (Pa—1,v1) + di_1 (Pa—1,v1)
i=[(2n)/3]
+ d)_5(Pu—2,v1) +dj_o(Pn—2,v1) +d; _5(Pn_2,v1) +dj_5(Pn_1,v1)

+ d_5(Pa_1,v1))z’

2n
= > (@ i(Pam1,v1) + diy(Pao1,01) + di_q (P, 01))a’
i=[(2n)/3]
2n )
+ Y (A a(Pa—2,01) +di_y(Pa—z,v1) + di_o(Pr—2,v1))7’
i=[(2n)/3]
2n )
+ > (d(Pam1,v) +dig(Pao1,v1) + df_g(Pro1,01))a’
i=[(2n)/3]
2n
= zRD(Py_1,2) + 2>RD(Pp_2,2)+ > (d;(Pa_1,01) +dj_5(Pn_1,v1)
i=[(2n)/3]
+ di_5(Pa—1,01))z’
2n
= oRD(Py_1,7) + 2*RD(Pp_2,2)+ > (di(Pa_1,v1) +dj_5(Pn_1,v1)
i=[(2n)/3]
+ 47 5(Po—1,01) + df_5(Pr1,01) — df_5(Pp—1,v1))z"
2n
= aRD(Pn-1,7) + 2°RD(Pp_2,2) + 2 RD(Pp—1,2) + > (di(Pn—1,v1)
i=[(2n)/3]
- dg—2(Pn*17fU1))xi
2n
= (z+2®)RD(Pp_1,2) + 2*RD(Pp—2,2)+ Y (di(Pa-1,v1)
i=[(2n)/3]
— )5 (Ppr, 1))’
2n
= RD(Pi,z)RD(Pp_1,2) + 2>RD(Py—2,2)+ Y (d}_o(Pu_3,v1)
i=[(2n)/3]

+ dzl_g(Pnflianl) + d?_g(PnfiSaUl) + dzl_g(Pnf%Ul) + d?_Q(Pn727 Ul)
— d}_5(Pn-2,v1))a’

= RD(P1,z)RD(P,_1,z) + 2?RD(P,_2, x)
2n

+ > (A a(Pams,o1) +di_y(Paog, 1) + di_o(Pa—s,v1) + d}_y(Pr—2,01))a’
i=[(2n)/3]
= RD(P1,2)RD(Py_1,z) + 2?RD(Pp—2,z) + 22 RD(Pp—3, )
2n
+ > (A 3(Pa—s,v1) +di_5(Pa—3,v1) + di_3(Pn—3,v1))a’
=281

= RD(P1,2)RD(Pp_1,) + x>RD(Py—2,2) + 2> RD(Py_3,2) + 23 RD(Pp_3, x)
= RD(P1,2)RD(P,_1,z) + 2?RD(Pp_2,2) + (22 + 3)RD(P, _3, )

= RD(Pi,z)RD(Py—1,z) + IQRD(Pn_Q7 z) +xzRD(P1,2)RD(Pp_3,z),
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as desired. O

4. A bound for the total number of Roman domination poly-
nomial

In this section, we prove an upper bound as well as a lower bound for the number of
all RDF's of a graph and characterize graphs achieving equality for the lower bound.

Theorem 4. Let G be an arbitrary graph with n vertices. Then

k=0

Equality for the lower bound holds if and only if G = K,.

Proof. Any function that assigns the values 1 or 2 to the vertices of a graph is an
RDF, and so the number of such functions is equal to 2". So 2" < dr(G). On the
other hand, the total number of functions such as f : V(G) — {0, 1,2} is equal to 3",
as a result dp(G) < 3™ —|A|, where A = {f : V(G) — {0,1,2}|f is not an RDF}. It
is enough to calculate the value of |A|. For every function f : V(G) — {0,1,2}, let
x1 = f(v1),22 = f(va),...,2n = f(vy). Then, |A| is at least equal to the number of
non-negative integer solutions of the inequality

T+ x2+ T, <n—1,

where 0 < x; < 1, 0 < 7 < n. The number of solutions of 1 + 2o + -+ x, <n —1,
0<z;<1,0< 1< nis

(an— 1) N ki_l(—”’“(?;) (Qn —ik - 1) _ ki_o(_l)k(z) <2n _Zk — 1>.

Thus 7o (—1)F () (2 < Al

We next prove the equality part. Let G = K,, and f be an arbitrary RDF on G. Then
f(w) =1 or f(v) = 2 for each vertex v. The number of these functions is equal to
27, Conversely, suppose that G is an arbitrary graph with dr(G) = 2". If G # K,
then G has at least one edge vvs. Set A={f:V(G) — {0,1,2} | f(v;) >1,1<i<
n}U{g: V(G) = {0,1,2} | f(vy) =0, f(vs) =2, f(v;) = 1,1 < i <mn,iF#tiF# s}
Clearly, every member of A is an RDF for G and |A| = 2™ + 1. This contradicts the
assumption dr(G) = 2™. This completes the proof. O

Note that the upper bound of Theorem 4 is sharp, as can be seen in the graph Kj.
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