

Research Article

# A study on structure of codes over $\mathbb{Z}_4 + u\mathbb{Z}_4 + v\mathbb{Z}_4$

#### G. Karthick

Department of Mathematics, Presidency University, Bangalore, Karnataka, India. karthygowtham@gmail.com

Received: 19 September 2022; Accepted: 18 April 2023 Published Online: 25 April 2023

**Abstract:** We study (1 + 2u + 2v)-constacyclic code over a semi-local ring  $S = \mathbb{Z}_4 + u\mathbb{Z}_4 + v\mathbb{Z}_4$  with the condition  $u^2 = 3u, v^2 = 3v$ , and uv = vu = 0, we show that (1+2u+2v)-constacyclic code over S is equivalent to quasi-cyclic code over  $\mathbb{Z}_4$  by using two new Gray maps from S to  $\mathbb{Z}_4$ . Also, for odd length n we have defined a generating set for constacyclic codes over S. Finally, we obtained some examples which are new to the data base [Database of  $\mathbb{Z}_4$  codes [online], http:// $\mathbb{Z}_4$  Codes.info(Accessed March 2, 2020)].

Keywords: Non-chain ring. Linear code. Non-chain ring. Gray map. Linear code

**AMS Subject classification:** 94B05, 94B15, 94B35, 94B60

#### 1. Introduction

Cyclic codes have been well studied due to their algebraic structures. It has been playing a crucial role in its preferable applications. Pless et al. [13] discussed  $\mathbb{Z}_4$  cyclic codes and proved the existence of idempotent generators for certain cyclic codes. In 2014, Yildiz et al [17] determined algebraic structures of codes over the ring  $\mathbb{Z}_4 + u\mathbb{Z}_4$ and they obtained the basic facts about their generators with this they conducted a computer search and obtained many new linear codes over  $\mathbb{Z}_4$ . Later, Ashraf et al. [2] studied (1+u)-constacyclic codes over  $\mathbb{Z}_4+u\mathbb{Z}_4$ . In 2015 and 2018 Martinez-Moro et al. and Yilditz et al. studied linear codes and self-dual codes over  $\mathbb{Z}_4[x]/\langle x^2+2x\rangle$  which is isomorphic to  $\mathbb{Z}_4[x]/\langle x^2-1\rangle$  in [10, 18], respectively. Also, Yu et al. [19] defined new Gray maps over  $\mathbb{Z}_4[u]/\langle u^2 \rangle$  and obtained good binary codes are constructed using (1+u) and Cengellenmis et al. [5] also studied constacyclic code over this ring. On the other hand, Shi et al. [14] studied (1+2u)-constacyclic codes over  $\mathbb{Z}_4[u]/\langle u^2-1\rangle$  and they obtained new  $\mathbb{Z}_4$  codes with better parameter. Ozen et al. [12] studied (2+u)constacyclic code over  $\mathbb{Z}_4[u]/\langle u^2-1\rangle$  and they obttined new  $\mathbb{Z}_4$  codes with better parameter. These studies produced many significant linear codes to improve the © 2023 Azarbaijan Shahid Madani University

online database [Database of  $\mathbb{Z}_4$  codes [online], http:// $\mathbb{Z}_4$  Codes.info(Accessed March 2, 2020)]. In 2017, Ozen et al. [11] studied the cyclic codes over  $\mathbb{Z}_4 + u\mathbb{Z}_4 + u^2\mathbb{Z}_4$ , where  $u^3 = 0$  and determined their minimal spanning sets they have also obtained many new quarternary linear codes from the  $\mathbb{Z}_4$ -images of these codes. Recently, Islam et al. [8] and Islam and Prakash [9] discussed the  $\mathbb{Z}_4$ -images of constacyclic codes over  $\mathbb{Z}_4[u]/\langle u^k \rangle$ , and  $\mathbb{Z}_4[u,v]/\langle u^2,v^2,uv-vu \rangle$ , respectively.

On the other side, the codes over non-commutative rings was studied by, Boucher et al. [3] he introduced the skew cyclic (or  $\theta$ -cyclic) code which is a generalized class of cyclic codes. Skew cyclic codes over arbitrary length was studied by Irfan et al. [15]. Later, skew cyclic and skew constacyclic codes over finite rings gained much attention of many mathematician [4, 6, 7, 16].

Inspired by the above results, this paper considers constacyclic codes over the non-chain finite commutative ring  $S = \mathbb{Z}_4 + u\mathbb{Z}_4 + v\mathbb{Z}_4$ ,  $u^2 = 3u, v^2 = 3v$ , and uv = vu = 0. The rest of this paper is organized as follows. Section 2 gives some preliminary results. Gray maps for (1 + 2u + 2v)-constacyclic codes are studied in Section 3. The structure of (1 + 2u + 2v)-constacyclic code and their generating polynomials are discussed in Section 4 with some examples in Section 5.

## 2. Preliminaries

Let  $S = \mathbb{Z}_4 + u\mathbb{Z}_4 + v\mathbb{Z}_4$ ,  $u^2 = 3u, v^2 = 3v$ , and uv = vu = 0 be a commutative ring of order 64 with a unique maiximal ideal  $\langle u, v, 2 \rangle$ , then the quotient ring  $\frac{S}{\langle u, v, 2 \rangle}$  is isomorphic to  $\mathbb{Z}_2$ . Any element in the ring S can be uniquely written as a + ub + vc where a, b and c are elements of  $\mathbb{Z}_4$ . A non-empty subset C of  $R^n$  is said to be a linear code of length n if C is an R-submodule of  $S^n$ . The elements of C are called codewords.

An element a + ub + vc is said to be unit in S only if a is a unit element in S. Let  $\alpha$  be a unit in S then we define  $\alpha$ -constacyclic shift as follows

$$\phi_{\alpha}(c_0, c_1, \dots, c_{n-1}) = (\alpha c_{n-1}, c_0, \dots, c_{n-2})$$

A code whose codewords satisfy this shift is called an  $\alpha$ -constacyclic code. When  $\alpha = 1$  then  $\alpha$ -constacyclic is a cyclic code and when  $\alpha = -1$  then  $\alpha$ -constacyclic is a negacyclic code.

It is convineant to identify each code word of  $\alpha$ -constacyclic code as a polynomial in  $\frac{S[x]}{(x^n-\alpha)}$  through a linear map  $\phi$  as given below

$$\phi: C \mapsto \frac{S[x]}{(x^n - \alpha)}, \quad \phi(c_0, c_1, \dots, c_{n-1}) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}$$

Then set of  $\alpha$ -constacyclic code words in  $\mathbb{R}^n$  can be seen as a polynomial collection over  $\frac{S[x]}{(x^n-\alpha)}$ . And it can be seen that each  $\alpha$ -cyclic shift in C represent xc(x) in codoamin and thus we have the following theorem.

**Theorem 1.** Let C be a linear code of length n over S. Then C is a  $\alpha$ -constacyclic over S if and only if C is an ideal of  $\frac{S[x]}{(x^n-\alpha)}$ .

Let  $r = (r_1, r_2, \ldots, r_m) \in \mathbb{Z}_4^{mn}$  where  $r_i \in \mathbb{Z}_4^n$  for  $i = \{1, 2, \cdots, m\}$  then we define a map  $v : \mathbb{Z}_4^{mn} \to \mathbb{Z}_4^{mn}$ ,  $v(r_1, r_2, \ldots, r_m) = (\sigma(r_1), \sigma(r_2), \ldots, \sigma(r_m))$  where  $\sigma$  is cyclic shift operator defined above if a code C is closed under this shift operator then we call it as quasi cyclic code of index m.

**Definition 1.** Let C be a linear code of length n over  $\mathbb{Z}_4$ . Then C is said to be r-cyclic code if  $\sigma^r(C) = C$ , where  $\sigma$  is the cyclic shift operator. Note that for  $r \geq 2$ , every cyclic code is r-cyclic but not conversely.

**Note:** From now  $\alpha$  represent the unit element 1 + 2u + 2v.

## 3. Gray Maps over S and their Properties

In this section we define two different Gray maps and shown that the Gray images  $\alpha$ -constacyclic code is cyclic and quasi cyclic code over  $\mathbb{Z}_4$  where  $\alpha = 1 + 2u + 2v$ .

**Definition 2.** Let  $\gamma_1$  be linear map defined from S to  $\mathbb{Z}_4^2$ ,

$$\gamma_1(a+ub+vc) = (2a+3b+3c, 2a+b+c)$$

The Gray map  $\gamma_1$  can be extended for length n. The Lee weight of  $a \in \mathbb{Z}_4$  is defined as  $\min(a, 4-a)$  and is denoted as  $w_L(a)$ . For any element  $r=(a+ub+vc)\in S$  we define the Lee weight of a code as  $w_L(r)=w_L(\gamma_1(r))$ . Then Lee distance of code C is  $d_L(C)=\min(w_L(c_i-c_j))$  where  $c_i,c_j\in C$ .

**Lemma 1.** Let  $\gamma_1$  be the gray map defined then it satisfies  $\sigma \gamma_1(s) = \gamma_1 \phi_{\alpha}(s)$  where  $\sigma$  represents the cyclic shift operator and s is an element in  $S^n$ .

*Proof.* Let  $s = s_0, s_1, \ldots, s_{n-1}$  where  $s_i = a_i + ub_i + vc_i$ 

$$\sigma\gamma_1(s) = \sigma\gamma_1(s_0, s_1, \dots, s_{n-1})$$

$$= \sigma(2a_0 + 3b_0 + 3c, 2a_1 + 3b_1 + 3c_1, \dots, 2a_{n-1} + 3b_{n-1} + 3c_{n-1}, 2a_0 + b_0 + c_0, 2a_1 + b_1 + c_1, \dots, 2a_{n-1} + b_{n-1} + c_{n-1})$$

$$= (2a_{n-1} + b_{n-1} + c_{n-1}, 2a_0 + 3b_0 + 3c, \dots, 2a_{n-1} + 3b_{n-1} + 3c_{n-1}, 2a_0 + b_0 + c_0, 2a_1 + b_1 + c_1, \dots, 2a_{n-1} + b_{n-1} + c_{n-1})$$

On the other hand

$$\gamma_{1}\phi_{\alpha}(s) = \gamma_{1}\phi_{\alpha}(s_{0}, s_{1}, \dots, s_{n-1}) 
= \gamma_{1}(\alpha s_{n-1}, s_{0}, \dots, s_{n-2}) 
= \gamma_{1}(a_{n-1} + u(3b_{n-1} + 2a_{n-1}) + v(3c_{n-1} + 2a_{n-1}), a_{0} + ub_{0} 
+vc_{0}, \dots, a_{n-2} + ub_{n-2} + vc_{n-2}) 
= (2a_{n-1} + b_{n-1} + c_{n-1}, 2a_{0} + 3b_{0} + 3c, \dots, 2a_{n-1} + 3b_{n-1} + 3c_{n-1}, 2a_{0} 
+b_{0} + c_{0}, 2a_{1} + b_{1} + c_{1}, \dots, 2a_{n-1} + b_{n-1} + c_{n-1})$$

**Theorem 2.** Let C be a  $\alpha$ -constacyclic code then  $\gamma_1(C)$  is a cyclic code of length 2n over  $\mathbb{Z}_4$ .

*Proof.* Let C be a  $\alpha$ -constacyclic code then it for each  $a \in C$  we have  $\phi_{\alpha}(a) \in C$ . Thus by using Lemma 1 we have  $\sigma \gamma_1(C) = \gamma_1 \phi_{\alpha}(C) = \gamma_1(C)$ , implies  $\gamma_1(C)$  is a cyclic code of length 2n over S.

**Definition 3.** Let  $s = (s_0, s_1, \ldots, s_{n-1}) \in S^n$  where  $s_i = a_i + ub_i + vc_i$  then define the permutation of Gray image  $\gamma_1$  from  $S^n$  to  $\mathbb{Z}_4^{2n}$  as  $\gamma_1^*$  given by

$$\gamma_1^*(s_0, s_1, \dots, s_{n-1}) = (2a_0 + 3b_0 + c_0, 2a_0 + b_0 + c_0, 2a_1 + 3b_1 + c_1, 2a_1 + b_1 + c_1, \dots, 2a_{n-1} + 3b_{n-1} + 3c_{n-1}, 2a_{n-1} + b_{n-1} + c_{n-1}).$$

**Lemma 2.** Let  $\gamma_1^*$  be permutation Gray map then it satisfies  $\gamma_1^*(\sigma)(s) = \sigma^2(\gamma_1^*)(s)$  where s is an element in S.

*Proof.* Let  $s = s_0, s_1, \ldots, s_{n-1}$  where  $s_i = a_i + wb_i$  then

$$\gamma_1^*(\sigma)(s) = \gamma_1^*(\sigma)(s_0, s_1, \dots, s_{n-1})$$

$$= \gamma_1^*(s_{n-1}, s_0, \dots, s_{n-2})$$

$$= (2a_{n-1} + 3b_{n-1} + 3c_{n-1}, 2a_{n-1} + b_{n-1} + c_{n-1}, 2a_0 + 3b_0 + 3c_0, 2a_0 + b_0 + c_0, \dots, 2a_{n-2} + 3b_{n-2} + 3c_{n-1}, 2a_{n-2} + b_{n-2} + c_{n-2})$$

On the other side we have,

$$\sigma^{2}(\gamma_{1}^{*})(s) = \sigma^{2}(\gamma_{1}^{*})(s_{0}, s_{1}, \dots, s_{n-1})$$

$$= \sigma^{2}(2a_{0} + 3b_{0} + c_{0}, 2a_{0} + b_{0} + c_{0}, 2a_{1} + 3b_{1} + c_{1}, 2a_{1} + b_{1} + c_{1}, \dots, 2a_{n-1} + 3b_{n-1} + 3c_{n-1}, 2a_{n-1} + b_{n-1} + c_{n-1})$$

$$= (2a_{n-1} + 3b_{n-1} + 3c_{n-1}, 2a_{n-1} + b_{n-1} + c_{n-1}, 2a_{0} + 3b_{0} + 3c_{0}, 2a_{0} + b_{0} + c_{0}, \dots, 2a_{n-2} + 3b_{n-2} + 3c_{n-1}, 2a_{n-2} + b_{n-2} + c_{n-2})$$

**Theorem 3.** If C be a cyclic code of length n then  $\gamma_1^*(C)$  is a two cyclic code of length 2n over  $\mathbb{Z}_4$ .

*Proof.* Let C be a cyclic code of length n then it satisfies  $\sigma(c) \in C$  for all  $c \in C$ . Using Lemma 2 we have  $\gamma_1^*\sigma(C) = \gamma_1^*(C) = \sigma^2\gamma_1^*(C)$ . Hence  $\gamma_1^*(C)$  is a two cyclic code of length 2n over  $\mathbb{Z}_4$ .

**Definition 4.** Let  $\gamma_2$  be a linear map defined from S to  $\mathbb{Z}_4^2$  by

$$\gamma_2(a+ub+vc) = (a+2b+2c, 2b+2c, a).$$

The map  $\gamma_2$  can be extended to length n. For any element  $r = (a + ub + vc) \in S$  we define the Lee weight of a code as  $w_L(r) = w_L(\gamma_2(r))$ . Then Lee distance of code C is  $d_L(C) = \min(w_L(c_i - c_j))$  where  $c_i, c_j \in C$ .

**Lemma 3.** Let  $\gamma_2$  be a gray map defined in Definition 4 then it satisfies  $v_3\gamma_2(s) = \gamma_2\phi_\alpha(s)$  for any  $s \in S^n$ .

*Proof.* Let 
$$s = (s_0, s_1, \dots, s_{n-1})$$
 where  $s_i = a_i + ub_i + vc_i$  then

$$v_{3}\gamma_{2}(s) = v_{3}\gamma_{2}(s_{0}, s_{1}, \dots, s_{n-1})$$

$$= v_{3}(a_{0} + 2b_{0} + 2c_{0}, a_{1} + 2b_{1} + 2c_{1}, \dots, a_{n-1} + 2b_{n-1} + 2c_{n-1}, 2b_{0} + 2c_{0}, 2b_{1} + 2c_{1}, \dots, 2b_{n-1} + 2c_{n-1}, a_{0}, a_{1}, \dots, a_{n-1})$$

$$= (a_{n-1} + 2b_{n-1} + 2c_{n-1}, \dots, a_{n-2} + 2b_{n-2} + 2c_{n-2}, 2b_{n-1} + 2c_{n-1}, 2b_{0} + 2c_{0}, \dots, 2b_{n-2} + 2c_{n-2}, a_{n-1}, a_{0}, \dots, a_{n-2}).$$

Thus, on the other hand

$$\begin{split} \gamma_2\phi_\alpha(s) &= (s_0,s_1,\ldots,s_{n-1}) \\ &= \gamma_2(\alpha s_{n-1},s_0,\ldots,s_{n-2}) \\ &= \gamma_2(a_{n-1}+u(3b_{n-1}+2a_{n-1})+v(3c_{n-1}+2a_{n-1}),a_0+ub_0+vc_0,\ldots,a_{n-2}\\ &+ub_{n-2}+vc_{n-2}) \\ &= (a_{n-1}+2b_{n-1}+2c_{n-1},a_0+2b_0+2c_0\ldots,a_{n-2}+2b_{n-2}\\ &+2c_{n-2},2b_{n-1}+2c_{n-1},2b_0+2c_0,\ldots,2b_{n-2}+2c_{n-2},a_{n-1},a_0,\ldots,a_{n-2}). \end{split}$$

Hence, we have the following theorem.

**Theorem 4.** Let C be a  $\alpha$ -constacyclic code then  $\delta_2(C)$  is a quasi cyclic code of length 2n over  $\mathbb{Z}_4$ .

*Proof.* Since C is a  $\alpha$ -constacyclic code then  $\phi_{\alpha}(s) \in C$  for all  $s \in C$ . Then by using 3 we have  $\gamma_2 \phi_{\alpha}(C) = \gamma_2(C) = v_3 \gamma_2(C)$ . Implies  $\gamma_2(C)$  is a quasi cyclic code of length 2n with index 3.

**Definition 5.** Let  $s = (s_0, s_1, \ldots, s_{n-1}) \in S^n$  where  $s_i = a_i + ub_i + vc_i$  then define permutation of the Gray image  $\gamma_2$  from  $S^n$  to  $\mathbb{Z}_4^{2n}$  as  $\gamma_2^*$  given by

$$\gamma_2^*(s_0, s_1, \dots, s_{n-1}) = (a_0 + 2b_0 + 2c_0, 2b_0 + 2c_0, a_0, a_1 + 2b_1 + 2c_1, 2b_1 + 2c_1, a_1, \dots, a_{n-1} + 2b_{n-1} + 2c_{n-1}, 2b_{n-1} + 2c_{n-1}, a_{n-1})$$

**Lemma 4.** Let  $\gamma_2^*$  be permutation Gray map then it satisfies  $\gamma_2^*(\sigma)(s) = \sigma^3(\gamma_2^*)(s)$  where s is an element in S.

*Proof.* Let  $s = s_0, s_1, \ldots, s_{n-1}$  where  $s_i = a_i + wb_i$  then

$$\gamma_2^*(\sigma)(s) = \gamma_2^*(\sigma)(s_0, s_1, \dots, s_{n-1})$$

$$= \gamma_2^*(s_{n-1}, s_0, \dots, s_{n-2})$$

$$= (a_{n-1} + 2b_{n-1} + 2c_{n-1}, 2b_{n-1} + 2c_{n-1}, a_{n-1}a_0 + 2b_0 + 2c_0, 2b_0 + 2c_0, a_0, \dots, a_{n-1} + 2b_{n-1} + 2c_{n-1}, 2b_{n-1} + 2c_{n-1}, a_{n-1}).$$

On the other side we have

$$\sigma^{3}(\gamma_{2}^{*})(s) = \sigma^{2}(\gamma_{2}^{*})(s_{0}, s_{1}, \dots, s_{n-1})$$

$$= \sigma^{3}(a_{0} + 2b_{0} + 2c_{0}, 2b_{0} + 2c_{0}, a_{0}, a_{1} + 2b_{1} + 2c_{1}, 2b_{1} + 2c_{1}, a_{1}, \dots, a_{n-1} + 2b_{n-1} + 2c_{n-1}, 2b_{n-1} + 2c_{n-1}, a_{n-1})$$

$$= (a_{n-1} + 2b_{n-1} + 2c_{n-1}, 2b_{n-1} + 2c_{n-1}, a_{n-1}a_{0} + 2b_{0} + 2c_{0}, 2b_{0} + 2c_{0}, a_{0}, \dots, a_{n-1} + 2b_{n-1} + 2c_{n-1}, 2b_{n-1} + 2c_{n-1}, a_{n-1}).$$

**Theorem 5.** If C be a cyclic code of length n then  $\gamma_2^*(C)$  is a three cyclic code of length 2n over  $\mathbb{Z}_4$ .

*Proof.* Proof is similar to the proof of Theorem 3.

**Corollary 1.** Let C be a linear code of odd length n over S. Then C is a cyclic code if and only if  $\varphi(C)$  is an  $\alpha$ -constacyclic code where  $\varphi: S^n \longrightarrow S^n$  defined by  $\varphi(c_0, c_1, \ldots, c_{n-1}) = (c_0, \alpha c_1, \ldots, \alpha^{n-2} c_{n-2}, \alpha^{n-1} c_{n-1})$ .

**Definition 6.** [12] Let n be an odd positive integer and  $\xi = (1, n+1)(3, n+3)\cdots(2i+1, n+2i+1)\cdots(n-2, 2n-2)$  a permutation of  $\{0, 1, \ldots, 2n-1\}$ . Then Nechaev's permutation  $\pi$  is defined by  $\pi(c_0, c_1, \ldots, c_{2n-1}) = (c_{\xi(0)}, c_{\xi(1)}, \ldots, c_{\xi(2n-1)})$ .

**Lemma 5.** Let  $\gamma_1$  be the Gray map defined in Definition 2. Then  $\gamma_1 \varphi = \pi \gamma_1$  where  $\pi$  is Nechaev's permutation and  $\varphi$  is the map defined in Corollary 1.

*Proof.* Let  $s_i = a_i + ub_i + vc_i \in S$  for  $0 \le i \le n-1$ . Then  $s = (s_0, s_1, \dots, s_{n-1}) \in S^n$  and

$$\gamma_1 \varphi(z) = \gamma_1 \varphi(s_0, s_1, \dots, s_{n-1}) 
= \gamma_1(s_0, \alpha s_1, \dots, \alpha^{n-1} s_{n-1}) 
= (2a_0 + 3b_0 + 3c_0, 2a_1 + b_1 + c_1, \dots, 2a_{n-1} + 3b_{n-1} + 3c_{n-1}, 3b_0 + c_0, 
2a_1 + b_1 + c_1, \dots, 3b_{n-1} + c_{n-1}).$$

Further,

$$\pi \gamma_1(z) = \pi \gamma_1(z_0, z_1, \dots, z_{n-1})$$

$$= \pi (2a_0 + 3b_0 + 3c, 2a_1 + 3b_1 + 3c_1, \dots, 2a_{n-1} + 3b_{n-1} + 3c_{n-1}, 2a_0 + b_0 + c_0, 2a_1 + b_1 + c_1, \dots, 2a_{n-1} + b_{n-1} + c_{n-1})$$

$$= (2a_0 + 3b_0 + 3c_0, 2a_1 + b_1 + c_1, \dots, 2a_{n-1} + 3b_{n-1} + 3c_{n-1}, 3b_0 + c_0, 2a_1 + b_1 + c_1, \dots, 3b_{n-1} + c_{n-1}).$$

and therefore  $\gamma_1 \varphi = \pi \gamma_1$ .

**Theorem 6.** For a cyclic code C of odd length n over R, let  $T = \gamma_1(C)$ . Then  $\pi(T)$  is a cyclic code of length 2n over  $\mathbb{Z}_4$ .

*Proof.* Let C be a cyclic code and  $T = \delta_1(C)$ . Then by Lemma 5,  $\pi \gamma_1(C) = \pi(T) = \psi_1 \varphi(C)$ . From Corollary 1,  $\varphi(C)$  is an  $\alpha$ -constacyclic code. Hence, by Theorem 2,  $\delta_1 \varphi(C)$  is a cyclic code of length 2n over  $\mathbb{Z}_4$ , and thus  $\pi(T)$  is a cyclic code of length 2n over  $\mathbb{Z}_4$ .

**Lemma 6.** Let  $\gamma_2$  be the Gray map defined in Definition 4. Then  $\gamma_2\varphi = \pi\gamma_2$  where  $\pi$  is Nechaev's permutation and  $\varphi$  is the map defined in Corollary 1.

*Proof.* The proof is similar to that of Lemma 5 and so is omitted.  $\Box$ 

**Theorem 7.** For a cyclic code C of odd length n over R, let  $T = \gamma_2(C)$ . Then  $\pi(T)$  is a quasi-cyclic code of length 3n and index 3 over  $\mathbb{Z}_4$ .

*Proof.* The proof is similar to that of Theorem 6 and so is omitted.  $\Box$ 

# 4. Structure of (1 + 2u + 2v)-constacyclic code

In this section we study the structure of cyclic code and  $\alpha$ -constacyclic code over S. Let  $e_1 = (1+u+v)$ ,  $e_2 = -u$  and  $e_3 = -v$ , it satisfies  $e_i e_j = 0 (i \neq j)$ ,  $e_i^2 = e_i$  and  $e_1 + e_2 + e_3 = 1$ . Thus, any element in S can be uniquely expressed as  $re_1 + se_2 + te_3$  where r = a, s = (3b + a) and t = (3c + a) are elements in  $\mathbb{Z}_4$ .

Let A, B a non empty set then define  $A \oplus B = \{a+b \mid a \in A, b \in B\}$  and  $A \otimes B = \{a, b \mid a \in A, b \in B\}$ . Let C be a linear code over S,  $C_1 = \{a \mid ae_1 + be_2 + ce_3 \in C\}$ ,  $C_2 = \{b \mid ae_1 + be_2 + ce_3 \in C\}$  and  $C_3 = \{c \mid ae_1 + be_2 + ce_3 \in C\}$ . Thus,  $C = \bigoplus_{i=1}^3 C_i$ . Note that whenever C is linear in S then  $C_i's$  are linear over  $\mathbb{Z}_4$ .

**Theorem 8.** Let C be a linear code then C is cyclic code of length n over S if and only if  $C_1, C_2$  and  $C_3$  are cyclic code over  $\mathbb{Z}_4$ .

*Proof.* Let  $c = c_0, c_1, \ldots, c_{n-1} \in C$  where  $c_i = e_1a_i + e_2b_i + e_3d_i$ . Let C be cyclic over S then  $\sigma(c) = \sigma(a)e_1 + \sigma(b)e_2 + \sigma(d)e_3 \in C$ . Implies  $C_1, C_2$  and  $C_3$  are cyclic code over  $\mathbb{Z}_4$ .

Let  $C_1$  be a cyclic codes. Then  $\sigma(a) \in C_1$  implies  $\sigma(a)e_1 + be_2 + de_3 \in C$  and so  $e_1(\sigma(a)e_1 + be_2 + de_3) = \sigma(a)e_1 \in C$  for some  $b \in C_2, d \in C_3$ . In a similar way  $\sigma(b)e_2 \in C, \sigma(d)e_3 \in C$ , using linearity we have  $\sigma(a)e_1 + \sigma(b)e_2 + \sigma(d)e_3 = \sigma(c) \in C$ . Hence, C is cyclic over S.

**Lemma 7.** [1] Let C be a cyclic code of length n over  $\mathbb{Z}_4$ .

1. If n is odd then  $\mathbb{Z}_4[x]/(x^n-1)$  is a principal ideal ring and C=(f(x),2g(x))=(f(x)+2g(x)) where f(x) and g(x) generate cyclic codes with  $g(x)|f(x)|(x^n-1)\mod 4$ .

**Theorem 9.** Let C be a cyclic code of odd length n. Then there exist g(x) such that  $C = \langle g(x) \rangle$ .

Proof. Let C be a cyclic code. By Theorem 8 we have  $C_1, C_2$  and  $C_3$  are cyclic. Since  $C_1, C_2$  and  $C_3$  are cyclic by Lemma 7,  $C_i = \langle g_i(x) \rangle$ . Thus, given any element in  $e_iC_i$  we have  $e_ia_i(x)g_i(x) \in e_iC_i$  for some  $a_i(x) \in \mathbb{Z}_4[x]$ . Then using the representation of C in S we have  $\sum_{i=1}^3 e_ia_i(x)g_i(x) \in C$ . Multiply by  $e_i$  we get  $\langle e_ig_i(x) \rangle \subseteq C$ . Hence,  $g(x) = e_1g_1(x) + e_2g_2(x) + e_3g_3(x)$  generates C.

**Theorem 10.** Let C be linear code then C is  $\alpha$ -constacyclic code iff  $C_1$  is cyclic,  $C_2$  and  $C_3$  are Negacyclic code of length n over  $\mathbb{Z}_4$ .

*Proof.* First let C be  $\alpha$ -constacyclic code over R. Let  $a=(a_0,a_1,\ldots,a_{n-1})\in C_1, b=(b_0,b_1,\ldots,b_{n-1})\in C_2$  and  $d=(d_0,d_1,\ldots,d_{n-1})\in C_3$  then  $ae_1+be_2+de_3\in S$ . Since C is  $\alpha$ -constacyclic code,

$$\phi_{\alpha}(c_0, c_1, \dots, c_{n-1}) = (\alpha c_{n-1}, c_0, \dots, c_{n-1}).$$

Since,  $(e_1 + e_2 + e_3)(1 + 2u + 2v) = e_1 - e_2 - e_3$ . We have  $\phi_{-1}(b) \in C_2, \phi_{-1}(b) \in C_3, \sigma(a) \in C_1$ . Hence,  $C_1$  is cyclic and  $C_2, C_3$  are negacyclic codes.

Conversely, we assume that  $C_1$  is cyclic code and  $C_2, C_3$  are negacyclic code. Let  $(c_0, c_1, \dots, c_{n-1}) \in C$  where  $c_i = e_1 a_i + e_2 b_i + e_3 c_i$ . Since  $C_1$  is cyclic and  $C_2, C_3$  are negacyclic  $(\phi_{-1}(b), \phi_{-1}(d)) \in (C_2, C_3)$  and  $\sigma(a) \in C_1$ , we have  $\sigma(a)e_1 + \phi_{-1}(b) + \phi_{-1}(d) \in C$ . That is,  $(\alpha c_{n-1}, c_0, \dots, c_{n-2}) \in C$ . Hence, C is  $\alpha$ -constacyclic code.  $\square$ 

**Theorem 11.** Let n be an odd integer. Then the map  $\tau: S[x]/\langle x^n-1\rangle \longrightarrow S[x]/\langle x^n-\alpha\rangle$  defined by  $\tau(f(x)) = f(\alpha x)$  is a ring isomorphism.

Proof. Let f(x) = g(x) in  $S[x]/\langle x^n - 1 \rangle$ . Then  $f(x) \equiv g(x)$  mod  $(x^n - 1)$ . Replacing x by  $\alpha x$  on both sides gives  $f(\alpha x) - g(\alpha x) \equiv 0 \mod (x^n \alpha^n - 1)$  which implies that  $f(\alpha x) - g(\alpha x) \equiv 0 \mod \alpha^n (x^n - \alpha)$  since  $\alpha^n = \alpha$  for an odd integer n. Thus,  $f(\alpha x) = g(\alpha x)$  in  $R[x]/\langle x^n - \alpha \rangle$ , so  $\tau$  is an injective and well-defined map. Moreover, since  $S[x]/\langle x^n - 1 \rangle$  and  $S[x]/\langle x^n - \alpha \rangle$  are finite rings with the same number of elements and  $\tau$  is injective, then  $\tau$  is surjective. Further, one can check that  $\tau$  is a ring homomorphism. Hence,  $\tau$  is a ring isomorphism.

**Corollary 2.** Let C be a linear code of odd length n over S. Then C is a cyclic code if and only if  $\tau(C)$  is an  $\alpha$ -constacyclic code over S.

**Theorem 12.** Let C be a  $\alpha$ -constacyclic code over S then there exist a polynomial g(x) such that  $C = \langle g(x) \rangle$ .

*Proof.* The proof is similar to the proof of Theorem 9.

**Note:** Let  $a(x) + ub(x) + vc(x) = g_1(x)e_1 + g_2(x)e_2 + g_3(x)e_1(x)$ . Then

$$a(x) = q_1(x), b(x) = q_1(x) + 3q_2(x), c(x) = q_1(x) + 3q_3(x).$$

**Theorem 13.** Let  $\gamma_1$  be the gray map defined and if  $C = \langle g_1(x) + (g_1(x) + 3g_2(x))u + (g_1(x) + 3g_3(x))v \rangle$  be  $\alpha$ -constacyclic code then  $\gamma_1(C)$  is a cyclic code over  $\mathbb{Z}_4$  and is generated by  $(g_2(x) + x^n 3g_2(x)), (g_3(x) + x^n 3g_3(x))$ .

*Proof.* Let  $r(x) \in C$  then there exist  $h_i(x) \in \mathbb{Z}_4[x]$  such that

$$r(x) = (h_1(x)g_1(x) + (h_1(x)g_1(x) + 3h_2(x)g_2(x))u + (h_1(x)g_1(x) + 3h_3(x)g_3(x))v)$$
  
$$\gamma_1(r(x)) = (h_2(x)g_2(x) + h_3(x)g_3(x), 3h_2(x)g_2(x) + 3h_3(x)g_3(x))$$
  
$$= h_2(x)(g_2(x), 3g_2(x)) + h_3(g_3(x), 3g_3(x))$$

Hence,  $\gamma_1(r(x)) \in \frac{\mathbb{Z}_4}{(x^n-1)} \times \frac{\mathbb{Z}_4}{(x^n-1)}$ , Using the fact  $a, b \in \frac{\mathbb{Z}_4}{(x^n-1)} \times \frac{\mathbb{Z}_4}{(x^n-1)}$  implies  $a + x^n b \in \frac{\mathbb{Z}_4}{(x^{2n}-1)}$ , we have that  $\gamma_1(C) = \langle (g_2(x) + x^n 3g_2(x)), (g_3(x) + x^n 3g_3(x)) \rangle$  is a cyclic code over  $\frac{\mathbb{Z}_4}{(x^{2n}-1)}$ .

The proof of the following theorem is similar to the proof of Theorem 13.

**Theorem 14.** Let  $\gamma_2$  be the gray map defined and if  $C = \langle g_1(x) + (g_1(x) + 3g_2(x))u + (g_1(x) + 3g_3(x))v \rangle$  be  $\alpha$ -constacyclic code then  $\gamma_2(C)$  is a quasicyclic code of length 3n over  $\mathbb{Z}_4$  and is generated by  $(g_1(x) + x^2 g_1(x)), (2g_2(x) + x^n g_2(x))$  and  $(2g_3(x) + x^n g_3(x))$ 

## 5. Examples

In this Section we have computed some codes using Magma Computational Algebra System. Some codes presented here is new to the Database [Database of  $\mathbb{Z}_4$  codes [online], http:// $\mathbb{Z}_4$  Codes.info(Accessed March 2, 2020)].

**Example 1.** Let C be a  $\alpha$ -constacyclic code of length 7. Then by Theorem 10  $C_1$  is cyclic and  $C_2, C_3$  are negacyclic codes over  $\mathbb{Z}_4$ . C is generated by  $g(x) = e_1g_1(x) + e_2g_2(-x) + e_3g_3(-x)$  where,  $g_1(x) = x^4 + x^3 + 3x^2 + 2x + 1$ ,  $g_2(x) = x^4 + x^3 + 3x^2 + 2x + 1$ , and  $g_3(x) = x^3 + 3x^2 + 2x + 3$ . So  $\gamma_2(C)$  is a linear code of parameter  $((21, 4^8 2^3, 3))$  and hence by Theorem 7,  $\pi(\gamma_2(C))$  is quasi cyclic code.

**Example 2.** Let C be a  $\alpha$ -constacyclic code of length 7 then by Theorem 10  $C_1$  is cyclic and  $C_2, C_3$  are negacyclic codes over  $\mathbb{Z}_4$ . C is generated by  $g(x) = e_1g_1(x) + e_2g_2(-x) + e_3g_3(-x)$  where  $g_1(x) = x^4 + x^3 + 3x^2 + 2x + 1$ ,  $g_2(x) = x^4 + x^3 + 3x^2 + 2x + 1$  and  $g_3(x) = x^4 + x^3 + 3x^2 + 2x + 1$ . So  $\gamma_2(C)$  is a linear code of parameter  $((21, 4^62^3, 4))$  and by Theorem 7,  $\pi(\gamma_2(C))$  is quasi cyclic code.

**Example 3.** Let C be a cyclic code of length 15 then by Theorem 8  $C_1, C_2, C_3$  are cyclic codes over  $\mathbb{Z}_4$ . C is generated by  $g(x) = e_1g_1(x) + e_2g_2(x) + e_3g_3(x)$  where  $g_1(x) = x^6 + 2x^4 + x^3 + 3x^2 + x + 1$ ,  $g_2(x) = x^4 + 3x^3 + 2x^2 + 1$  and  $g_3(x) = x + 3$ . So  $\gamma_2(C)$  is a linear code of parameter  $((45, 4^{18}2^{13}, 3))$ .

**Example 4.** Let C be a cyclic code of length 15 then by Theorem 8  $C_1, C_2, C_3$  are cyclic codes over  $\mathbb{Z}_4$ . C is generated by  $g(x) = e_1g_1(x) + e_2g_2(x) + e_3g_3(x)$  where  $g_1(x) = x^7 + 3x^6 + 2x^5 + 3x^4 + 2x^3 + 2x^2 + 3$ ,  $g_2(x) = 2x^{10} + 2x^5 + 2$  and  $g_3(x) = 2x^6 + 2x^3 + 2x^2 + 2x + 2$ . Thus  $\gamma_2(C)$  is a linear code of parameter  $((45, 4^{16}2^{10}, 3))$ .

In the below table we have computed some codes using Magma Computational Algebra System. (\* represents the code is new in the Database [Database of  $\mathbb{Z}_4$  codes [online], http:// $\mathbb{Z}_4$  Codes.info(Accessed March 2, 2020)])

| n | $g_1(x)$                                            | $g_2(x)$                           | $g_3(x)$ | $\gamma_1(C)$       | $\gamma_2(C)$           |
|---|-----------------------------------------------------|------------------------------------|----------|---------------------|-------------------------|
| 9 | $x^3 + 2x + 1$                                      | $g_{1}(x)$                         |          |                     | $((27,4^{18},2^4,2))^*$ |
| 7 | $x^4 + x^3 + 3x^2 + 3$                              | $x^3 + 2x^2 + x + 3$               | $g_2(x)$ | $((14, 4^82^0, 3))$ | $((21,4^{11}2^6,2))^*$  |
| 7 | $x^4 + 3x^3 + 3x^2 + 3$                             | $x^4 + x^3 + 3x^2 + 2x + 1$        | $g_2(x)$ | $((14, 4^62^0, 4))$ | $((21, 4^92^2, 3))^*$   |
| 7 | $x^4 + 3x^3 + 3x^2 + 3$                             | $x^4 + x^3 + 3x^2 + 2x + 1$        | $g_2(x)$ | $((14, 4^62^0, 4))$ | $((21, 4^92^2, 3))^*$   |
| 9 | $x^8 + x^7 + 3x^6 + x^5 + x^4 + 3x^3 + x^2 + x + 3$ | $x^7 + 3x^6 + x^4 + 3x^3 + 3x + 1$ | $g_2(x)$ | _                   | $((27, 4^62^2, 3))^*$   |
| 9 | $x^8 + x^7 + 3x^6 + x^5 + x^4 + 3x^3 + x^2 + x + 3$ | $x^3 + 2x + 1$                     | $g_2(x)$ | =                   | $((27,4^{14}2^4,2))^*$  |

### References

[1] T. Abualrub and I. Siap, Reversible cyclic codes over  $\mathbb{Z}_4$ , Australas. J. Comb. 38 (2007), 195–206.

- [2] M. Ashraf and G. Mohammad, (1 + u)-constacyclic codes over  $\mathbb{Z}_4 + u\mathbb{Z}_4$ , arXiv:1504.03445v1. (2015).
- [3] D. Boucher, W. Geiselmann, and F. Ulmer, *Skew-cyclic codes*, Appl. Algebra Eng. Comm. Compute. **18** (2007), no. 4, 379–389.
- [4] D. Boucher, P. Solé, and F. Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Commun. 2 (2008), no. 3, 273–292.
- [5] Y. Cengellenmis, A. Dertli, and N. Aydın, Some constacyclic codes over  $\mathbb{Z}_4[u]/\langle u^2 \rangle$ , new Gray maps, and new quaternary codes, Algebra Colloq. **25** (2018), no. 3, 369–376.
- [6] J. Gao, F. Ma, and F. Fu, Skew constacyclic codes over the ring  $\mathbb{F}_q + v\mathbb{F}_q$ , Appl. Comput. Math 6 (2017), no. 3, 286–295.
- [7] F. Gursoy, I. Siap, and B. Yildiz, Construction of skew cyclic codes over  $\mathbb{F}_q + v\mathbb{F}_q$ , Adv. Math. Commun. 8 (2014), no. 3, 313–322.
- [8] H. Islam, T. Bag, and O. Prakash, A class of constacyclic codes over  $\mathbb{Z}_4[u]/\langle u^k \rangle$ , J. Appl. Math. Comput. **60** (2019), no. 1,2, 237–251.
- [9] H. Islam and O. Prakash, A class of constacyclic codes over the ring  $\mathbb{Z}_4[u,v]/\langle u^2,v^2,uv-vu\rangle$  and their Gray images, Filomat **33** (2019), no. 8, 2237–2248.
- [10] E. Martinez-Moro, S. Szabo, and B. Yildiz, *Linear codes over*  $\mathbb{Z}_4[x]/\langle x^2 + 2x \rangle$ , Int. J. Inf. Coding Theory **3** (2015), no. 1, 78–96.
- [11] M. Özen, N.T. Özzaim, and N. Aydin, Cyclic codes over  $\mathbb{Z}_4 + u\mathbb{Z}_4 + u^2\mathbb{Z}_4$ , Turkish J. Math. 41 (2017), no. 5, 1235–1247.
- [12] M. Özen, F.Z. Uzekmek, N. Aydin, and N. Özzaim, Cyclic and some constacyclic codes over the ring  $\mathbb{Z}_4[u]/\langle u^2-1\rangle$ , Finite Fields Appl. **38** (2016), 27–39.
- [13] V.S. Pless and Z. Qian, Cyclic codes and quadratic residue codes over  $\mathbb{Z}_4$ , IEEE Trans. Inform. Theory **42** (1996), no. 5, 1594–1600.
- [14] M. Shi, L. Qian, L. Sok, N. Aydin, and P. Solé, On constacyclic codes over  $\mathbb{Z}_4[u]/\langle u^2-1\rangle$  and their Gray images, Finite Fields Appl. 45 (2017), 86–95.
- [15] I. Siap, T. Abualrub, N. Aydin, and P. Seneviratne, *Skew cyclic codes of arbitrary length*, Int. J. Inf. Coding Theory **2** (2011), no. 1, 10–20.
- [16] T. Yao, M. Shi, and P. Solé, Skew cyclic codes over  $\mathbb{F}_q + u\mathbb{F}_q + v\mathbb{F}_q + uv\mathbb{F}_q$ , J. Algebra Comb. Discrete Struct. Appl. 2 (2015), no. 3, 163–168.
- [17] B. Yildiz and N. Aydin, On cyclic codes over  $\mathbb{Z}_4 + u\mathbb{Z}_4$  and their  $\mathbb{Z}_4$ -images, Int. J. Inf. Coding Theory 2 (2014), no. 4, 226–237.
- [18] B. Yildiz and A. Kaya, Self-dual codes over  $\mathbb{Z}_4[x]/\langle x^2 + 2x \rangle$  and the  $\mathbb{Z}_4$ -images, Int. J. Inf. Coding Theory **5** (2018), no. 2, 142–154.
- [19] H. Yu, Y. Wang, and M. Shi, (1+u)-constacyclic codes over  $\mathbb{Z}_4+u\mathbb{Z}_4$ , Springerplus 5 (2016), no. 1, Artice number 1325.