A study on structure of codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}+v \mathbb{Z}_{4}$

G. Karthick
Department of Mathematics, Presidency University, Bangalore, Karnataka, India. karthygowtham@gmail.com

Received: 19 September 2022; Accepted: 18 April 2023
Published Online: 25 April 2023

Abstract

We study $(1+2 u+2 v)$-constacyclic code over a semi-local ring $S=$ $\mathbb{Z}_{4}+u \mathbb{Z}_{4}+v \mathbb{Z}_{4}$ with the condition $u^{2}=3 u, v^{2}=3 v$, and $u v=v u=0$, we show that $(1+2 u+2 v)$-constacyclic code over S is equivalent to quasi-cyclic code over \mathbb{Z}_{4} by using two new Gray maps from S to \mathbb{Z}_{4}. Also, for odd length n we have defined a generating set for constacyclic codes over S. Finally, we obtained some examples which are new to the data base [Database of \mathbb{Z}_{4} codes [online], http:// \mathbb{Z}_{4} Codes.info(Accessed March $2,2020)]$.

Keywords: Non-chain ring. Linear code. Non-chain ring. Gray map. Linear code
AMS Subject classification: 94B05, 94B15, 94B35, 94B60

1. Introduction

Cyclic codes have been well studied due to their algebraic structures. It has been playing a crucial role in its preferable applications. Pless et al. [13] discussed \mathbb{Z}_{4} cyclic codes and proved the existence of idempotent generators for certain cyclic codes. In 2014, Yildiz et al [17] determined algebraic structures of codes over the ring $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ and they obtained the basic facts about their generators with this they conducted a computer search and obtained many new linear codes over \mathbb{Z}_{4}. Later, Ashraf et al. [2] studied $(1+u)$-constacyclic codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$. In 2015 and 2018 Martinez-Moro et al. and Yilditz et al. studied linear codes and self-dual codes over $\mathbb{Z}_{4}[x] /\left\langle x^{2}+2 x\right\rangle$ which is isomorphic to $\mathbb{Z}_{4}[x] /\left\langle x^{2}-1\right\rangle$ in [10, 18], respectively. Also, Yu et al. [19] defined new Gray maps over $\mathbb{Z}_{4}[u] /\left\langle u^{2}\right\rangle$ and obtained good binary codes are constructed using $(1+u)$ and Cengellenmis et al. [5] also studied constacyclic code over this ring. On the other hand, Shi et al. [14] studied $(1+2 u)$-constacyclic codes over $\mathbb{Z}_{4}[u] /\left\langle u^{2}-1\right\rangle$ and they obtained new \mathbb{Z}_{4} codes with better parameter. Ozen et al. [12] studied $(2+u)$ constacyclic code over $\mathbb{Z}_{4}[u] /\left\langle u^{2}-1\right\rangle$ and they obatined new \mathbb{Z}_{4} codes with better parameter. These studies produced many significant linear codes to improve the (c) 2024 Azarbaijan Shahid Madani University
online database [Database of \mathbb{Z}_{4} codes [online], http:// \mathbb{Z}_{4} Codes.info(Accessed March 2, 2020)]. In 2017, Ozen et al. [11] studied the cyclic codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}+u^{2} \mathbb{Z}_{4}$, where $u^{3}=0$ and determined their minimal spanning sets they have also obtained many new quarternary linear codes from the \mathbb{Z}_{4}-images of these codes. Recently, Islam et al. [8] and Islam and Prakash [9] discussed the \mathbb{Z}_{4}-images of constacyclic codes over $\mathbb{Z}_{4}[u] /\left\langle u^{k}\right\rangle$, and $\mathbb{Z}_{4}[u, v] /\left\langle u^{2}, v^{2}, u v-v u\right\rangle$, respectively.
On the other side, the codes over non-commutative rings was studied by, Boucher et al. [3] he introduced the skew cyclic (or θ-cyclic) code which is a generalized class of cyclic codes. Skew cyclic codes over arbitrary length was studied by Irfan et al. [15]. Later, skew cyclic and skew constacyclic codes over finite rings gained much attention of many mathematician $[4,6,7,16]$.
Inspired by the above results, this paper considers constacyclic codes over the non-chain finite commutative ring $S=\mathbb{Z}_{4}+u \mathbb{Z}_{4}+v \mathbb{Z}_{4}, u^{2}=3 u, v^{2}=$ $3 v$, and $u v=v u=0$. The rest of this paper is organized as follows. Section 2 gives some preliminary results. Gray maps for $(1+2 u+2 v)$-constacyclic codes are studied in Section 3. The structure of $(1+2 u+2 v)$-constacyclic code and their generating polynomials are discussed in Section 4 with some examples in Section 5.

2. Preliminaries

Let $S=\mathbb{Z}_{4}+u \mathbb{Z}_{4}+v \mathbb{Z}_{4}, u^{2}=3 u, v^{2}=3 v$, and $u v=v u=0$ be a commuative ring of order 64 with a unique maiximal ideal $\langle u, v, 2\rangle$, then the quotient ring $\frac{S}{\langle u, v, 2\rangle}$ is isomorphic to \mathbb{Z}_{2}. Any element in the ring S can be uniquely written as $a+u b+v c$ where a, b and c are elements of \mathbb{Z}_{4}. A non-empty subset C of R^{n} is said to be a linear code of length n if C is an R-submodule of S^{n}. The elements of C are called codewords.
An element $a+u b+v c$ is said to be unit in S only if a is a unit element in S. Let α be a unit in S then we define α-constacyclic shift as folows

$$
\phi_{\alpha}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)=\left(\alpha c_{n-1}, c_{0}, \ldots, c_{n-2}\right)
$$

A code whose codewords satisfy this shift is called an α-constacyclic code. When $\alpha=1$ then α-constacyclic is a cyclic code and when $\alpha=-1$ then α-constacyclic is a negacyclic code.
It is convineant to identify each code word of α-constacyclic code as a polynomial in $\frac{S[x]}{\left(x^{n}-\alpha\right)}$ through a linear map ϕ as given below

$$
\phi: C \mapsto \frac{S[x]}{\left(x^{n}-\alpha\right)}, \quad \phi\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}
$$

Then set of α-constacyclic code words in R^{n} can be seen as a polynomial collection over $\frac{S[x]}{\left(x^{n}-\alpha\right)}$. And it can be seen that each α-cyclic shift in C represent $x c(x)$ in codoamin and thus we have the following theorem.

Theorem 1. Let C be a linear code of length n over S. Then C is a α-constacyclic over S if and only if C is an ideal of $\frac{S[x]}{\left(x^{n}-\alpha\right)}$.

Let $r=\left(r_{1}, r_{2}, \ldots, r_{m}\right) \in \mathbb{Z}_{4}^{m n}$ where $r_{i} \in \mathbb{Z}_{4}^{n}$ for $i=\{1,2, \cdots, m\}$ then we define a map $v: \mathbb{Z}_{4}^{m n} \rightarrow \mathbb{Z}_{4}^{m n}, v\left(r_{1}, r_{2}, \ldots, r_{m}\right)=\left(\sigma\left(r_{1}\right), \sigma\left(r_{2}\right), \ldots, \sigma\left(r_{m}\right)\right)$ where σ is cyclic shift operator defined above if a code C is closed under this shift operator then we call it as quasi cyclic code of index m.

Definition 1. Let C be a linear code of length n over \mathbb{Z}_{4}. Then C is said to be r-cyclic code if $\sigma^{r}(C)=C$, where σ is the cyclic shift operator. Note that for $r \geq 2$, every cyclic code is r-cyclic but not conversely.

Note: From now α represent the unit element $1+2 u+2 v$.

3. Gray Maps over S and their Properties

In this section we define two different Gray maps and shown that the Gray images α-constacyclic code is cyclic and quasi cyclic code over \mathbb{Z}_{4} where $\alpha=1+2 u+2 v$.

Definition 2. Let γ_{1} be linear map defined from S to \mathbb{Z}_{4}^{2},

$$
\gamma_{1}(a+u b+v c)=(2 a+3 b+3 c, 2 a+b+c)
$$

The Gray map γ_{1} can be extended for length n. The Lee weight of $a \in \mathbb{Z}_{4}$ is defined as $\min (a, 4-a)$ and is denoted as $w_{L}(a)$. For any element $r=(a+u b+v c) \in S$ we define the Lee weight of a code as $w_{L}(r)=w_{L}\left(\gamma_{1}(r)\right)$. Then Lee distance of code C is $d_{L}(C)=\min \left(w_{L}\left(c_{i}-c_{j}\right)\right)$ where $c_{i}, c_{j} \in C$.

Lemma 1. Let γ_{1} be the gray map defined then it satisfies $\sigma \gamma_{1}(s)=\gamma_{1} \phi_{\alpha}(s)$ where σ represents the cyclic shift operator and s is an element in S^{n}.

Proof. Let $s=s_{0}, s_{1}, \ldots, s_{n-1}$ where $s_{i}=a_{i}+u b_{i}+v c_{i}$. We have

$$
\begin{aligned}
\sigma \gamma_{1}(s)= & \sigma \gamma_{1}\left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \\
= & \sigma\left(2 a_{0}+3 b_{0}+3 c, 2 a_{1}+3 b_{1}+3 c_{1}, \ldots, 2 a_{n-1}+3 b_{n-1}+3 c_{n-1}, 2 a_{0}\right. \\
& \left.+b_{0}+c_{0}, 2 a_{1}+b_{1}+c_{1}, \ldots, 2 a_{n-1}+b_{n-1}+c_{n-1}\right) \\
= & \left(2 a_{n-1}+b_{n-1}+c_{n-1}, 2 a_{0}+3 b_{0}+3 c, \ldots, 2 a_{n-1}+3 b_{n-1}+3 c_{n-1}, 2 a_{0}\right. \\
& \left.+b_{0}+c_{0}, 2 a_{1}+b_{1}+c_{1}, \ldots, 2 a_{n-1}+b_{n-1}+c_{n-1}\right)
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\gamma_{1} \phi_{\alpha}(s)= & \gamma_{1} \phi_{\alpha}\left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \\
= & \gamma_{1}\left(\alpha s_{n-1}, s_{0}, \ldots, s_{n-2}\right) \\
= & \gamma_{1}\left(a_{n-1}+u\left(3 b_{n-1}+2 a_{n-1}\right)+v\left(3 c_{n-1}+2 a_{n-1}\right), a_{0}+u b_{0}\right. \\
& \left.+v c_{0}, \ldots, a_{n-2}+u b_{n-2}+v c_{n-2}\right) \\
= & \left(2 a_{n-1}+b_{n-1}+c_{n-1}, 2 a_{0}+3 b_{0}+3 c, \ldots, 2 a_{n-1}+3 b_{n-1}+3 c_{n-1}, 2 a_{0}\right. \\
& \left.+b_{0}+c_{0}, 2 a_{1}+b_{1}+c_{1}, \ldots, 2 a_{n-1}+b_{n-1}+c_{n-1}\right) .
\end{aligned}
$$

Theorem 2. Let C be a α-constacyclic code then $\gamma_{1}(C)$ is a cyclic code of length $2 n$ over \mathbb{Z}_{4}.

Proof. Let C be a α-constacyclic code then it for each $a \in C$ we have $\phi_{\alpha}(a) \in C$. Thus by usingn Lemma 1 we have $\sigma \gamma_{1}(C)=\gamma_{1} \phi_{\alpha}(C)=\gamma_{1}(C)$, implies $\gamma_{1}(C)$ is a cyclic code of length $2 n$ over S.

Definition 3. Let $s=\left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \in S^{n}$ where $s_{i}=a_{i}+u b_{i}+v c_{i}$ then define the permutation of Gray image γ_{1} from S^{n} to $\mathbb{Z}_{4}^{2 n}$ as γ_{1}^{*} given by

$$
\begin{aligned}
\gamma_{1}^{*}\left(s_{0}, s_{1}, \ldots, s_{n-1}\right)= & \left(2 a_{0}+3 b_{0}+c_{0}, 2 a_{0}+b_{0}+c_{0}, 2 a_{1}+3 b_{1}+c_{1}, 2 a_{1}+b_{1}+c_{1}, \ldots, 2 a_{n-1}\right. \\
& \left.+3 b_{n-1}+3 c_{n-1}, 2 a_{n-1}+b_{n-1}+c_{n-1}\right) .
\end{aligned}
$$

Lemma 2. Let γ_{1}^{*} be permutation Gray map then it satisfies $\gamma_{1}^{*}(\sigma)(s)=\sigma^{2}\left(\gamma_{1}^{*}\right)(s)$ where s is an element in S.

Proof. Let $s=s_{0}, s_{1}, \ldots, s_{n-1}$ where $s_{i}=a_{i}+w b_{i}$. We have

$$
\begin{aligned}
\gamma_{1}^{*}(\sigma)(s)= & \gamma_{1}^{*}(\sigma)\left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \\
= & \gamma_{1}^{*}\left(s_{n-1}, s_{0}, \ldots, s_{n-2}\right) \\
= & \left(2 a_{n-1}+3 b_{n-1}+3 c_{n-1}, 2 a_{n-1}+b_{n-1}+c_{n-1}, 2 a_{0}+3 b_{0}+3 c_{0}, 2 a_{0}+\right. \\
& \left.b_{0}+c_{0}, \cdots, 2 a_{n-2}+3 b_{n-2}+3 c_{n-1}, 2 a_{n-2}+b_{n-2}+c_{n-2}\right) .
\end{aligned}
$$

On the other side we have,

$$
\begin{aligned}
\sigma^{2}\left(\gamma_{1}^{*}\right)(s)= & \sigma^{2}\left(\gamma_{1}^{*}\right)\left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \\
= & \sigma^{2}\left(2 a_{0}+3 b_{0}+c_{0}, 2 a_{0}+b_{0}+c_{0}, 2 a_{1}+3 b_{1}+c_{1}, 2 a_{1}+b_{1}+c_{1}, \ldots, 2 a_{n-1}\right. \\
& \left.+3 b_{n-1}+3 c_{n-1}, 2 a_{n-1}+b_{n-1}+c_{n-1}\right) \\
= & \left(2 a_{n-1}+3 b_{n-1}+3 c_{n-1}, 2 a_{n-1}+b_{n-1}+c_{n-1}, 2 a_{0}+3 b_{0}+3 c_{0}, 2 a_{0}\right. \\
& \left.+b_{0}+c_{0}, \ldots, 2 a_{n-2}+3 b_{n-2}+3 c_{n-1}, 2 a_{n-2}+b_{n-2}+c_{n-2}\right) .
\end{aligned}
$$

Theorem 3. If C be a cyclic code of length n then $\gamma_{1}^{*}(C)$ is a two cyclic code of length $2 n$ over \mathbb{Z}_{4}.

Proof. Let C be a cyclic code of length n then it satisfies $\sigma(c) \in C$ for all $c \in C$. Using Lemma 2 we have $\gamma_{1}^{*} \sigma(C)=\gamma_{1}^{*}(C)=\sigma^{2} \gamma_{1}^{*}(C)$. Hence $\gamma_{1}^{*}(C)$ is a two cyclic code of length $2 n$ over \mathbb{Z}_{4}.

Definition 4. Let γ_{2} be a linear map defined from S to \mathbb{Z}_{4}^{2} by

$$
\gamma_{2}(a+u b+v c)=(a+2 b+2 c, 2 b+2 c, a) .
$$

The map γ_{2} can be extended to length n. For any element $r=(a+u b+v c) \in S$ we define the Lee weight of a code as $w_{L}(r)=w_{L}\left(\gamma_{2}(r)\right)$. Then Lee distance of code C is $d_{L}(C)=\min \left(w_{L}\left(c_{i}-c_{j}\right)\right)$ where $c_{i}, c_{j} \in C$.

Lemma 3. Let γ_{2} be a gray map defined in Definition 4 then it satisfies $v_{3} \gamma_{2}(s)=\gamma_{2} \phi_{\alpha}(s)$ for any $s \in S^{n}$.

Proof. Let $s=\left(s_{0}, s_{1}, \ldots, s_{n-1}\right)$ where $s_{i}=a_{i}+u b_{i}+v c_{i}$. Then we have

$$
\begin{aligned}
v_{3} \gamma_{2}(s)= & v_{3} \gamma_{2}\left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \\
= & v_{3}\left(a_{0}+2 b_{0}+2 c_{0}, a_{1}+2 b_{1}+2 c_{1}, \ldots, a_{n-1}+2 b_{n-1}+2 c_{n-1}, 2 b_{0}+2 c_{0}, 2 b_{1}\right. \\
& \left.+2 c_{1}, \cdots, 2 b_{n-1}+2 c_{n-1}, a_{0}, a_{1}, \ldots, a_{n-1}\right) \\
= & \left(a_{n-1}+2 b_{n-1}+2 c_{n-1}, \ldots, a_{n-2}+2 b_{n-2}+2 c_{n-2}, 2 b_{n-1}+2 c_{n-1}, 2 b_{0}\right. \\
& \left.+2 c_{0}, \ldots, 2 b_{n-2}+2 c_{n-2}, a_{n-1}, a_{0}, \ldots, a_{n-2}\right) .
\end{aligned}
$$

Thus, on the other hand

$$
\begin{aligned}
\gamma_{2} \phi_{\alpha}(s)= & \left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \\
= & \gamma_{2}\left(\alpha s_{n-1}, s_{0}, \ldots, s_{n-2}\right) \\
= & \gamma_{2}\left(a_{n-1}+u\left(3 b_{n-1}+2 a_{n-1}\right)+v\left(3 c_{n-1}+2 a_{n-1}\right), a_{0}+u b_{0}+v c_{0}, \ldots, a_{n-2}\right. \\
& \left.+u b_{n-2}+v c_{n-2}\right) \\
= & \left(a_{n-1}+2 b_{n-1}+2 c_{n-1}, a_{0}+2 b_{0}+2 c_{0} \ldots, a_{n-2}+2 b_{n-2}\right. \\
& \left.+2 c_{n-2}, 2 b_{n-1}+2 c_{n-1}, 2 b_{0}+2 c_{0}, \ldots, 2 b_{n-2}+2 c_{n-2}, a_{n-1}, a_{0}, \ldots, a_{n-2}\right) .
\end{aligned}
$$

Hence, we have the following theorem.

Theorem 4. Let C be a α-constacyclic code then $\delta_{2}(C)$ is a quasi cyclic code of length $2 n$ over \mathbb{Z}_{4}.

Proof. Since C is a α-constacyclic code then $\phi_{\alpha}(s) \in C$ for all $s \in C$. Then by using 3 we have $\gamma_{2} \phi_{\alpha}(C)=\gamma_{2}(C)=v_{3} \gamma_{2}(C)$. Implies $\gamma_{2}(C)$ is a quasi cyclic code of length $2 n$ with index 3 .

Definition 5. Let $s=\left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \in S^{n}$ where $s_{i}=a_{i}+u b_{i}+v c_{i}$ then define permutation of the Gray image γ_{2} from S^{n} to $\mathbb{Z}_{4}^{2 n}$ as γ_{2}^{*} given by

$$
\begin{aligned}
\gamma_{2}^{*}\left(s_{0}, s_{1}, \ldots, s_{n-1}\right)= & \left(a_{0}+2 b_{0}+2 c_{0}, 2 b_{0}+2 c_{0}, a_{0}, a_{1}+2 b_{1}+2 c_{1}, 2 b_{1}+2 c_{1}, a_{1}, \cdots, a_{n-1}\right. \\
& \left.+2 b_{n-1}+2 c_{n-1}, 2 b_{n-1}+2 c_{n-1}, a_{n-1}\right) .
\end{aligned}
$$

Lemma 4. Let γ_{2}^{*} be permutation Gray map then it satisfies $\gamma_{2}^{*}(\sigma)(s)=\sigma^{3}\left(\gamma_{2}^{*}\right)(s)$ where s is an element in S.

Proof. Let $s=s_{0}, s_{1}, \ldots, s_{n-1}$ where $s_{i}=a_{i}+w b_{i}$. We have

$$
\begin{aligned}
\gamma_{2}^{*}(\sigma)(s)= & \gamma_{2}^{*}(\sigma)\left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \\
= & \gamma_{2}^{*}\left(s_{n-1}, s_{0}, \ldots, s_{n-2}\right) \\
= & \left(a_{n-1}+2 b_{n-1}+2 c_{n-1}, 2 b_{n-1}+2 c_{n-1}, a_{n-1} a_{0}+2 b_{0}+2 c_{0}, 2 b_{0}\right. \\
& \left.+2 c_{0}, a_{0}, \ldots, a_{n-1}+2 b_{n-1}+2 c_{n-1}, 2 b_{n-1}+2 c_{n-1}, a_{n-1}\right)
\end{aligned}
$$

On the other side we have

$$
\begin{aligned}
\sigma^{3}\left(\gamma_{2}^{*}\right)(s)= & \sigma^{2}\left(\gamma_{2}^{*}\right)\left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \\
= & \sigma^{3}\left(a_{0}+2 b_{0}+2 c_{0}, 2 b_{0}+2 c_{0}, a_{0}, a_{1}+2 b_{1}+2 c_{1}, 2 b_{1}+2 c_{1}, a_{1}, \ldots, a_{n-1}\right. \\
& \left.+2 b_{n-1}+2 c_{n-1}, 2 b_{n-1}+2 c_{n-1}, a_{n-1}\right) \\
= & \left(a_{n-1}+2 b_{n-1}+2 c_{n-1}, 2 b_{n-1}+2 c_{n-1}, a_{n-1} a_{0}+2 b_{0}+2 c_{0}, 2 b_{0}\right. \\
& \left.+2 c_{0}, a_{0}, \ldots, a_{n-1}+2 b_{n-1}+2 c_{n-1}, 2 b_{n-1}+2 c_{n-1}, a_{n-1}\right) .
\end{aligned}
$$

Theorem 5. If C be a cyclic code of length n then $\gamma_{2}^{*}(C)$ is a three cyclic code of length $2 n$ over \mathbb{Z}_{4}.

Proof. Proof is similar to the proof of Theorem 3.
Corollary 1. Let C be a linear code of odd length n over S. Then C is a cyclic code if and only if $\varphi(C)$ is an α-constacyclic code where $\varphi: S^{n} \longrightarrow S^{n}$ defined by $\varphi\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)=$ $\left(c_{0}, \alpha c_{1}, \ldots, \alpha^{n-2} c_{n-2}, \alpha^{n-1} c_{n-1}\right)$.

Definition 6. [12] Let n be an odd positive integer and $\xi=(1, n+1)(3, n+3) \cdots(2 i+$ $1, n+2 i+1) \cdots(n-2,2 n-2)$ a permutation of $\{0,1, \ldots, 2 n-1\}$. Then Nechaev's permutation π is defined by $\pi\left(c_{0}, c_{1}, \ldots, c_{2 n-1}\right)=\left(c_{\xi(0)}, c_{\xi(1)}, \ldots, c_{\xi(2 n-1)}\right)$.

Lemma 5. Let γ_{1} be the Gray map defined in Definition 2. Then $\gamma_{1} \varphi=\pi \gamma_{1}$ where π is Nechaev's permutation and φ is the map defined in Corollary 1.

Proof. Let $s_{i}=a_{i}+u b_{i}+v c_{i} \in S$ for $0 \leq i \leq n-1$. Then $s=\left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \in S^{n}$ and

$$
\begin{aligned}
\gamma_{1} \varphi(z)= & \gamma_{1} \varphi\left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \\
= & \gamma_{1}\left(s_{0}, \alpha s_{1}, \ldots, \alpha^{n-1} s_{n-1}\right) \\
= & \left(2 a_{0}+3 b_{0}+3 c_{0}, 2 a_{1}+b_{1}+c_{1}, \ldots, 2 a_{n-1}+3 b_{n-1}+3 c_{n-1}, 3 b_{0}+c_{0},\right. \\
& \left.2 a_{1}+b_{1}+c_{1}, \ldots, 3 b_{n-1}+c_{n-1}\right) .
\end{aligned}
$$

Further,

$$
\begin{aligned}
\pi \gamma_{1}(z)= & \pi \gamma_{1}\left(z_{0}, z_{1}, \ldots, z_{n-1}\right) \\
= & \pi\left(2 a_{0}+3 b_{0}+3 c, 2 a_{1}+3 b_{1}+3 c_{1}, \cdots, 2 a_{n-1}+3 b_{n-1}+3 c_{n-1}, 2 a_{0}\right. \\
& \left.+b_{0}+c_{0}, 2 a_{1}+b_{1}+c_{1}, \cdots, 2 a_{n-1}+b_{n-1}+c_{n-1}\right) \\
= & \left(2 a_{0}+3 b_{0}+3 c_{0}, 2 a_{1}+b_{1}+c_{1}, \ldots, 2 a_{n-1}+3 b_{n-1}+3 c_{n-1}, 3 b_{0}+c_{0},\right. \\
& \left.2 a_{1}+b_{1}+c_{1}, \ldots, 3 b_{n-1}+c_{n-1}\right) .
\end{aligned}
$$

and therefore $\gamma_{1} \varphi=\pi \gamma_{1}$.

Theorem 6. For a cyclic code C of odd length n over R, let $T=\gamma_{1}(C)$. Then $\pi(T)$ is a cyclic code of length $2 n$ over \mathbb{Z}_{4}.

Proof. Let C be a cyclic code and $T=\delta_{1}(C)$. Then by Lemma 5, $\pi \gamma_{1}(C)=\pi(T)=$ $\psi_{1} \varphi(C)$. From Corollary 1, $\varphi(C)$ is an α-constacyclic code. Hence, by Theorem 2, $\delta_{1} \varphi(C)$ is a cyclic code of length $2 n$ over \mathbb{Z}_{4}, and thus $\pi(T)$ is a cyclic code of length $2 n$ over \mathbb{Z}_{4}.

Lemma 6. Let γ_{2} be the Gray map defined in Definition 4. Then $\gamma_{2} \varphi=\pi \gamma_{2}$ where π is Nechaev's permutation and φ is the map defined in Corollary 1.

Proof. The proof is similar to that of Lemma 5 and so is omitted.

Theorem 7. For a cyclic code C of odd length n over R, let $T=\gamma_{2}(C)$. Then $\pi(T)$ is a quasi-cyclic code of length $3 n$ and index 3 over \mathbb{Z}_{4}.

Proof. The proof is similar to that of Theorem 6 and so is omitted.

4. Structure of $(1+2 u+2 v)$-constacyclic code

In this section we study the structure of cyclic code and α-constacyclic code over S. Let $e_{1}=(1+u+v), e_{2}=-u$ and $e_{3}=-v$, it satisfies $e_{i} e_{j}=0(i \neq j), e_{i}^{2}=e_{i}$ and $e_{1}+$ $e_{2}+e_{3}=1$. Thus, any element in S can be uniquely expressed as $r e_{1}+s e_{2}+t e_{3}$ where $r=a, s=(3 b+a)$ and $t=(3 c+a)$ are elements in \mathbb{Z}_{4}.
Let A, B a non empty set then define $A \oplus B=\{a+b \mid a \in A, b \in B\}$ and $A \otimes B=$ $\{a, b \mid a \in A, b \in B\}$. Let C be a linear code over $S, C_{1}=\left\{a \mid a e_{1}+b e_{2}+c e_{3} \in\right.$ $C\}, C_{2}=\left\{b \mid a e_{1}+b e_{2}+c e_{3} \in C\right\}$ and $C_{3}=\left\{c \mid a e_{1}+b e_{2}+c e_{3} \in C\right\}$. Thus, $C=\bigoplus_{i=1}^{3} C_{i}$. Note that whenever C is linear in S then $C_{i}^{\prime} s$ are linear over \mathbb{Z}_{4}.

Theorem 8. Let C be a linear code then C is cyclic code of length n over S if and only if C_{1}, C_{2} and C_{3} are cyclic code over \mathbb{Z}_{4}.

Proof. Let $c=c_{0}, c_{1}, \ldots, c_{n-1} \in C$ where $c_{i}=e_{1} a_{i}+e_{2} b_{i}+e_{3} d_{i}$. Let C be cyclic over S then $\sigma(c)=\sigma(a) e_{1}+\sigma(b) e_{2}+\sigma(d) e_{3} \in C$. Implies C_{1}, C_{2} and C_{3} are cyclic code over \mathbb{Z}_{4}.
Let C_{1} be a cyclic codes. Then $\sigma(a) \in C_{1}$ implies $\sigma(a) e_{1}+b e_{2}+d e_{3} \in C$ and so $e_{1}\left(\sigma(a) e_{1}+b e_{2}+d e_{3}\right)=\sigma(a) e_{1} \in C$ for some $b \in C_{2}, d \in C_{3}$. In a similar way $\sigma(b) e_{2} \in C, \sigma(d) e_{3} \in C$, using linearity we have $\sigma(a) e_{1}+\sigma(b) e_{2}+\sigma(d) e_{3}=\sigma(c) \in C$. Hence, C is cyclic over S.

Lemma 7. [1] Let C be a cyclic code of length n over \mathbb{Z}_{4}.

1. If n is odd then $\mathbb{Z}_{4}[x] /\left(x^{n}-1\right)$ is a principal ideal ring and $C=(f(x), 2 g(x))=(f(x)+$ $2 g(x))$ where $f(x)$ and $g(x)$ generate cyclic codes with $g(x)|f(x)|\left(x^{n}-1\right) \bmod 4$.

Theorem 9. Let C be a cyclic code of odd length n. Then there exist $g(x)$ such that $C=\langle g(x)\rangle$.

Proof. Let C be a cyclic code. By Theorem 8 we have C_{1}, C_{2} and C_{3} are cyclic. Since C_{1}, C_{2} and C_{3} are cyclic by Lemma $7, C_{i}=\left\langle g_{i}(x)\right\rangle$. Thus, given any element in $e_{i} C_{i}$ we have $e_{i} a_{i}(x) g_{i}(x) \in e_{i} C_{i}$ for some $a_{i}(x) \in \mathbb{Z}_{4}[x]$. Then using the representation of C in S we have $\sum_{i=1}^{3} e_{i} a_{i}(x) g_{i}(x) \in C$. Multiply by e_{i} we get $\left\langle e_{i} g_{i}(x)\right\rangle \subseteq C$. Hence, $g(x)=e_{1} g_{1}(x)+e_{2} g_{2}(x)+e_{3} g_{3}(x)$ generates C.

Theorem 10. Let C be linear code then C is α-constacyclic code iff C_{1} is cyclic, C_{2} and C_{3} are Negacyclic code of length n over \mathbb{Z}_{4}.

Proof. First let C be α-constacyclic code over R. Let $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in$ $C_{1}, b=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right) \in C_{2}$ and $d=\left(d_{0}, d_{1}, \ldots, d_{n-1}\right) \in C_{3}$ then $a e_{1}+b e_{2}+d e_{3} \in$ S. Since C is α-constacyclic code,

$$
\phi_{\alpha}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)=\left(\alpha c_{n-1}, c_{0}, \ldots, c_{n-1}\right)
$$

Since, $\left(e_{1}+e_{2}+e_{3}\right)(1+2 u+2 v)=e_{1}-e_{2}-e_{3}$. We have $\phi_{-1}(b) \in C_{2}, \phi_{-1}(b) \in$ $C_{3}, \sigma(a) \in C_{1}$. Hence, C_{1} is cyclic and C_{2}, C_{3} are negacyclic codes.
Conversely, we assume that C_{1} is cyclic code and C_{2}, C_{3} are negacyclic code. Let $\left(c_{0}, c_{1}, \cdots, c_{n-1}\right) \in C$ where $c_{i}=e_{1} a_{i}+e_{2} b_{i}+e_{3} c_{i}$. Since C_{1} is cyclic and C_{2}, C_{3} are negacyclic $\left(\phi_{-1}(b), \phi_{-1}(d)\right) \in\left(C_{2}, C_{3}\right)$ and $\sigma(a) \in C_{1}$, we have $\sigma(a) e_{1}+\phi_{-1}(b)+$ $\phi_{-1}(d) \in C$. That is, $\left(\alpha c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in C$. Hence, C is α-constacyclic code.

Theorem 11. Let n be an odd integer. Then the map $\tau: S[x] /\left\langle x^{n}-1\right\rangle \longrightarrow S[x] /\left\langle x^{n}-\alpha\right\rangle$ defined by $\tau(f(x))=f(\alpha x)$ is a ring isomorphism.

Proof. Let $f(x)=g(x)$ in $S[x] /\left\langle x^{n}-1\right\rangle$. Then $f(x) \equiv g(x) \bmod \left(x^{n}-1\right)$. Replacing x by αx on both sides gives $f(\alpha x)-g(\alpha x) \equiv 0 \bmod \left(x^{n} \alpha^{n}-1\right)$ which implies that $f(\alpha x)-g(\alpha x) \equiv 0 \bmod \alpha^{n}\left(x^{n}-\alpha\right)$ since $\alpha^{n}=\alpha$ for an odd integer n. Thus, $f(\alpha x)=g(\alpha x)$ in $R[x] /\left\langle x^{n}-\alpha\right\rangle$, so τ is an injective and well-defined map. Moreover, since $S[x] /\left\langle x^{n}-1\right\rangle$ and $S[x] /\left\langle x^{n}-\alpha\right\rangle$ are finite rings with the same number of elements and τ is injective, then τ is surjective. Further, one can check that τ is a ring homomorphism. Hence, τ is a ring isomorphism.

Corollary 2. Let C be a linear code of odd length n over S. Then C is a cyclic code if and only if $\tau(C)$ is an α-constacyclic code over S.

Theorem 12. Let C be a α-constacyclic code over S then there exist a polynomial $g(x)$ such that $C=\langle g(x)\rangle$.

Proof. The proof is similar to the proof of Theorem 9.
Note: Let $a(x)+u b(x)+v c(x)=g_{1}(x) e_{1}+g_{2}(x) e_{2}+g_{3}(x) e_{1}(x)$. Then

$$
a(x)=g_{1}(x), b(x)=g_{1}(x)+3 g_{2}(x), c(x)=g_{1}(x)+3 g_{3}(x)
$$

Theorem 13. Let γ_{1} be the gray map defined and if $C=\left\langle g_{1}(x)+\left(g_{1}(x)+3 g_{2}(x)\right) u+\right.$ $\left.\left(g_{1}(x)+3 g_{3}(x)\right) v\right\rangle$ be α-constacyclic code then $\gamma_{1}(C)$ is a cyclic code over \mathbb{Z}_{4} and is generated by $\left(g_{2}(x)+x^{n} 3 g_{2}(x)\right),\left(g_{3}(x)+x^{n} 3 g_{3}(x)\right)$.

Proof. Let $r(x) \in C$ then there exist $h_{i}(x) \in \mathbb{Z}_{4}[x]$ such that

$$
\begin{aligned}
r(x)= & \left(h_{1}(x) g_{1}(x)+\left(h_{1}(x) g_{1}(x)+3 h_{2}(x) g_{2}(x)\right) u\right. \\
& \left.+\left(h_{1}(x) g_{1}(x)+3 h_{3}(x) g_{3}(x)\right) v\right) \\
\gamma_{1}(r(x))= & \left(h_{2}(x) g_{2}(x)+h_{3}(x) g_{3}(x), 3 h_{2}(x) g_{2}(x)+3 h_{3}(x) g_{3}(x)\right) \\
= & h_{2}(x)\left(g_{2}(x), 3 g_{2}(x)\right)+h_{3}\left(g_{3}(x), 3 g_{3}(x)\right) .
\end{aligned}
$$

Hence, $\gamma_{1}(r(x)) \in \frac{\mathbb{Z}_{4}}{\left(x^{n}-1\right)} \times \frac{\mathbb{Z}_{4}}{\left(x^{n}-1\right)}$, Using the fact $a, b \in \frac{\mathbb{Z}_{4}}{\left(x^{n}-1\right)} \times \frac{\mathbb{Z}_{4}}{\left(x^{n}-1\right)}$ implies $a+x^{n} b \in \frac{\mathbb{Z}_{4}}{\left(x^{2 n}-1\right)}$, we have that $\gamma_{1}(C)=\left\langle\left(g_{2}(x)+x^{n} 3 g_{2}(x)\right),\left(g_{3}(x)+x^{n} 3 g_{3}(x)\right)\right\rangle$ is a cyclic code over $\frac{\mathbb{Z}_{4}}{\left(x^{2 n}-1\right)}$.

The proof of the following theorem is similar to the proof of Theorem 13.
Theorem 14. Let γ_{2} be the gray map defined and if $C=\left\langle g_{1}(x)+\left(g 1(x)+3 g_{2}(x)\right) u+\right.$ $\left.\left(g_{1}(x)+3 g_{3}(x)\right) v\right\rangle$ be α-constacyclic code then $\gamma_{2}(C)$ is a quasicyclic code of length $3 n$ over \mathbb{Z}_{4} and is generated by $\left(g_{1}(x)+x^{2 n} g_{1}(x)\right),\left(2 g_{2}(x)+x^{n} g_{2}(x)\right)$ and $\left(2 g_{3}(x)+x^{n} g_{3}(x)\right)$

5. Examples

In this Section we have computed some codes using Magma Computational Algebra System. Some codes presented here is new to the Database [Database of \mathbb{Z}_{4} codes [online], http:// \mathbb{Z}_{4} Codes.info(Accessed March 2, 2020)].

Example 1. Let C be a α-constacyclic code of length 7. Then by Theorem $10 C_{1}$ is cyclic and C_{2}, C_{3} are negacyclic codes over $\mathbb{Z}_{4} . C$ is generated by $g(x)=e_{1} g_{1}(x)+e_{2} g_{2}(-x)+$ $e_{3} g_{3}(-x)$ where, $g_{1}(x)=x^{4}+x^{3}+3 x^{2}+2 x+1, g_{2}(x)=x^{4}+x^{3}+3 x^{2}+2 x+1$, and $g_{3}(x)=x^{3}+3 x^{2}+2 x+3$. So $\gamma_{2}(C)$ is a linear code of parameter $\left(\left(21,4^{8} 2^{3}, 3\right)\right)$ and hence by Theorem $7, \pi\left(\gamma_{2}(C)\right)$ is quasi cyclic code.

Example 2. Let C be a α-constacyclic code of length 7 then by Theorem $10 C_{1}$ is cyclic and C_{2}, C_{3} are negacyclic codes over \mathbb{Z}_{4}. C is generated by $g(x)=e_{1} g_{1}(x)+e_{2} g_{2}(-x)+$ $e_{3} g_{3}(-x)$ where $g_{1}(x)=x^{4}+x^{3}+3 x^{2}+2 x+1, g_{2}(x)=x^{4}+x^{3}+3 x^{2}+2 x+1$ and $g_{3}(x)=x^{4}+x^{3}+3 x^{2}+2 x+1$. So $\gamma_{2}(C)$ is a linear code of parameter $\left(\left(21,4^{6} 2^{3}, 4\right)\right)$ and by Theorem $7, \pi\left(\gamma_{2}(C)\right)$ is quasi cyclic code.

Example 3. Let C be a cyclic code of length 15 then by Theorem $8 C_{1}, C_{2}, C_{3}$ are cyclic codes over \mathbb{Z}_{4}. C is generated by $g(x)=e_{1} g_{1}(x)+e_{2} g_{2}(x)+e_{3} g_{3}(x)$ where $g_{1}(x)=$ $x^{6}+2 x^{4}+x^{3}+3 x^{2}+x+1, g_{2}(x)=x^{4}+3 x^{3}+2 x^{2}+1$ and $g_{3}(x)=x+3$. So $\gamma_{2}(C)$ is a linear code of parameter $\left(\left(45,4^{18} 2^{13}, 3\right)\right)$.

Example 4. Let C be a cyclic code of length 15 then by Theorem $8 C_{1}, C_{2}, C_{3}$ are cyclic codes over \mathbb{Z}_{4}. C is generated by $g(x)=e_{1} g_{1}(x)+e_{2} g_{2}(x)+e_{3} g_{3}(x)$ where $g_{1}(x)=$ $x^{7}+3 x^{6}+2 x^{5}+3 x^{4}+2 x^{3}+2 x^{2}+3, g_{2}(x)=2 x^{10}+2 x^{5}+2$ and $g_{3}(x)=2 x^{6}+2 x^{3}+2 x^{2}+2 x+2$. Thus $\gamma_{2}(C)$ is a linear code of parameter $\left(\left(45,4^{16} 2^{10}, 3\right)\right)$.

In the below table we have computed some codes using Magma Computational Algebra System. (* represents the code is new in the Database [Database of \mathbb{Z}_{4} codes [online], http:// \mathbb{Z}_{4} Codes.info(Accessed March 2, 2020)])

n	$g_{1}(x)$	$g_{2}(x)$	$g_{3}(x)$	$\gamma_{1}(C)$
9	$x^{3}+2 x+1$	$g_{1}(x)$	$g_{1}(x)$	$\left(\left(18,4^{12} 2^{4}, 2\right)\right)$
7	$x^{4}+x^{3}+3 x^{2}+3$	$x^{3}+2 x^{2}+x+3$	$g_{2}(x)$	$\left(\left(14,4^{8} 2^{0}, 3\right)\right)$
7	$x^{4}+3 x^{3}+3 x^{2}+3$	$\left(\left(21,4^{18}, 2^{4}, 2\right)\right)^{*}$		
7	$x^{4}+3 x^{3}+3 x^{2}+3$	$x^{4}+x^{3}+3 x^{2}+2 x+1$	$g_{2}(x)$	$\left(\left(14,4^{6} 2^{0}, 4\right)\right)$
7	$\left(\left(21,4^{9} 2^{2}, 3\right)\right)^{*}$			
9	$x^{8}+x^{7}+3 x^{6}+x^{5}+x^{4}+3 x^{3}+x^{2}+x+3$	$x^{7}+3 x^{6}+x^{4}+3 x^{3}+3 x+1$	$g_{2}(x)$	-
9	$x^{8}+x^{7}+3 x^{6}+x^{5}+x^{4}+3 x^{3}+x^{2}+x+3$	$x^{3}+2 x+1$	$g_{2}(x)$	$-\left(\left(21,4^{9} 2^{2}, 3\right)\right)^{*}$

Conflict of Interest: The authors declare that they have no conflict of interest.
Data Availability Statement: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] T. Abualrub and I. Siap, Reversible cyclic codes over \mathbb{Z}_{4}, Australas. J. Comb. 38 (2007), 195-206.
[2] M. Ashraf and G. Mohammad, $(1+u)$-constacyclic codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$, arXiv:1504.03445v1. (2015).
[3] D. Boucher, W. Geiselmann, and F. Ulmer, Skew-cyclic codes, Appl. Algebra Eng. Comm. Compute. 18 (2007), no. 4, 379-389. https://doi.org/10.1007/s00200-007-0043-z.
[4] D. Boucher, P. Solé, and F. Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Commun. 2 (2008), no. 3, 273-292. http://doi.org/10.3934/amc.2008.2.273.
[5] Y. Cengellenmis, A. Dertli, and N. Aydın, Some constacyclic codes over $\mathbb{Z}_{4}[u] /\left\langle u^{2}\right\rangle$, new Gray maps, and new quaternary codes, Algebra Colloq. 25 (2018), no. 3, 369-376.
https://doi.org/10.1142/S1005386718000263.
[6] J. Gao, F. Ma, and F. Fu, Skew constacyclic codes over the ring $\mathbb{F}_{q}+v \mathbb{F}_{q}$, Appl. Comput. Math. 6 (2017), no. 3, 286-295.
[7] F. Gursoy, I. Siap, and B. Yildiz, Construction of skew cyclic codes over $\mathbb{F}_{q}+v \mathbb{F}_{q}$, Adv. Math. Commun. 8 (2014), no. 3, 313-322. https://doi.org/10.3934/amc.2014.8.313.
[8] H. Islam, T. Bag, and O. Prakash, A class of constacyclic codes over $\mathbb{Z}_{4}[u] /\left\langle u^{k}\right\rangle$, J. Appl. Math. Comput. 60 (2019), no. 1,2, 237-251.
https://doi.org/10.1007/s12190-018-1211-y.
[9] H. Islam and O. Prakash, A class of constacyclic codes over the ring $\mathbb{Z}_{4}[u, v] /\left\langle u^{2}, v^{2}, u v-v u\right\rangle$ and their Gray images, Filomat 33 (2019), no. 8, 22372248.
[10] E. Martinez-Moro, S. Szabo, and B. Yildiz, Linear codes over $\mathbb{Z}_{4}[x] /\left\langle x^{2}+2 x\right\rangle$, Int. J. Inf. Coding Theory 3 (2015), no. 1, 78-96.
[11] M. Özen, N.T. Özzaim, and N. Aydin, Cyclic codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}+u^{2} \mathbb{Z}_{4}$, Turkish J. Math. 41 (2017), no. 5, 1235-1247. http://doi.org/10.3906/mat-1602-35.
[12] M. Özen, F.Z. Uzekmek, N. Aydin, and N. Özzaim, Cyclic and some constacyclic codes over the ring $\mathbb{Z}_{4}[u] /\left\langle u^{2}-1\right\rangle$, Finite Fields Appl. 38 (2016), 27-39.
[13] V.S. Pless and Z. Qian, Cyclic codes and quadratic residue codes over \mathbb{Z}_{4}, IEEE Trans. Inform. Theory 42 (1996), no. 5, 1594-1600.
https://doi.org/10.1109/18.532906.
[14] M. Shi, L. Qian, L. Sok, N. Aydin, and P. Solé, On constacyclic codes over $\mathbb{Z}_{4}[u] /\left\langle u^{2}-1\right\rangle$ and their Gray images, Finite Fields Appl. 45 (2017), 86-95.
[15] I. Siap, T. Abualrub, N. Aydin, and P. Seneviratne, Skew cyclic codes of arbitrary length, Int. J. Inf. Coding Theory 2 (2011), no. 1, 10-20. http://doi.org/10.1504/IJICOT.2011.044674.
[16] T. Yao, M. Shi, and P. Solé, Skew cyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}+u v \mathbb{F}_{q}$, J. Algebra Comb. Discrete Struct. Appl. 2 (2015), no. 3, 163-168.
[17] B. Yildiz and N. Aydin, On cyclic codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ and their \mathbb{Z}_{4}-images, Int. J. Inf. Coding Theory 2 (2014), no. 4, 226-237. https://doi.org/10.1504/IJICOT.2014.066107.
[18] B. Yildiz and A. Kaya, Self-dual codes over $\mathbb{Z}_{4}[x] /\left\langle x^{2}+2 x\right\rangle$ and the \mathbb{Z}_{4}-images, Int. J. Inf. Coding Theory 5 (2018), no. 2, 142-154.
[19] H. Yu, Y. Wang, and M. Shi, $(1+u)$-constacyclic codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$, SpringerPlus 5 (2016), no. 1, Artice number 1325.

