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1. Introduction

In a recent study, Mikkawy and Sogabe [4] introduced a new family of k-Fibonacci

numbers F
(k)
n where n is of the kind sk+ r. They presented several interesting prop-

erties of this new sequence and shown a relation with the classic Fibonacci numbers.

In [8], Özkan et al. added some more results to this newly introduced sequence and

extended the study to a new family of k-Lucas numbers. In [9], Özkan et al. studied

a new family of Gauss k-Lucas numbers and associated polynomials. A study on new

families of Jacobsthal and the Jacobsthal-Lucas numbers is presented by Catarino et

al. [2]. Recently, Kumari et al. [7] extended the study to Mersenne numbers and

investigated some new families of k-Mersenne and generalized k-Gaussian Mersenne
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numbers and associated polynomials. Some recent work in this direction can be seen

in [5, 10–12, 18–20].

Motivated by these works on a new family of Fibonacci and Fibonacci-like sequences,

in this paper, we introduce and investigate a new family of k-Leonardo numbers and

k-Gaussian Leonardo numbers.

Leonardo numbers {Ln}n≥0 were recently investigated by Catarino and Borges [3]

which have a close connection with the Fibonacci and Lucas numbers. They presented

some interesting properties of Leonardo numbers. For n ≥ 0, it is defined recurrently

as

Ln+2 = Ln+1 + Ln + 1, with L0 = L1 = 1. (1)

First few Leonardo numbers are 1, 1, 3, 5, 9, 15, 25, 41, . . . .

Alp and Koçer [1] studied these Leonardo numbers, defined the matrix representa-

tion, and obtained some remarkable properties of them. A generalization of Leonardo

numbers was studied by Kuhapatanakul and Chobsorn [6] where they presented some

special properties of their generalized version of Leonardo numbers, for their gener-

alization they considered the recurrence relation Ln+2 = Ln+1 + Ln + N , where N

is any positive integer and initial values are same. For a recent study on Leonardo

numbers, their generalization, and properties, one can refer to [13–17].

The relation of the Leonardo numbers with the Fibonacci numbers is investigated as

Ln = 2Fn+1 − 1.

In homogeneous form, recurrence relation (1) can be written as

Ln+1 = 2Ln − Ln−2. (2)

It is easy to see that the characteristic equation for the recurrence relation (2) is

x3 − 2x2 + 1 = 0 and its roots are

α =
1 +
√

5

2
, β =

1−
√

5

2
and γ = 1.

For n ≥ 0, the Binet formula for the Leonardo numbers Ln is given by

Ln = 2
(αn+1 − βn+1

α− β

)
− 1 or Ln =

1√
5

[
2(αn+1 − βn+1)−

√
5
]
. (3)

For Leonardo numbers, the generating function is

G(t) =
1− t+ t2

1− 2t+ t3
.

For n > r, r ≥ 1, the Catalan’s identity is given as

L2
n − Ln−rLn+r = Ln−r + Ln+r − 2Ln − (−1)n−r(Lr−1 + 1)2.

Setting r = 1 in the Catalan’s identity, we have the Cassini’s identity as follows:

L2
n − Ln−1Ln+1 = Ln−1 − Ln−2 + 4(−1)n.
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2. Main work

Throughout the paper, we adopt the symbol N0 for N ∪ {0}. We start with defining

the generalized k-Leonardo numbers.

2.1. Generalized k-Leonardo numbers

Definition 1. Let k be a natural number and n ∈ N0, then ∃ unique s, r ∈ N0 such that
n = sk + r, where 0 ≤ r < k. Then the generalized k-Leonardo numbers L(k)

n is defined by

L(k)
n =

1

(
√

5)k

[
2(αs+1 − βs+1)−

√
5
]k−r[

2(αs+2 − βs+2)−
√

5
]r
, (4)

where α = (1 +
√

5)/2 and β = (1−
√

5)/2.

From Eqn.(3) and Definition 1, the generalized k-Leonardo numbers and Leonardo

numbers are related as

L(k)
sk+r = Lk−rs Lrs+1. (5)

In terms of Fibonacci Numbers, it is given as

L(k)
n = (2Fs+1 − 1)k−r(2Fs+2 − 1)r.

If k = 1 then r = 0 and hence n = s. So, from Eqn. (5), we have L(1)
n = Ln.

For the case k = 2, we have r = 0, 1. Hence, the following relations are obtained for

k = 2.

If r = 0, L(2)
2n =

1

(
√

5)2

[
2(αn+1 − βn+1)−

√
5
]2

= L2
n.

If r = 1, L(2)
2n+1 =

1

(
√

5)2

[(
2(αn+1 − βn+1)−

√
5
)(

2(αn+2 − βn+2)−
√

5
)]

= LnLn+1.

Theorem 1. The 2-Leonardo sequence {L(2)
2n+1} satisfy the identity

L(2)
2n+1 = 2L(2)

2n − LnLn−2.

Proof. Form (5) and (2), we write

L(2)
2n+1 = LnLn+1 = Ln(2Ln − Ln−2) = 2(Ln)2 − LnLn−2 = 2L(2)

2n − LnLn−2. (6)

Hence the result is obtained.
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For the case k = 3, we have r = 0, 1, 2. Thus, form (5)

L(3)
3n+r =


L3
n : r = 0,

L2
nLn+1 : r = 1,

LnL2
n+1 : r = 2.

(7)

Theorem 2. The 3-Leonardo sequence {L(3)
3n+1} satisfy the identity

L(3)
3n+1 = 2L(3)

3n − L
2
nLn−2.

Proof. We have

L(3)
3n+1 = L2

nLn+1 = L2
n(2Ln − Ln−2) = 2L3

n − L2
nLn−2 = 2L(3)

3n − L2
nLn−2.

For k = 1, 2, 3, 4, 5, a list of the first few numbers of the generalized k-Leonardo

sequence is displayed in the following table.

n ↓ L(k)n k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

0 L(k)0 1 1 1 1 1 1

1 L(k)1 1 1 1 1 1 1

2 L(k)2 3 1 1 1 1 1

3 L(k)3 5 3 1 1 1 1

4 L(k)4 9 9 3 1 1 1

5 L(k)5 15 15 9 3 1 1

6 L(k)6 25 25 27 9 3 1

7 L(k)7 41 45 45 27 9 3

8 L(k)8 67 81 75 81 27 9

9 L(k)9 109 135 125 135 81 27

10 L(k)10 177 225 225 225 243 81

Table 1. Generalized k-Leonardo numbers.

Theorem 3. Let s ∈ N0, for positive integer k, we have

L(k)
sk = Lks and L(k)

sk+1 = 2L(k)
sk − L

k−1
s Ls−2.

Proof. For the first identity, if n = sk then r = 0, hence the result follows from (5).

For the second identity, from (5), we write L(k)
sk+1 = Lk−1s Ls+1 and using recurrence

(2), we have

L(k)
sk+1 = Lk−1s (2Ls − Ls−2)

= 2Lks − Lk−1s Ls−2
= 2L(k)

sk − L
k−1
s Ls−2.
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For k, s ∈ N, the relation L(k)
sk+k − L

(k)
sk = Lks+1 − Lks is verified from (5).

Theorem 4. (Cassini’s identity) For n, k ≥ 2, the Cassini’s identity for the generalized

k-Leonardo numbers L(k)
n is given by

(L(k)
sk+a−1)2 − L(k)

sk+aL
(k)
sk+a−2 =

{
0, a 6= 1,

L2k−2
s (Ls−3 + 1 + 4(−1)s), a = 1.

Proof. We have

(L(k)
sk+a−1)2 − L(k)

sk+aL
(k)
sk+a−2 = (Lk−a+1

s La−1s+1 )2 − (Lk−as Las+1)(Lk−a+2
s La−2s+1 )

= 0, if a 6= 1,

and for the case a = 1, we have

(L(k)
sk )2 − L(k)

sk+1L
(k)
sk−1 = (Lks)2 − (Lk−1s L1

s+1)(L1
s−1Lk−1s )

= L2k−2
s (L2

s − Ls+1Ls−1)

= L2k−2
s (Ls−1 − Ls−2 + 4(−1)s)

= L2k−2
s (Ls−3 + 1 + 4(−1)s) (using (1)).

Theorem 5. For the generalized k-Leonardo numbers {L(k)
n } where n is of kind sk + r,

we have
(1).

∑k−1
a=0

(
k−1
a

)
L(k)
sk+a = Ls(Ls+2 − 1)k−1,

(2).
∑k−1
a=0(−1)a

(
k−1
a

)
L(k)
sk+a = (−1)k−1Ls(2Fs)k−1.

Proof. (1). We have

k−1∑
a=0

(
k − 1

a

)
L(k)
sk+a =

k−1∑
a=0

(
k − 1

a

)
Lk−as Las+1

= Ls
k−1∑
a=0

(
k − 1

a

)
Las+1Lk−a−1s

= Ls(Ls + Ls+1)k−1 (using binomial theorem)

= Ls(Ls+2 − 1)k−1 (using (1)).
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(2). By a similar argument, we write

k−1∑
a=0

(−1)a
(
k − 1

a

)
L(k)
sk+a =

k−1∑
a=0

(−1)a
(
k − 1

a

)
Lk−as Las+1

= Ls
k−1∑
a=0

(
k − 1

a

)
(−Ls+1)aLk−a−1s

= Ls[Ls − Ls+1]k−1 (using binomial theorem)

= (−2)k−1Ls(Fs)k−1 (using Ls = 2Fs+1 − 1).

Theorem 6. For k ≥ 1, sum of generalized k-Leonardo numbers is given by

k−1∑
a=0

L(k)
sk+a =

Ls((Ls+1)k − (Ls)k)

2Fs
. (8)

Proof. We have

k−1∑
a=0

L(k)
sk+a =

k−1∑
a=0

Lk−as Las+1 = Lks
k−1∑
a=0

(Ls+1

Ls

)a
= Lks

( (Ls+1/Ls)k − 1

Ls+1/Ls − 1

)
= Lks

( (Ls+1)k − (Ls)k

(Ls)k
Ls

Ls+1 − Ls

)
=
Ls((Ls+1)k − (Ls)k)

Ls+1 − Ls
.

Using the fact Ls = 2Fs+1 − 1, the proof is completed.

3. Gaussian Leonardo numbers

First, we define and investigate the Gaussian Leonardo numbers and then we introduce

a new family of k-Gaussian Leonardo numbers.

Definition 2. The Gaussian Leonardo sequence {GLn}n≥0 is defined by the recurrence
relation

GLn = 2GLn−1 − GLn−3, n ≥ 3, (9)

with initials GL0 = 1− i, GL1 = 1 + i and GL2 = 3 + i.
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We should note that the Gaussian Leonardo numbers and Leonardo numbers are

related as

GLn = Ln + iLn−1. (10)

The first few Gaussian Leonardo numbers are 1− i, 1 + i, 3 + i, 5 + 3i, . . . .

The Binet type formula for the Gaussian Leonardo numbers is given by

GLn =
[
2
(αn+1 − βn+1

α− β

)
− 1
]

+ i
[
2
(αn − βn
α− β

)
− 1
]
, (11)

where α =
1 +
√

5

2
and β =

1−
√

5

2
are roots of the characteristic equation x3 −

2x2 + 1 = 0.

Theorem 7 (Partial sum). For Gaussian Leonardo numbers, we have

1.

n−1∑
a=0

GLa = GLn+1 − (1 + n)(1 + i), (12)

2.

n−1∑
a=0

GL2a = GL2n−1 + (1− n)− i(1 + n), (13)

3.

n−1∑
a=0

GL2a+1 = GL2n − (1 + n) + i(1− n). (14)

Proof. To prove the results, we use the fact that Ln = 2Fn+1 − 1 and Eqn. (10).

Thus, we have

n−1∑
a=0

GLa =

n−1∑
a=0

[(2Fa+1 − 1) + i(2Fa − 1)]

= 2
( n−1∑
a=0

Fa+1 + i

n−1∑
a=0

Fa

)
− n− in

= 2
( n∑
a=0

Fa + i

n−1∑
a=0

Fa

)
− n(1 + i)

= 2(Fn+2 − 1 + i(Fn+1 − 1))− n(1 + i)

= (2Fn+2 − 1) + i(2Fn+1 − 1)− 1− i− n(1 + i)

= Ln+1 + iLn − (1 + n)(1 + i)

= GLn+1 − (1 + n)(1 + i).

For the second and third identities, a similar argument holds.



8 Generalized k-Leonardo and Gaussian Leonardo Numbers

Theorem 8 (Casssini’s identity). For a ≥ 1,

GL2
a − GLa+1GLa−1 = La−5 + 1 + 8(−1)a + i(La−2 + 1 + 4(−1)a−1). (15)

Proof. We have

GL2
a − GLa+1GLa−1

= (La + iLa−1)2 − (La+1 + iLa)(La−1 + iLa−2)

= (La)2 − (La−1)2 + 2iLaLa−1 − La+1La−1 − iLa+1La−2 − iLaLa−1
+ LaLa−2

= [(La)2 − La−1La+1]− [(La−1)2 − LaLa−2] + i[LaLa−1 − La+1La−2]

= (La−1 − La−2 + 4(−1)a)− (La−2 − La−3 + 4(−1)a−1)

+ i(LaLa−1 − La+1La−2).

Using the Binet formula of Leonardo numbers and after some elementary calculation,

we write

LaLa−1 − La+1La−2 = La−2 + 1 + 4(−1)a−1 and from Eqn. (1), we have

La−1 − La−2 + 4(−1)a − La−2 + La−3 − 4(−1)a−1 = La−1 − 2La−2 + La−3 + 8(−1)a

= La−5 + 1 + 8(−1)a.

Thus, GL2
a−GLa+1GLa−1 = La−5 +1+8(−1)a+ i(La−2 +1+4(−1)a−1), as required.

In next theorems, we discuss various generating functions for the Gaussian Leonardo

numbers.

Theorem 9 (Generating function). The generating function for Gaussian Leonardo
numbers is

GL(t) =
(1− i)− (1− 3i)t+ (1− i)t2

(1− 2t+ t3)
.

Proof. Let GL(t) be a generating function for the sequence {GLn}. We start with

the formal power series representation for a sequence as

GL(t) = GL0 + GL1t+ GL2t
2 + · · ·+ GLntn + . . . . (16)

Here,

2tGL(t) = 2GL0t+ 2GL1t
2 + 2GL2t

3 + · · ·+ 2GLn+1t
n+1 + · · · , (17)

t3GL(t) = GL0t
3 + GL1t

4 + GL2t
5 + · · ·+ GLn+3t

n+3 + · · · . (18)
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From (16), (17) and (18), we find that

(1− 2t+ t3)GL(t) = GL0 + (GL1 − 2GL0)t+ (GL2 − 2GL1)t2

+ (GL3 − 2GL2 + GL0)t3 + · · · ,
(1− 2t+ t3)GL(t) = GL0 + (GL1 − 2GL0)t+ (GL2 − 2GL1)t2 (using relation (9)).

Thus, using values of GL0,GL1,GL2 in the above equation, we get

GL(t) =
(1− i)− (1− 3i)t+ (1− i)t2

(1− 2t+ t3)
.

Theorem 10 (Exponential generating function (E(t))). For Gaussian Leonardo
numbers, we have

E(t) =
2√
5

[
(α+ i)eαt − (β + i)eβt

]
− et(1 + i).

Proof. Using the Binet formula (11) of Gaussian Leonardo numbers, we have

E(t) =

∞∑
n=0

GLn
tn

n!

=

∞∑
n=0

[(
2
(αn+1 − βn+1

α− β

)
− 1
)

+ i
(

2
(αn − βn
α− β

)
− 1
)] tn
n!

=
2

α− β

(
α

∞∑
n=0

αn
tn

n!
− β

∞∑
n=0

βn
tn

n!

)
−
∞∑
n=0

tn

n!

+ i
[ 2

α− β

( ∞∑
n=0

αn
tn

n!
−
∞∑
n=0

βn
tn

n!

)
−
∞∑
n=0

tn

n!

]
=
[ 2

α− β
(αeαt − βeβt)− et

]
+ i
[ 2

α− β
(eαt − eβt)− et

]
=

2√
5

(αeαt − βeβt) + i
2√
5

(eαt − eβt)− et(1 + i)

=
2√
5

[
(α+ i)eαt − (β + i)eβt

]
− et(1 + i).

In order to obtain the exponential generating functions with even and odd-indexed

terms of a sequence {an}, it is worth to note the following identity. Let E(t) =∑∞
n=0 an

tn

n! be the exponential generating function for the sequence {an}n≥0. Then
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the exponential generating functions for even and odd-indexed sequences {a2n}n≥0
and {a2n+1}n≥0, respectively, are

Ea2n(t) =
E(
√
t) + E(−

√
t)

2
and Ea2n+1(t) =

E(
√
t)− E(−

√
t)

2
√
t

. (19)

Theorem 11. For the Gaussian Leonardo sequence, the exponential generating functions
for even and odd-indexed sequences GL2n and GL2n+1, respectively, are

EGL2n(t) =
2√
5

(
(α+ i) coshα

√
t− (β + i) coshβ

√
t
)
− cosh

√
t(1 + i)

and EGL2n+1(t) =
2√
5t

(
(α+ i) sinhα

√
t− (β + i) sinhβ

√
t
)
− (1 + i) sinh

√
t√

t
.

Proof. Since we have

E(t) + E(−t) =
[ 2√

5
(αeαt − βeβt)− et

]
+ i
[ 2√

5
(eαt − eβt)− et

]
+
[ 2√

5
(αe−αt − βe−βt)− e−t

]
+ i
[ 2√

5
(e−αt − e−βt)− e−t

]
=
[ 2√

5
(2α coshαt− 2β coshβt)− 2 cosh t

]
+ i
[ 2√

5
(2 coshαt− 2 coshβt)− 2 cosh t

]
=
[ 4√

5
(α coshαt− β coshβt)− 2 cosh t

]
+ i
[ 4√

5
(coshαt− coshβt)− 2 cosh t

]
=

4√
5

(
(α+ i) coshαt− (β + i) coshβt

)
− 2 cosh t(1 + i).

Thus, from Eqn. (19), we get the desired result.

Similarly, evaluating (E(t)−E(−t))/2t and simplifying by replacing t by
√
t according

to Eqn. (19), gives the exponential generating function for odd-indexed sequences

{GL2n}n≥0 as follow:

EGL2n+1
(t) =

2√
5t

(
(α+ i) sinhα

√
t− (β + i) sinhβ

√
t
)
− (1 + i) sinh

√
t√

t
.

Theorem 12 (Catalan’s identity). For the Gaussian Leonardo numbers {GLn}, we
have

GL2
a − GLa−bGLa+b = La−b−2 + La+b−2 − 2La−2 + (−1)a−b−12(Lb−1 + 1)2

+ i(2LaLa−1 − La−bLa+b−1 − La−b−1La+b).
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Proof. From Eqn. (10), we have

GL2
a − GLa−bGLa+b = (La + iLa−1)2 − (La−b + iLa−b−1)(La+b + iLa+b−1)

= L2
a − L2

a−1 + 2iLaLa−1 − La−bLa+b − iLa−bLa+b−1
−iLa−b−1La+b + La−b−1La+b−1

= (L2
a − La−bLa+b)− (L2

a−1 − La−b−1La+b−1)

+i(2LaLa−1 − La−bLa+b−1 − La−b−1La+b)
= [La−b + La+b − 2La − (−1)a−b(Lb−1 + 1)2]

−[La−b−1 + La+b−1 − 2La−1 − (−1)a−b−1(Lb−1 + 1)2]

+i(2LaLa−1 − La−bLa+b−1 − La−b−1La+b).

From Eqn. (1), we write La −La−1 = La−2 + 1. Thus, the above equation simplified

as

GL2
a − GLa−bGLa+b = La−b−2 + La+b−2 − 2La−2 + (−1)a−b−12(Lb−1 + 1)2

+ i(2LaLa−1 − La−bLa+b−1 − La−b−1La+b).

Thus, the required result is obtained.

Theorem 13 (d’Ocagne’s identity). For a, b ≥ 0, we have

GLa+1GLb − GLaGLb+1 = 8(−1)a+1Fb−a + Lb−3 − La−3 + i(2(−1)aLb−a−2 + Lb − La).

Proof. We have

GLa+1GLb − GLaGLb+1

= (La+1 + iLa)(Lb + iLb−1)− (La + iLa−1)(Lb+1 + iLb)
= (La+1Lb − LaLb+1)− (LaLb−1 − La−1Lb) + i(La+1Lb−1 − La−1Lb+1)

= 2(−1)a+1(Lb−a−1 + 1) + Lb−1 − La−1 − (2(−1)a(Lb−a−1 + 1) + Lb−2
− La−2) + i(La+1Lb−1 − La−1Lb+1)

= 4(−1)a+1(Lb−a−1 + 1) + (Lb−1 − Lb−2)− (La−1 − La−2)

+ i(La+1Lb−1 − La−1Lb+1)

= 8(−1)a+1Fb−a + Lb−3 − La−3 + i(La+1Lb−1 − La−1Lb+1).

By using the d’Ocagne identity of Leonardo numbers, we write

La+1Lb−1 − La−1Lb+1 = 2(−1)aLb−a−2 + Lb − La.

Thus, the result is obtained.
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3.1. k-Gaussian Leonardo numbers

Definition 3. Let k ∈ N and n ∈ N ∪ {0} then ∃ s, r such that n = sk + r, 0 ≤ r < k.

The k-Gaussian Leonardo numbers {GL(k)
n } are defined by

GL(k)
n =

[{
2
(αs+1 − βs+1

α− β

)
− 1
}

+ i
{

2
(αs − βs
α− β

)
− 1
}]k−r

[{
2
(αs+2 − βs+2

α− β

)
− 1
}

+ i
{

2
(αs+1 − βs+1

α− β

)
− 1
}]r

. (20)

By the above definition, the relation between k-Gaussian Leonardo numbers and

Gaussian Leonardo numbers are observed as

GL(k)
sk+r = GLk−rs GLrs+1. (21)

Note that if k = 1 then r = 0 and n = s, hence from the above equation we get

GL(1)
s = GLs.

Similarly, if k = 2 then r = 0, 1 and k = 3 then r = 0, 1, 2. Thus the following

relations obtained.

For k =2, GL(2)
2s = GL2

s and GL(2)
2s+1 = GLsGLs+1.

For k =3, GL(3)
3s = GL3

s, GL(3)
3s+1 = GL2

sGLs+1 and GL(3)
3s+2 = GLsGL2

s+1.

Also, the following identity satisfied.

GL(2)
2s+1 = 2GL(2)

2s − GLsGLs−2 and GL(3)
3s+1 = 2GL(3)

3s − GL
2
sGLs−2.

Since,

GL(2)
2s+1 = GLsGLs+1 = GLs(2GLs − GLs−2) = 2(GLs)2 − GLsGLs−2

and GL(3)
3s+1 = GL2

sGLs+1 = GL2
s(2GLs − GLs−2) = 2GL3

s − GL
2
sGLs−2.

By a similar argument, we deduce the following general relation

GL(k)
sk+1 = 2GL(k)

sk − GL
k−1
s GLs−2.

Theorem 14. Let k, s ∈ N then we have GL(k)
sk = GLks .

Proof. For r = 0 we get n = sk, thus using Eqn. (21), result obtained.
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For k = 1, 2, 3, 4, 5, first few numbers of the k-Gaussian Leonardo sequence are dis-

played in the following table.

n ↓ GL(k)n k = 1 k = 2 k = 3 k = 4 k = 5

0 GL(k)0 1− i −2i −2− 2i −4 −4 + 4i

1 GL(k)1 1 + i 2 2− 2i −4i −4− 4i

2 GL(k)2 3 + i 2i 2 + 2i 4 4− 4i

3 GL(k)3 5 + 3i 2 + 4i −2 + 2i 4i 4 + 4i

4 GL(k)4 9 + 5i 8 + 6i −2 + 6i −4 −4 + 4i

5 GL(k)5 15 + 9i 12 + 14i 2 + 14i −8 + 4i −4− 4i

6 GL(k)6 25 + 15i 16 + 30i 18 + 26i −12 + 16i −12− 4i

7 GL(k)7 41 + 25i 30 + 52i 22 + 54i −8 + 44i −28 + 4i

8 GL(k)8 67 + 41i 56 + 90i 18 + 106i 28 + 96i −52 + 36i

9 GL(k)9 109 + 67i 90 + 156i −10 + 198i 12 + 184i −68 + 124i

10 GL(k)10 177 + 109i 144 + 270i −6 + 350i −52 + 336i −12 + 316i

Table 2. k-Gaussian Leonardo numbers.

Theorem 15. For k, s ∈ N, we have GL(k)
sk+k − GL

(k)
sk = GLks+1 − GLks .

Proof. It can be easily proved using Eqn. (21).

Theorem 16. (Cassini’s identity) The Cassini’s identity for the k-Gaussian Leonardo

numbers GL(k)
n is given by

(GL(k)
sk+a−1)2 − GL(k)

sk+aGL
(k)
sk+a−2

=

{
0, a 6= 1,

GL2k−2
s [Ls−5 + 1 + 8(−1)s + i(Ls−2 + 1 + 4(−1)s−1)], a = 1.

Proof. From (21),

(GL(k)
sk+a−1)2 − GL(k)

sk+aGL
(k)
sk+a−2 = (GLk−a+1

s GLa−1s+1 )2

− (GLk−as GLas+1)(GLk−a+2
s GLa−2s+1 )

= 0, for a 6= 1,

and for a = 1, we have

(GL(k)
sk )2 − GL(k)

sk+1GL
(k)
sk−1 = (GLks)2 − (GLk−1s GL1

s+1)(GL1
s−1GL

k−1
s )

= GL2k
s − GL

2k−2
s GLs+1GLs−1

= GL2k−2
s (GL2

s − GLs+1GLs−1)

= GL2k−2
s [Ls−5 + 1 + 8(−1)s + i(LsLs−1 − Ls+1Ls−2)]

= GL2k−2
s [Ls−5 + 1 + 8(−1)s + i(Ls−2 + 1 + 4(−1)s−1)],

as required.
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4. Conclusion

In summary, we presented a study on some new families of the k-Leonardo numbers

and the Gaussian Leonardo numbers, where the subscript n is considered to be of the

form sk + r with 0 ≤ r < k. We discussed various combinatorial properties of these

new families and obtained ordinary (and exponential) generating functions, partial

sum, etc. of them in closed form.
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[1] Y. Alp and E.G. Koçer, Some properties of Leonardo numbers, Konuralp J. Math.

9 (2021), no. 1, 183–189.

[2] P. Catarino, P. Vasco, H. Campos, A.P. Aires, and A. Borges, New families

of Jacobsthal and Jacobsthal-Lucas numbers, Algebra Discrete Math. 20 (2015),

no. 1, 40–54.

[3] P.M.M.C. Catarino and A. Borges, On Leonardo numbers, Acta Math. Univ.

Comenian. 89 (2019), no. 1, 75–86.

[4] M. El-Mikkawy and T. Sogabe, A new family of k-Fibonacci numbers, Appl.

Math. Comput. 215 (2010), no. 12, 4456–4461.

[5] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons,

2019.

[6] K. Kuhapatanakul and J. Chobsorn, On the generalized Leonardo numbers, In-

teger 22 (2022), Article number A48.

[7] M. Kumari, J. Tanti, and K. Prasad, On some new families of k-Mersenne and

generalized k-Gaussian Mersenne numbers and their polynomials, arXiv preprint

arXiv:2111.09592 (2021).
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