
CCO
Commun. Comb. Optim.

c© 2024 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization
Vol. 9, No. 2 (2024), pp. 353-387
https://doi.org/10.22049/cco.2023.28129.1452

Research Article

A path-following algorithm for stochastic quadratically constrained
convex quadratic programming in a Hilbert space

Amira Achouak Oulha† and Baha Alzalg∗

Department of Mathematics, The University of Jordan, Amman 11942, Jordan
†amy9170464@ju.edu.jo
∗b.alzalg@ju.edu.jo

Received: 30 November 2022; Accepted: 10 April 2023
Published Online: 15 April 2023

Abstract: We propose logarithmic-barrier decomposition-based interior-point algorithms
for solving two-stage stochastic quadratically constrained convex quadratic programming
problems in a Hilbert space. We prove the polynomial complexity of the proposed algo-
rithms, and show that this complexity is independent on the choice of the Hilbert space,
and hence it coincides with the best-known complexity estimates in the finite-dimensional
case. We also apply our results on a concrete example from the stochastic control theory.

Keywords: Interior-point methods, Quadratic programming, Stochastic programming,
Programming in abstract spaces, Control problems

AMS Subject classification: 90C15, 90C20, 90C48, 90C51, 34K35

1. Introduction

The purpose of this paper is to develop a polynomial-time logarithmic-barrier
decomposition-based path-following algorithm for solving two-stage stochastic
quadratically constrained convex quadratic programming (SQCCQP) problem in
a Hilbert space.
Interior-point methods (also called barrier methods) are one of the most successful
class of algorithms to solve deterministic and stochastic optimization problems in
both finite and infinite-dimensional settings; see for example [1–3, 5–20]. In the de-
terministic case, Nesterov and Nemirovskii [16] used the notion of self-concordance
to solve different classes of a finite-dimensional optimization problems by interior-
point methods. Renegar [17] presented an infinite-dimensional extension of Nes-
terov and Nemirovskii’s work [16]. In addition, Faybusovich and Moore extended

∗ Corresponding Author

354 A path-following algorithm

path-following interior-point algorithms from infinite-dimensional linear program-
ming to infinite-dimensional convex quadratic programming problems in [12], and
more generally to infinite-dimensional quadratically constrained convex quadratic
programming in [11].
In the stochastic case, Zhao [20] proposed a logarithmic-barrier algorithm with Ben-
ders decomposition for solving two-stage stochastic finite-dimensional linear pro-
gramming. Cho [10] and Mehrotra and Özevin [13] extended the work of Zhao [20]
to two-stage stochastic finite-dimensional convex quadratic programming. Alzalg [4]
made a natural step in this direction by extending the work of Zhao [20] to two-stage
stochastic infinite-dimensional linear programming.
Given the above brief literature review, the work in this paper can be viewed as an
extension of the work of: (i) Faybusovich and Moore [11, 12] from the deterministic
case to the stochastic case. (ii) Cho [10] and that of Mehrotra and Özevin [13] from
the finite-dimensional Euclidean space to the infinite-dimensional Hilbert space. (iii)
Alzalg [4] from the linear case to the quadratic case. Based on the notion of the
self-concordance, we prove the polynomial complexity of the proposed algorithms,
and also show that this complexity is independent on the choice of the Hilbert space,
hence it coincides with the best-known complexity for the finite-dimensional case.
Our analysis follows the template in Alzalg [4].
This paper is organized as follows: In Section 3, we define the problem formula-
tion and make some assumptions. In Section 4, we compute the Fréchet derivatives
of the recourse function. Self-concordance properties of the recourse function are
given in Section 5 with proofs. The proposed logarithmic-barrier path-following
interior-point decomposition algorithm is presented in Section 6. Section 7 provides
a complexity analysis for the proposed algorithm. In Section 8, we apply the ob-
tained results on a concrete example from stochastic control. Section 9 contains some
concluding remarks. In Appendix A, we state some technical lemmas which are
required in proving the complexity results of the proposed algorithm. We end this
section by providing some notations that will be used in the sequel.

2. Notations

We write (H, 〈·, ·〉), or simply H, for a real Hilbert space with inner product 〈·, ·〉, and
use ‖ · ‖ ,

√
〈·, ·〉 for its corresponding norm. If G is a closed subspace of H, then

x ∈ H is orthogonal to G, written as x⊥G, if 〈x, y〉 = 0 for all y ∈ G. The set G⊥ is the
orthogonal complement of G and is defined as

G⊥ , {x ∈ H : x ⊥ G}.

Let f : H→ R be a smooth function and x ∈ H, then the gradient ∇x f (x) is uniquely
determined as

Dx f (x)(ξ) , 〈∇x f (x), ξ〉,

A.A. Oulha, B. Alzalg 355

where Dx f (x)(ξ) stands for the first Fréchet derivative of f at the point x evaluated
on ξ. The second derivative is given by

D
2
xx f (x)(ξ, ζ) , Dx(Dx f (x)(ξ))(ζ),

whereD2
xx f (x)(ξ) stands for the second Fréchet derivative of f at the point x evaluated

on (ξ, ζ). We can also define higher Fréchet derivatives in a similar way.
Let y, a1, a2, . . . , am ∈ H. Throughout this paper, we denote by “Ay” the vector in Rm

whose ith-entry is the scalar 〈ai, y〉, for i = 1, 2, . . . ,m. For z ∈ Rm, we also denote
by “A†z” the element

∑m
i=1 ziai in H. Note that A maps the Hilbert space H onto

Rm, while A† maps Rm into the Hilbert space H. For y ∈ H and h = h(x) ∈ Rm

with x ∈ H, we denote by “Jx[h]y” the vector inRm whose ith entry is 〈∇xhi(x), y〉 for
i = 1, 2, . . . ,m. For z ∈ Rm, we also denote by “J†x [h]z” the element

∑m
i=1 zi∇xhi(x) in H.

If x ∈ H and P1,P2, . . . ,Pm are self-adjoint nonnegative definite bounded operators
on H, we denote by P[x] the vector in Rm whose ith entry is Pix for i = 1, 2, . . . ,m.
For x, y ∈ H, by “P[x]y” we mean the vector in Rm whose ith entry is 〈Pix, y〉 for
i = 1, 2, . . . ,m. For z ∈ Rm, by “P†[x]z” we mean the element

∑m
i=1 ziPix in H.

In summary, we have

Ay ,

〈a1, y〉
〈a2, y〉
...

〈am, y〉

 ∈ R
m, Jx[h]y ,

〈∇xh1(x), y〉
〈∇xh2(x), y〉

...
〈∇xhm(x), y〉

 ∈ R
m, P[x]y ,

〈P1x, y〉
〈P2x, y〉

...
〈Pmx, y〉

 ∈ R
m,

A
†z ,

m∑
i=1

ziai ∈ H, J
†
x [h]z ,

m∑
i=1

zi∇xhi(x) ∈ H, P
†[x]z ,

m∑
i=1

ziPix ∈ H.

The above operators enjoy pointwise operations. For example, but not limited to, it
is possible to define

(A +Jx[h] +P[x])y , Ay +Jx[h]y +P[x]y, (1)

and
(A† +J†x [h] +P†[x])z , A†z +J†x [h]z +P†[x]z,

and so on. Note also that〈
A
†z, y

〉
=

〈 m∑
i=1

ziai, y
〉

=

m∑
i=1

(
zi

〈
ai, y

〉)
= zT
Ay. (2)

Similarly, we also have〈
P
†[x]z, y

〉
= zT
P[x]y and

〈
J
†

x [h]z, y
〉

= zT
Jx[h]y. (3)

Throughout the paper, we use R++ to denote the set of all positive real numbers. We
write e for a vector with all entries equal to one. The dimension of e will be clear
from the context. For any vector z ∈ Rm, we define Z , Diag (z1, z2, . . . , zm). That is,
Z denotes the m ×m diagonal matrix whose diagonal entries are z1, z2, . . . , zm.

356 A path-following algorithm

3. Problem formulation and assumptions

In this section, we write a formulation for the two-stage stochastic quadratically
constrained convex quadratic problem in a Hilbert space, followed by a logarithmic-
barrier formulation based on our settings. Then we make some assumptions.
Let G be a close subspace of a real Hilbert space (H, 〈·, ·〉). Let also Pi : H → H, i =

0, 1, . . . ,m1, and Q j(ω) : H → H, j = 0, 1, . . . ,m2, be self-adjoint nonnegative definite
bounded operators on H. We consider the two-stage SQCCQP problem in standard
form:

min
1
2
〈P0x, x〉 + 〈a0, x〉 + E[ρ(x, ω)]

s.t.
1
2
〈Pix, x〉 + 〈ai, x〉 ≤ bi, i = 1, 2, . . . ,m1,

x ∈ G,

(4)

where x is the first-stage decision variable, a0, a1, . . . , am1 ∈ H, b0 = 0, b1, b2, . . . , bm1 ∈ R,
and ρ(x, ω) is the maximum value of the problem:

min
1
2
〈Q0(ω)y, y〉 + 〈w0(ω), y〉

s.t.
1
2
〈Q j(ω)y, y〉 + 〈w j(ω), y〉 ≤ h j(ω) − 〈t j(ω), x〉, j = 1, 2, . . . ,m2,

y ∈ G,

(5)

where y is the second-stage variable, w0(ω),w1(ω), . . . ,wm2 (ω), t1(ω), . . . , tm2 (ω) ∈ H,
t0(ω) = 0, h0(ω) = 0, and h1(ω), h2(ω), . . . , hm2 (ω) ∈ R. The realizations of the ran-
dom data w j(ω), t j(ω), h j(ω) and Q j(ω), for j = 0, 1, . . . ,m2, depend on an underling
outcome ω in an event space Ω with a known probability function P.
Let pi(x) , 1

2 〈Pix, x〉 + 〈ai, x〉 − bi for i = 0, 1, . . . ,m1, and q j(y, x, ω) , 1
2 〈Q j(ω)y, y〉 +

〈w j(ω), y〉+〈t j(ω), x〉−h j(ω) for j = 0, 1, . . . ,m2. Then (4) and (5) are written respectively
as

min p0(x) + E[ρ(x, ω)]

s.t. pi(x) ≤ 0, i = 1, 2, . . . ,m1,

x ∈ G,

(6)

and
min q0(y, x, ω)

s.t. q j(y, x, ω) ≤ 0, j = 1, 2, . . . ,m2,

y ∈ G.

We examine (4) and (5) when Ω is discrete and finite. Let {(t(k)
j ,w

(k)
0 ,w

(k)
j , h

(k)
j ,Q

(k)
0 ,Q

(k)
j) :

1 ≤ k ≤ K} be the set of K possible realizations of random variables
(t j(ω),w0(ω),w j(ω), h j(ω),Q0(ω),Q j(ω)). Let also

πk , P
((

t1≤ j≤m2 (ω),w1≤ j≤m2 (ω), h1≤ j≤m2 (ω),Q(ω)
)

=
(
t(k)
1≤ j≤m2

,w(k)
1≤ j≤m2

, h(k)
1≤ j≤m2

,Q(k)
))

A.A. Oulha, B. Alzalg 357

be the associated probability for K = 1, 2, . . . ,K. Then (4) and (5) can be written as

min η(x) , p0(x) +

K∑
k=1

ρ(k)(x)

s.t. pi(x) ≤ 0, i = 1, 2, . . . ,m1,

x ∈ G,

(7)

where, for k = 1, 2, . . . ,K, ρ(k)(x) is the minimum value of the problem

min q(k)
0 (y, x) ,

1
2
〈Q

(k)
0 y, y〉 + 〈w(k)

0 , y〉

s.t. q(k)
j (y, x) ,

1
2
〈Q

(k)
j y, y〉 + 〈w(k)

j , y〉 − h(k)
j + 〈t(k)

j , x〉 ≤ 0, j = 1, 2, . . . ,m2,

y ∈ G.

(8)

Along with Problem (8), we consider the (dual) problem

max q(k)
0 (y, x) +

m2∑
j=1

λ(k)
j q(k)

j (y, x)

s.t. ∇q(k)
0 (y, x) +

m2∑
j=1

λ(k)
j ∇q(k)

j (y, x) ∈ G⊥,

λ(k)
≥ 0, y ∈ G,

(9)

where λ(k)
∈ Rm2 is the second-stage dual multiplier.

The logarithmic-barrier problem associated with (7) and (8) is

min η(x, µ) , p0(x) − µ
m1∑
i=1

ln si +

K∑
k=1

ρ(k(x, µ)

s.t. pi(x) + si = 0, i = 1, 2, . . . ,m1

s > 0, x ∈ G,

(10)

whereµ > 0 is a barrier parameter and s , −p(x), and ρ(k)(x, µ), for each k = 1, 2, . . . ,K,
is the minimum value of the problem

min ρ(k)(x, µ) , q(k)
0 (y, x) − µ

m2∑
j=1

ln z(k)
j

s.t. q(k)
j (y, x) + z(k)

j = 0, j = 1, 2, . . . ,m2,

z(k) > 0, y ∈ G,

(11)

where z(k) , −q(k)(y, x) for k = 1, 2, . . . ,K. Note that if for some k, Problem (10) is
infeasible, we define

∑K
k=1 ρ

(k)(x, µ) , ∞. The barrier problem associated with the

358 A path-following algorithm

(dual) problem (9) is the problem

max q(k)
0 (y, x) +

m2∑
j=1

λ(k)
j q(k)

j (y, x) + µ
m2∑
j=1

ln λ(k)
j

s.t. ∇q(k)
0 (y, x) +

m2∑
j=1

λ(k)
j ∇q(k)

j (y, x) ∈ G⊥,

λ(k) > 0, y ∈ G, j = 1, 2, . . . ,m2.

(12)

In light of Propositions 2.6 and 2.7 (see also Corollary 2.4) in [11], the points y, z(k)

and λ(k) are the optimal solutions of Problems (11) and (12) if and only if they satisfy
the following optimality conditions:

1
2 〈Q

(k)
j y, y〉 + 〈w(k)

j , y〉 + z(k)
j = h(k)

j − 〈t
(k)
j , x〉, j = 1, 2, . . . ,m2,〈

y, w(k)
0 + Q

(k)
0 y +

∑m2
j=1

(
λ(k)

j

(
w(k)

j + Q
(k)
j y

))〉
= 0,

Z(k)λ(k) = µe,
z(k), λ(k) > 0,

(13)

where the second equation follows by using the fact that

y ∈ G, while w(k)
0 +Q(k)

0 y+

m2∑
j=1

(
λ(k)

j w(k)
j + λ(k)

j Q(k)
j y

)
= ∇q(k)

0 (y, x)+
m2∑
j=1

λ(k)
j ∇q(k)

j (y, x) ∈ G⊥.

Problems (10) and (11) can be equivalently written as a deterministic infinite-
dimensional optimization problem

min p0(x) +

K∑
k=1

q(k)
0 (y, x) − µ

 m2∑
i=1

ln si +

K∑
k=1

m2∑
j=1

ln z(k)
j

s.t. pi(x) + si = 0, i = 1, 2, . . . ,m1,

q(k)
j (y, x) + z(k)

j = 0, j = 1, 2, . . . ,m2, k = 1, 2, . . . ,K,

x, y ∈ G,

s, z(k) > 0, k = 1, 2, . . . ,K.

(14)

We define the following feasibility sets:

F1 ,
{
x ∈ G : s = −p(x) > 0

}
;

F
(k)

2 (x) ,
{
y ∈ G : z(k) = −q(k)(y, x) > 0

}
, for k = 1, 2, . . . ,K;

F
(k)

2 ,
{
x ∈ G : F (k)

2 (x) , ∅
}
, for k = 1, 2, . . . ,K;

F2 , ∩K
k=1F

(k)
2 ;

F0 , F1 ∩ F2;
F ,

{
(x, r) ×

(
y, λ(1), λ(2), . . . , λ(K)

)
: −p(x) > 0, −q(k)(y, x) > 0,〈

y,∇q(k)
0 (y, x) +

∑m2
j=1 λ

(k)
j ∇q(k)

j (y, x)
〉

= 0, λ(k) > 0, 1 ≤ k ≤ K,〈
x, ∇p0(x) +

∑m1
i=1 ri∇pi(x) +

∑K
k=1

∑m2
j=1 λ

(k)
j t(k)

j

〉
= 0, r > 0

}
.

Here r ∈ Rm1 is the first-stage dual multiplier.
Now, we are ready to make two assumptions:

A.A. Oulha, B. Alzalg 359

Assumption 1. The elements a1, a2, . . . , am1 are linearly independent in H, and for k = 1, 2, . . . ,K,
the elements t(k)

1 , t
(k)
2 , . . . , t

(k)
m2

are linearly independent in H, and the elements w(k)
1 ,w

(k)
2 , . . . ,w

(k)
m2

are
linearly independent in H.

Assumption 2. The feasibility set F is nonempty.

Assumption 1 is important to ensure the operator invertibility. Assumption 2 means
that Problem (14) and its dual problem have strictly feasible solutions, which en-
sures that strong duality holds for first- and second-stage SQCCQP problems. This
indicates that each of the optimization problems (10)-(14) has a unique solution. It
is worth noting that for each given µ > 0,

∑K
k=1 ρ

(k)(x, µ) < ∞ if and only if x ∈ F2.
Therefore, the optimal solutions of Problems (10) and (11) and that of Problem (14)
have a relationship that is described in the following remark.

Remark 1. The point (x(µ), y(µ), s, z(1), z(2), . . . , z(K)) is the optimal solution of (14) if and only
if (x(µ), s) is the optimal solution of (10) and (y(µ), z(1), z(2), . . . , z(K)) is the optimal solution for
(11) for given µ and x , x(µ).

The next section shows such a relationship and computes the Fréchet derivatives
Dxη(x, µ) andD2

xxη(x, µ) which are required to calculate the Newton direction.

4. Derivatives of the recourse function

In this section, we compute the Fréchet derivativesDxη(x, µ) andD2
xxη(x, µ). In order

to do that, we first need to compute the Fréchet derivatives of the recourse function
ρ(k)(x, µ) with respect to x.
Let (y, z(k), λ(k)) , (y(x, µ), z(k)(x, µ), λ(k)(x, µ)). Differentiate (13) with respect to x, we
get 〈

Q
(k)
j y,Dx

〈
y, ξ

〉〉
+

〈
w(k)

j ,Dx
〈
y, ξ

〉〉
+

〈
∇xz(k)

j , ξ
〉

= −

〈
t(k)

j , ξ
〉
, j = 1, 2, . . . ,m2,〈

y, Q
(k)
0 Dx〈y, ξ〉 +

∑m2
j=1

(〈
∇xλ

(k)
j , ξ

〉 (
w(k)

j + Q
(k)
j y

)
+ λ(k)

j Q
(k)
j Dx〈y, ξ〉

) 〉
= 0,〈

∇xλ
(k)
j , ξ

〉
z(k)

j +
〈
∇xz(k)

j , ξ
〉
λ(k)

j = 0, j = 1, 2, . . . ,m2,

(15)
for any ξ ∈ H, where the second equation was obtained in view of the fact that

〈
Dx

〈
y, ξ

〉
,
(
w(k)

0 + Q
(k)
0 y +

m2∑
j=1

(
λ(k)

j

(
w(k)

j + Q
(k)
j y

))〉
= 0

due to the orthogonality relation.
Following our notations introduced in Subsection 2, System (15) can be written more
compactly as

Q
(k)[y]Dx

〈
y, ξ

〉
+W(k)

Dx
〈
y, ξ

〉
+Jx

[
z(k)

]
ξ = −T

(k)ξ,〈
y, Q

(k)
0 Dx〈y, ξ〉 +

(
W

(k)† + Q(k)†[y]
)
Jx

[
λ(k)

]
ξ + Q(k)†[Dx〈y, ξ〉]λ(k)

〉
= 0,

Z(k)
Jx

[
λ(k)

]
ξ + Λ(k)

Jx
[
z(k)

]
ξ = 0.

(16)

360 A path-following algorithm

Solving System (16), we get

Dx
〈
y, ξ

〉
= −R(k)−1

(
Q

(k)†[y] +W(k)†
)

L(k)2
T

(k)ξ,

Jx
[
z(k

]
ξ = −L(k)−1N(k)L(k)

T
(k)ξ,

Jx
[
λ(k)

]
ξ = L(k)N(k)L(k)

T
(k)ξ,

(17)

where

L(k) , L(k)(µ, ξ) ,
(
Z(k)−1Λ(k)

) 1
2 ,

N(k) , N(k)(x, µ) , I − L(k)
(
Q

(k)[y] +W(k)
)
R(k)−1

(
Q

(k)†[y] +W(k)†
)

L(k),

R(k)ξ , R(k)(x, µ)ξ ,
(
Q

(k)†[y] +W(k)†
)

L(k)2
(
Q

(k)[y] +W(k)
)
ξ + Q

(k)
0 ξ + Q(k)†[ξ]λ(k),

(18)

for ξ ∈ H. Note that, based on Assumption 1, R(k)
· is an invertible operator from the

Hilbert space H into itself, hence the operator R(k)−1
· is well-defined.

Now we are ready to compute the Fréchet derivatives of ρ(x, µ). Note that

m2∑
i=1

λ(k)
j

(
h(k)

j − 〈t
(k)
j , x〉

)
=

m2∑
i=1

λ(k)
j

(1
2
〈Q

(k)
j y, y〉 + 〈w(k)

j , y〉 + z(k)
j

)
= 1

2

m2∑
j=1

λ(k)
j 〈Q

(k)
j y, y〉 +

m2∑
j=1

λ(k)
j 〈w

(k)
j , y〉 +

m2∑
j=1

z(k)
j λ

(k)
j

=

〈
w(k)

0 + Q
(k)
0 y +

m2∑
j=1

(
λ(k)

j w(k)
j + λ(k)

j Q
(k)
j y

)
, y

〉
−

〈
w(k)

0 , y
〉
−

〈
Q

(k)
0 y, y

〉
+

m2∑
j=1

z(k)
j λ

(k)
j

−

m2∑
j=1

λ(k)
j

〈
Q

(k)
j y, y

〉
+

1
2

m2∑
j=1

λ(k)
j

〈
Q

(k)
j y, y

〉
=

m2∑
j=1

z(k)
j λ

(k)
j −

〈
w(k)

0 , y
〉
−

〈
Q

(k)
0 y, y

〉
−

1
2

m2∑
j=1

λ(k)
j

〈
Q

(k)
j y, y

〉
= µm2 −

〈
w(k)

0 , y
〉
−

〈
Q

(k)
0 y, y

〉
−

1
2

m2∑
j=1

λ(k)
j

〈
Q

(k)
j y, y

〉
.

Using the definition of ρ(k)(·, ·) in (14), we have

m2∑
i=1

λ(k)
j

(
〈t(k)

j , x〉 − h(k)
j

)
−

1
2

〈
Q

(k)
0 y, y

〉
−

1
2

m2∑
j=1

λ(k)
j

〈
Q

(k)
j y, y

〉
+ µ

m2∑
j=1

lnλ(k)
j

=
〈
w(k)

0 , y
〉

+ 1
2

〈
Q

(k)
0 y, y

〉
− µm2 + µ

m2∑
j=1

lnλ(k)
j

= ρ(k)(x, µ) + µ
m2∑
j=1

ln z(k)
j − µm2 + µ

m2∑
j=1

lnλ(k)
j

= ρ(k)(x, µ) − µm2 + µ
m2∑
j=1

ln
(
z(k)

j λ
(k)
j

)
= ρ(k)(x, µ) − µm2 + µm2 ln µ = ρ(k)(x, µ) − µm2(1 − ln µ).

A.A. Oulha, B. Alzalg 361

It follows that

ρ(k)(x, µ) =

m2∑
i=1

λ(k)
j

(
〈t(k)

j , x〉 − h(k)
j

)
−

1
2

〈
Q

(k)
0 y, y

〉
−

1
2

m2∑
j=1

λ(k)
j

〈
Q

(k)
j y, y

〉
+ µ

m2∑
j=1

lnλ(k)
j + µm2

(
1 − ln µ

)
.

Using (13) and (15), we get

Dxρ(k)(x, µ) =

m2∑
j=1

Dxλ
(k)
j

(〈
t(k)

j , x
〉
− h(k

j

)
+

m2∑
j=1

λ(k)
j

(
Dx

〈
t(k)

j , x
〉)

−

〈
Q

(k)
0 Dx

〈
y, ξ

〉
, y

〉
−

1
2

m2∑
j=1

Dxλ
(k)
j

〈
Q

(k)
j y, y

〉
−

m2∑
j=1

λ(k)
j

〈
Q

(k)
j Dx

〈
y, ξ

〉
, y

〉
+ µ

m2∑
j=1

Dxλ
(k)
j λ

(k)−1
j

=

m2∑
j=1

λ(k)
j

(
Dx

〈
t(k)

j , x
〉)
−

m2∑
j=1

Dxλ
(k)
j

(1
2

〈
Q

(k)
j y, y

〉
+

〈
w(k)

j , y
〉

+ z(k)
j

)
−

〈
Q

(k)
0 Dx

〈
y, ξ

〉
, y

〉
−

1
2

m2∑
j=1

Dxλ
(k)
j

〈
Q

(k)
j y, y

〉
−

m2∑
j=1

λ(k)
j

〈
Q

(k)
j Dx

〈
y, ξ

〉
, y

〉
+ µ

m2∑
j=1

Dxλ
(k)
j λ

(k)−1
j

=

m2∑
j=1

λ(k)
j

(
Dx

〈
t(k)

j , x
〉)
−

m2∑
j=1

Dxλ
(k)
j

(1
2

〈
Q

(k)
j y, y

〉
+

〈
w(k)

j , y
〉)
−

〈
Q

(k)
0 Dx

〈
y, ξ

〉
, y

〉
−

1
2

m2∑
j=1

Dxλ
(k)
j

〈
Q

(k)
j y, y

〉
−

m2∑
j=1

λ(k)
j

〈
Q

(k)
j Dx

〈
y, ξ

〉
, y

〉
+

m2∑
j=1

Dxλ
(k)
j

(
µλ(k)−1

j − z(k)
j

)
=

m2∑
j=1

λ(k)
j

(
Dx

〈
t(k)

j , x
〉)
−

m2∑
j=1

Dxλ
(k)
j

〈
w(k)

j , y
〉
−

〈
Q

(k)
0 Dx

〈
y, ξ

〉
, y

〉
−

m2∑
j=1

Dxλ
(k)
j

〈
Q

(k)
j y, y

〉
−

m2∑
j=1

λ(k)
j

〈
Q

(k)
j Dx y, y

〉
=

m2∑
j=1

λ(k)
j

(
Dx

〈
t(k)

j , x
〉)
−

m2∑
j=1

Dxλ
(k)
j

(〈
w(k)

j , y
〉

+
〈
Q

(k)
j y, y

〉)
−

〈
Q(k)

0 Dx
〈
y, ξ

〉
, y

〉
−

m2∑
j=1

λ(k)
j

〈
Q

(k)
j Dx y, y

〉
=

m2∑
j=1

λ(k)
j

(
Dx

〈
t(k)

j , x
〉)

+
〈
Q

(k)
0 Dx

〈
y, ξ

〉
, y

〉
+

m2∑
j=1

λ(k)
j

〈
Q

(k)
j Dx

〈
y, ξ

〉
, y

〉
−

〈
Q

(k)
0 Dx

〈
y, ξ

〉
, y

〉
−

m2∑
j=1

λ(k)
j

〈
Q

(k)
j Dx

〈
y, ξ

〉
, y

〉
=

m2∑
j=1

λ(k)
j

(
Dx

〈
t(k)

j , x
〉)

=

m2∑
j=1

λ(k)
j t(k)

j .

Then the first Fréchet derivative of ρ(k) isDxρ(k)(x, µ) = T (k)†λ(k). Thus, for any ξ ∈ H,
the gradient of ρ(k) is uniquely determined as

〈
∇xρ(x, µ), ξ

〉
=

〈
T

(k)†λ(k), ξ
〉

= λ(k)T
(
T

(k)ξ
)
.

362 A path-following algorithm

The second Fréchet derivative of ρ(k)(·, ·) is

D
2
xxρ

(k)(x, µ)(ξ, ζ) =

m2∑
j=1

(
Dx(λ(k)

j)(ζ)
) 〈

t(k)
j , ξ

〉
=

m2∑
j=1

〈
∇xλ

(k)
j , ζ

〉 〈
t(k)

j , ξ
〉

=
(
Jx

[
λ(k)

]
ζ
)T (
T

(k)ξ
)
,

for any ξ, ζ ∈ H.
To sum up, the first and second-order Fréchet derivatives of ρ(k)(·, ·) are

Dxρ(k)(x, µ)(ξ) =
〈
T

(k)†λ(k), ξ
〉

=
(
T

(k)ξ
)T

λ(k),

D
2
xxρ

(k)(x, µ)(ξ, ζ) =
〈
T

(k)†
Jx

[
λ(k)

]
ζ, ξ

〉
=

(
T

(k)ξ
)T

Jx

[
λ(k)

]
ζ.

(19)

Now we are ready to compute the Fréchet derivatives of η(x, µ). By differentiating
pi(x) + si = 0 with respect to x, we get

Dxpi(x) = Dx(−si(x))(ξ) = 〈−∇xsi, ξ〉 = 〈Pix + ai, ξ〉 ,

for any ξ ∈ H, as pi(x) = −si(x) = 1
2 〈Pix, x〉+ 〈ai, x〉− bi, for i = 1, 2, . . . ,m1. As a result,

we have

Jx[p] = P[x]ξ +Aξ, or equivalently Jx[s] = −(P[x] +A)ξ,

for any ξ ∈ H. Using (19), it follows that

Dxη(x, µ) = a0 + P0x − µ
m1∑
i=1

∇xsi(x)
si(x)

−

K∑
k=1

Dxρ
(k)(x, µ)

= a0 + P0x − µ
m1∑
i=1

∇xsi(x)
si(x)

−

K∑
k=1

T
(k)†λ(k)

= a0 + P0x + µ

m1∑
i=1

ai + Pix
si(x)

−

K∑
k=1

T
(k)†λ(k).

(20)

Consequently, using (17), we also have

D
2
xxη(x, µ)(ξ, ζ) =

〈P0 + µ

m1∑
i=1

Pi

si(x)

 ξ, ζ〉 + µ

m1∑
i=1

〈∇xsi(x), ξ〉 〈∇xsi(x), ζ〉
s2

i (x)

−

K∑
k=1

〈
T

(k)†
Jx

[
λ(k)

]
ζ, ξ

〉
=

〈P0 + µ

m1∑
i=1

Pi

si(x)

 ξ, ζ〉 + µ

m1∑
i=1

〈ai + Pix, ξ〉 〈ai + Pix, ζ〉
s2

i (x)

−

K∑
k=1

〈
T

(k)†
Jx

[
λ(k)

]
ζ, ξ

〉
,

(21)

A.A. Oulha, B. Alzalg 363

for any ξ, ζ ∈ H.
Note that

m1∑
i=1

ai + Pix
si(x)

=

m1∑
i=1

(
s−1

i ai + s−1
i Pix

)
= A†s−1 +P†[x]s−1,

and that (see (1) - (3))

m1∑
i=1

〈ai + Pix, ξ〉 〈ai + Pix, ζ〉
s2

i (x)
=

m1∑
i=1

(〈
s−2

i ai, ξ
〉
〈ai, ζ〉 +

〈
s−2

i ai, ξ
〉
〈Pix, ζ〉

)
+

m1∑
i=1

(〈
s−2

i Pix, ξ
〉
〈ai, ζ〉 +

〈
s−2

i Pix, ξ
〉
〈Pix, ζ〉

)
=

(
S−2
Aξ

)T
Aζ +

(
S−2
P[x]ξ

)T
Aζ +

(
S−2
Aξ

)T
P[x]ζ

+
(
S−2
P[x]ξ

)T
P[x]ζ

=
〈
A
†S−2
Aξ, ζ

〉
+

〈
A
†S−2
P[x]ξ, ζ

〉
+

〈
P
†[x]S−2

Aξ, ζ
〉

+
〈
P
†[x]S−2

P[x]ξ, ζ
〉

=
〈(
A
† +P†[x]

)
S−2 (A +P[x]) ξ, ζ

〉
.

Therefore, from (20) and (21), the first and second Fréchet derivatives of η(x, µ) are,
respectively, given by

Dxη(x, µ) = a0 + P0x + µ
(
A
† +P†[x]

)
s−1
−

K∑
k=1

T
(k)†λ(k), (22)

and

D
2
xxη(x, µ)(ξ, ζ) = 〈P0ξ, ζ〉 + µ

〈
P
†[ξ]s−1, ζ

〉
+ µ

〈(
A
† +P†[x]

)
S−2 (A +P[x]) ξ, ζ

〉
−

K∑
k=1

〈
T

(k)†L(k)N(k)L(k)
T

(k)ξ, ζ
〉
,

(23)
for any ξ, ζ ∈ H, or equivalently

D
2
xxη(x, µ)(ξ) = P0ξ + µP†[ξ]s−1 + µ

(
A
† +P†[x]

)
S−2 (A +P[x]) ξ

−

K∑
k=1

T
(k)†L(k)N(k)L(k)

T
(k)ξ,

for any ξ ∈ H, where the matrices L(k) and N(k), k = 1, 2, . . . ,K, are defined in (18).

5. Self-concordance analysis

In this section, we show that the recourse function η(·, ·) is a µ-self-concordant func-
tion on F2. Then we show that the set of all recourse functions forms a strongly

364 A path-following algorithm

self-concordant family with given parameters. These features are of high importance
because they yield a nice performance of Newton’s method and can guarantee a
polynomial time execution of the proposed algorithm. We point out that the corre-
sponding self-concordance analysis of Nesterov and Nemirovskii [16] for the finite-
dimensional setting is found in Renegar [17] (see also Renegar [18] and Faybusovich
and Moore [11] and Alzalg [4]) for the infinite-dimensional setting.

5.1. Self-concordance of the recourse function

We first introduce the definition of a self-concordant function. Nesterov and Ne-
mirovskii introduced this definition for finite-dimensional optimization (see Defini-
tion 2.1.1 in [16]). The definition is introduced below for optimization in a Hilbert
space (see also [17]).

Definition 1. Let C be an open nonempty convex subset of a Hilbert space H, and let f be
thrice Fréchet differentiable, convex mapping from C to R. Then f is called α-self-concordant
on C with a parameter α > 0 if for every x ∈ C and ξ ∈ H, the following inequality holds

∣∣∣D3
xxx f (x)(ξ, ξ, ξ)

∣∣∣ ≤ 2α−1/2 (
D2

xx f (x)(ξ, ξ)
)3/2

.

An α-self-concordant function f on C is called strongly α-self-concordant if f tends to infinity
for any sequence approaching a boundary point of C. The parameter α is called the complexity
value of the self-concordant function f .

For any µ > 0, x ∈ F1 and ξ ∈ H, it is easy to verify the following properties of the
function η(·, ·).

Property 1. The function η(x, µ) is continuous onR++×F0 and convex onF0 for fixedµ ∈ R++.

Property 2. The function η(x, µ) has three Fréchet derivatives on F0, which are continuous
on R++ × F0 and continuously differentiable in µ ∈ R++.

Property 3. Along any sequence {xi ∈ F0}
∞

i=1 converging to the boundary of F0, the function
η(x, µ) tends to infinity.

Although Properties 1, 2 and 3 of η(x, µ) are essential, they are insufficient to assure
that Newton’s method used in the proposed algorithms performs well. To prove
that the recourse function is a self-concordant map, we first give with a proof the
following lemma.

Lemma 1. For every µ > 0, x ∈ F (k)
2 and ξ ∈ H, we have that

|D
3
xxxρ

(k)(ξ, ξ, ζ)| ≤ 2µ−1/2
(
D

2
xxρ

(k)(x, µ)(ξ, ξ)
)3/2

. (24)

A.A. Oulha, B. Alzalg 365

Proof For any µ > 0, x ∈ F (k)
2 and ξ ∈ H, we define the uni-variate function

φ(k)(t) , D2
xxρ

(k)(µ, x + tξ)(ξ, ξ).

Note that φ(k)(0) , D2
xxρ

(k)(x, µ)(ξ, ξ) and φ(k)′(0) , D3
xxxρ

(k)(x, µ)(ξ, ξ, ξ). So, to prove
that (24) is satisfied for ρ(k)(x, µ) on F (k)

2 , it suffices to show that∣∣∣φ(k)′(0)
∣∣∣ ≤ 1
√
µ

∣∣∣φ(k)(0)
∣∣∣3/2 .

Let (y(t), z(k)(t), λ(k)(t)) , (y(µ, x + tξ), z(k)(µ, x + tξ), λ(k)(µ, x + tξ)), N(k)(t) , N(k)(µ, x +

tξ),L(k)(t) , L(k)(µ, x + tξ), and R(k)(t) , R(k)(µ, x + tξ). Then

(y, z(k), λ(k)) = (y(0), z(k)(0), λ(k)(0)), L(k) = L(k)(0), R(k) = R(k)(0), and N(k) = N(k)(0).

We define u(k)(t) , N(k)(t)L(k)
T

(k)(t)ξ and u(k) , u(k)(0).
We can easily show that N(k)2

= N(k). Then using (19) and (17), we have that

φk(0) = D
2
xxρ

(k)(µ, ξ)(ξ, ξ)
=

〈
T

(k)†
Jx

[
λ(k)

]
ξ, ξ

〉
=

m2∑
j=1

〈
T

(k)†L(k)N(k)L(k)
T

(k)ξ, ξ
〉

=

m2∑
j=1

〈
T

(k)†L(k)N(k)2L(k)
T

(k)ξ, ξ
〉

=
(
N(k)L(k)

T
(k)ξ

)T
N(k)L(k)

T
(k)ξ =

∥∥∥u(k)
∥∥∥2

2 ,

hence φ(k)′(0) = 2u(k)Tu(k)′.
In addition, since Qi, i = 0, 1, . . . ,m1, are self-adjoint nonnegative definite bounded
operators on H, we have that

(
Q

(k)[y] +W(k)
)
R(k)−1ξ =

(
Q

(k)[y] +W(k)
) (Q(k)†[y] +W(k)†

)
L(k)2

(
Q

(k)[y] +W(k)
)

+ Q
(k)
0 +

m2∑
j=1

λ(k)
j Q

(k)
j

−1

ξ

≤

(
Q

(k)[y] +W(k)
)
R̃(k)−1ξ,

for any ξ ∈ H, where R̃(k)ξ ,
(
Q

(k)†[y] +W(k)†
)

L(k)2
(
Q

(k)[y] +W(k)
)
ξ. Then we have

u(k)′ =
{
N(k)L(k)

T
(k)ξ

}′
=

{
L(k)
− L(k)

(
W

(k) + Q(k)[y]
)
R(k)−1

(
W

(k)† + Q(k)†[y]
)
L(k)2

}′
T

(k)ξ

≤

{
L(k)
− L(k)

(
W

(k) + Q(k)[y]
)
R̃(k)−1

(
W

(k)† + Q(k)†[y]
)
L(k)2

}′
T

(k)ξ

=
{
L(k)′
− L(k)′

(
W

(k) + Q(k)[y]
)
R̃(k)−1

(
W

(k)† + Q(k)†[y]
)
L(k)2

+L(k)
(
W

(k) + Q(k)[y]
)
R̃(k)−1

(
W

(k)† + Q(k)†[y]
)(

L(k)L(k)′ + L(k)′L(k)
)(

W
(k) + Q(k)[y]

)
R̃(k)−1

(
W

(k)† + Q(k)†[y]
)
L(k)2

−

(
W

(k) + Q(k)[y]
)
R̃(k)−1

(
W

(k)† + Q(k)†[y]
) (

L(k)L(k)′ + L(k)′L(k)
) }′
T

(k)ξ

=
{
L(k)′
− L(k)′

(
W

(k) + Q(k)[y]
)
R̃(k)−1

(
W

(k)† + Q(k)†[y]
) (

L(k)L(k)′ + L(k)′L(k)
)}(

I −
(
W

(k) + Q(k)[y]
)
R(k)−1

(
W

(k)† + Q(k)†[y]
)
L(k)2

)
T

(k)ξ

=
{
L(k)′
− L(k)

(
W

(k) + Q(k)[y]
)
R̃(k)−1

(
W

(k)† + Q(k)†[y]
) (

L(k)L(k)′ + L(k)′L(k)
)}

L(k)−1u(k).

366 A path-following algorithm

Since L(k) is symmetric matrix, it is easy to verify that N(k) is also symmetric. So,
(N(k)v)

Tw = vTN(k)w for any v,w ∈ Rm2 , then for any ξ ∈ H, we have

u(k)T L(k)
(
Q

(k)[y] +W(k)
)(k)

ξ

=
(
N(k)L(k)

Tξ
)

L(k)
(
Q

(k)[y] +W(k)
)
ξ

=
(
L(k)
Tξ

)
N(k)L(k)

(
Q

(k)[y] +W(k)
)
ξ

=
(
L(k)
Tξ

) (
I − L(k)

(
Q

(k)[y] +W(k)
)
R(k)−1

(
Q

(k)†[y] +W(k)†
)

L(k)
)

L(k)
(
Q

(k)[y] +W(k)
)
ξ

≤

(
L(k)
Tξ

) (
I − L(k)

(
Q

(k)[y] +W(k)
)
R̃(k)−1

(
Q

(k)†[y] +W(k)†
)

L(k)
)

L(k)
(
Q

(k)[y] +W(k)
)
ξ

=
(
L(k)
Tξ

) (
L(k)

(
Q

(k)[y] +W(k)
)
ξ

−L(k)
(
Q

(k)[y] +W(k)
)
R̃(k)−1

(
Q

(k)[y] +W(k)
)

L(k)2
(
Q

(k)[y] +W(k)
)
ξ
)

=
(
L(k)
Tξ

) (
L(k)
W

(k)ξ − L(k)
W

(k) ˜R(k)−1 ˜R(k)ξ
)

= 0.

This implies that

φ(k)′(0) ≤
m2∑
j=1

2u(k)T L(k)′L(k)−1u(k). (25)

By (17), (18), (15) and (25), and using norm inequalities, we have that

|φ(k)′(0)| ≤ 2
∣∣∣∣u(k)T L(k)′L(k)−1u(k)′

∣∣∣∣
=

∣∣∣∣u(k)T
(
L(k)′L(k)−1 + L(k)−1L(k)′

)
u(k)

∣∣∣∣
=

∣∣∣∣u(k)T L(k)−1
(
L(k)L(k)′ + L(k)′L(k)

)
L(k)−1u(k)

∣∣∣∣
=

∣∣∣∣u(k)T L(k)−1
(
L(k)2)′

L(k)−1u(k)
∣∣∣∣

=
∣∣∣∣u(k)T Λ(k)−1

(
L(k)2)′

Λ(k)−1u(k)
∣∣∣∣

=
∣∣∣∣u(k)T Λ(k)−1

(
Λ(k)Λ(k)′ + Λ(k)′Λ(k)

)
Λ(k)−1u(k)

∣∣∣∣
= 2

∣∣∣∣u(k)T
(
Λ(k)−1Λ(k)Λ(k)′Λ(k)−1

)
u(k)

∣∣∣∣
≤ 2

∥∥∥u(k)
∥∥∥2

2

∥∥∥∥(Λ(k)−1Λ(k)′
)∥∥∥∥

2

= 2µ−1/2
∥∥∥u(k)

∥∥∥2
2

∥∥∥∥(L(k)−1
Jx

[
λ(k)

]
ξ
)∥∥∥∥

2
(since L(k)−1 = µ1/2Λ(k)−1)

= 2µ−1/2
∥∥∥u(k)

∥∥∥2
2

∥∥∥∥(L(k)−1L(k)N(k)L(k)ξ
)∥∥∥∥

2

= 2µ−1/2
∥∥∥u(k)

∥∥∥2
2

∥∥∥∥(N(k)L(k)
T

(k)ξ
)∥∥∥∥

2

(
noting that u(k) = N(k)L(k)

T
(k)ξ

)
= 2µ−1/2

∥∥∥u(k)
∥∥∥2

2

∥∥∥u(k)
∥∥∥

2

= 2µ−1/2
∥∥∥u(k)

∥∥∥3
2 = 2µ−1/2

∣∣∣φ(k)(0)
∣∣∣3/2 ,

as desired. The proof is now complete.

The following theorem plays a crucial role in this work.

Theorem 1. For every µ > 0, the recourse function η(x, µ) is a µ-strongly self-concordant function
on F0.

A.A. Oulha, B. Alzalg 367

Proof First, we need to prove that the logarithmic barrier `(x) , −µ
∑m1

i=1 ln(−pi(x))
is a µ-self-concordant barrier on F1. Note that the map `(x) is convex because
`i(x) , −µ ln(−pi(x)), for i = 1, 2, . . . ,m1, is a convex function and the sum of convex
functions is convex. Now, due to [11, Section 3], using Taylor expansion of the
function `i(x), one can find that the nth Fréchet derivative of `i(x) is

D
n`i(x)(h, h, . . . , h) = µ(n − 1)!

(
1
tn
1

+
1
tn
2

)
, n ≥ 1,

with tn
1 < 0 < tn

2 due to the convexity of pi(x + th), t ∈ R. Therefore, the second and
third Fréchet derivatives of `i(x) are

D
2
xx`i(x)(h, h) = µ

 1
t2
1

+
1
t2
2

 ,
D

3
xxx`i(x)(h, h, h) = 2µ

 1
t3
1

+
1
t3
2

 .
It follows that ∣∣∣D3

xxx`i(x)(h, h, h)
∣∣∣ = 2µ

∣∣∣∣∣∣
(

1
t3
1

+ 1
t3
2

)∣∣∣∣∣∣
= 2µ

∣∣∣∣∣∑2
i=1

1
t3
i

∣∣∣∣∣
≤ 2µ

(∑2
i=1

1
t2
i

) 3
2

= 2µ−
1
2

(
µ
∑2

i=1
1
t2
i

) 3
2

= 2µ−
1
2
(∣∣∣D2

xx`i(x)(h, h)
∣∣∣) 3

2 ,

for i = 1, 2, . . . ,m1. This means that `i(x) is a µ-self-concordant barrier on F1 for
i = 1, 2, . . . ,m1. From [16, Proposition 2.1.1(ii)], we conclude that `(x) is a µ-self-
concordant barrier on F1.
In light of Lemma 1, ρ(k)(·, ·) is µ-self-concordant on F (k)

2 for k = 1, 2, . . . ,K. It can
be also seen that p0(x) is µ-self-concordant on F1. Using [16, Proposition 2.1.1(ii)]
again, we conclude that η(·, ·) is a µ-self-concordant function on F0. That is, for every
µ > 0, x ∈ F0 and ξ ∈ H, the following inequality holds.

|D
3
xxxη(x, µ)(ξ, ξ, ξ)| ≤ 2µ−1/2

(
D

2
xxη(x, µ)(ξ, ξ)

)3/2
.

This, together with Property 3, implies that for any fixed µ > 0, the map η(·, µ) is a
µ-strongly self-concordant function on F0. The proof is complete. �

5.2. Parameters of self-concordance family

In this part, we use the result in the preceding subsection to demonstrate that the
set of functions {η(·, µ) : µ > 0} is a strongly self-concordant family with appropriate
parameters. First, we introduce the concept of a self-concordant family proposed by
Renegar [17] for the infinite-dimensional case based on Nesterov and Nemirovskii’s
definition in [16] for the finite-dimensional case.

368 A path-following algorithm

Definition 2. Let G be an open nonempty convex subset of Hilbert space H. Let also µ ∈ R
and fµ : R++×G→ R be a family of functions indexed by µ. Let α1(µ), α2(µ), α3(µ), α4(µ), α5(µ) :
R++ → R++ be continuously differentiable function on µ. Then the family of functions fµ∈R++ is
called strongly self-concordant with the parameters α1, α2, α3, α4, α5, if the following conditions
hold:

(i) The function fµ is continuous on R++ × G, which are continuous on R++ × G and contin-
uously differentiable with respect to µ on R++.

(ii) For any µ ∈ R++, the function fµ is strongly α1(µ)-self-concordant.

(iii) For any (x, µ) ∈ R++ × G and only h ∈ H

(a)
∣∣∣∣ ∂∂µ (
Dx fµ(x, µ)(ξ)

)
−

∂
∂µ

(
lnα3(µ)

)
Dx fµ(x, µ)(ξ)

∣∣∣∣ ≤ α4(µ)
(
α1(µ)

)1/2
(
D

2
xx fµ(x, µ)(ξ, ξ)

)1/2
.

(b)
∣∣∣∣D2

xx fµ(x, µ)(ξ, ξ) − ∂
∂µ

(
lnα2(µ)

)
D

2
xx fµ(x, µ)(ξ, ξ)

∣∣∣∣ ≤ α5(µ)D2
xx fµ(x, µ)(ξ, ξ).

To prove that the set of recourse functions is a self-concordant family, we need first
to give with proofs the following two lemmas.

Lemma 2. For any µ > 0, x ∈ F1 and ξ ∈ H, we have that

∣∣∣{Dxη(x, µ)(ξ)′
}∣∣∣ ≤ (

−
m1 + km2

µ
D

2
xxη(x, µ)(ξ, ξ)

)1/2

.

Proof By differentiating (13) with respect to µ, we obtain

〈
Q

(k)
j y, y′

〉
+

〈
w(k)

j , y
′

〉
+ z(k)′

j = 0, j = 1, 2, . . . ,m1,〈
y,Q(k)

0 y′ +

m2∑
j=1

λ(k)′
j

(
w(k)

j + Q
(k)
j y

)
+

m2∑
j=1

λ(k)
j Q

(k)
j y′

〉
= 0,

Z(k)λ′ + Λ(k)z′ = e.

(26)

Following our notations introduced in Subsection 2, System (26) can be written more
compactly as

Q
(k)[y]y′ +W(k) y′ + z′ = 0,〈

y, Q
(k)
0 y′ +

(
W

(k)† + Q(k)†[y]
)
λ′ + Q(k)†[y′]λ(k)

〉
= 0,

Z(k)λ′ + Λ(k)z′ = e.

Solving System (26), we get

y′ = −R(k)−1
(
W

(k)† + Q(k)†[y]
)
z(k)−1,

λ(k)′ = 1
√
µL(k)N(k)e,

z(k)′ =
(
W

(k) + Q(k)[y]
)
R(k)−1

(
W

(k)† + Q(k)†[y]
)
z(k)−1.

(27)

Differentiating (22) with respect to µ and applying (27), we get

{
Dxη(x, µ)

}′ = −
1
√
µ

K∑
k=1

T
(k)†L(k)N(k)e +

m1∑
i=1

Pix + ai

si
= −

1
√
µ

K∑
k=1

T
(k)†L(k)N(k)e +

(
A
† +P†[x]

)
S−1e. (28)

A.A. Oulha, B. Alzalg 369

Now we define

Mξ , S−1 (A +P[x]) ξ ∈ Rm1 , M
†ϑ ,

(
A
† +P†[x]

)
S−1ϑ ∈ H,

M
(k)ξ , −

1
√
µ

N(k)L(k)
T

(k)ξ ∈ Rm2 , M
(k)†v , −

1
√
µ
T

(k)†L(k)N(k)v ∈ H,

and

Mξ ,
K∑

k=1

M
(k)†
M

(k)ξ +M†Mξ =
1
µ

K∑
k=1

T
(k)†L(k)N(k)L(k)

T
(k)ξ +

(
A
† +P†[x]

)
S−2 (A +P[x]) ξ,

for any ξ ∈ H, ϑ ∈ Rm1 and v ∈ Rm2 . Then, using (2), we have

〈Mξ, ξ〉 =

K∑
k=1

〈
M

(k)†
M

(k)ξ, ξ
〉

+ µ
〈
M
†
Mξ, ξ

〉
=

K∑
k=1

(
M

(k)ξ
)T
M

(k)ξ + µ (Mξ)T
Mξ

= (Υξ)T Υξ =
〈
Υ†Υξ, ξ

〉
,

where, for ξ ∈ H, ϑ ∈ Rm1 and vk ∈ R
m2 , k = 1, 2, . . . ,K, Υ· and Υ†· are defined as

Υξ ,

M

(1)ξ
...

M
(K)ξ
Mξ

 ∈ R
m2 × · · · ×Rm2︸ ︷︷ ︸

K−times

× Rm1 , and Υ†

v1
...

vK
ϑ

 ,
K∑

k=1

M
(k)†vk +M†ϑ ∈ H.

Observe that the operator M · = Υ†Υ· is invertible from the Hilbert space H into itself,

and hence its inverse operator M −1
· =

(
Υ†Υ

)−1
· is well-defined on H.

Because Pi, i = 0, 1, . . . ,m1, are self-adjoint nonnegative definite bounded operators
on H, we also observe that

−D2
xxη(µ, x)(ξ, ξ) ≤ µ 〈Mξ, ξ〉 = µ (Υξ)T Υξ = µ

〈
Υ†Υξ, ξ

〉
, (29)

and that

{
Dxη(µ, x)(ξ)

}′ =

K∑
k=1

〈
M

(k)†e, ξ
〉

+
〈
M
†e, ξ

〉
=

K∑
k=1

eT
M

(k)ξ + eT
Mξ = εTΥξ =

〈
Υ†ε, ξ

〉
, (30)

where

ε ,

e
...
e
e

 ∈ R
m2 × · · · ×Rm2︸ ︷︷ ︸

K−times

×Rm1 .

370 A path-following algorithm

Using (29) and (30), we obtain

−

{
D2

xxη(µ, x)
}−1 ({

Dxη(µ, x)
}′ , {Dxη(µ, x)

}′)
≤

1
µ

〈(
Υ†Υ

)−1 {
Dxη(µ, x)

}′ , {∇xη(µ, x)
}′〉

=
1
µ
εTΥ

(
Υ†Υ

)−1
Υ†ε

≤
1
µ
εTε =

1
µ

(m1 + Km2) .

(31)

By (31) and using norm inequalities, we get

∣∣∣{Dxη(µ, x)(ξ)
}′∣∣∣ ≤ √

−

{
D2

xxη(µ, x)
}−1 ({

Dxη(µ, x)
}′ , {Dxη(µ, x)

}′)√
−D2

xxη(µ, x)(ξ, ξ)

≤

√
−

m1 + Km2

µ
D2

xxη(µ, x)(ξ, ξ).

The proof is complete. 2

Lemma 3. For any µ ≥ 0, x ∈ F1 and ξ ∈ H, we have that

∣∣∣∣{D2
xxη(x, µ)(ξ, ξ)

}′∣∣∣∣ ≤ − √m2

µ
D

2
xxη(x, µ)(ξ, ξ).

Proof Let (z(k), λ(k),L(k),R(k),N(k)) , (z(k)(x, µ), λ(k)(x, µ),L(k)(x, µ),R(k)(x, µ),N(k)(x, µ)),
fix ξ ∈ H, and define u(k) , N(k)L(k)

T
(k)ξ. Then we have that

D
2
xxη(x, µ)(ξ, ζ) = 〈P0ξ, ζ〉 + µ

〈
P
†[ξ]s−1, ζ

〉
+ µ

〈(
A
† +P†[x]

)
S−2 (A +P[x]) ξ, ζ

〉
−

K∑
k=1

u(k)T u(k).

Using Lemma 1, we also have

{
D

2
xxη(x, µ)(ξ, ξ)

}′
=

〈
P
†[ξ]s−1, ζ

〉
+

〈(
A
† +P†[x]

)
S−2 (A +P[x]) ξ, ζ

〉
−

K∑
k=1

u(k)T L(k)
(
L(k)−2

)′
L(k)u(k).

Note that

u(k)T L(k)
(
L(k)−2

)′
L(k)u(k) = u(k)T

(
Z(k)−1Λ(k)

)−1/2 (
Z(k)−1Λ(k)

)′ (
Z(k)−1Λ(k)

)1/2
u(k)

= u(k)T
(
µ−1Z(k)2

)−1/2 (
Z(k)−1Λ(k)

)′ (
µ−1Z(k)2

)−1/2
u(k)

= u(k)T
(
Z(k)2

)−1/2 (
Λ(k)−1Z(k)′

− Z(k)Λ(k)−2Λ(k)′
) (

z(k)2
)−1/2

u(k)

= µ−1u(k)T
(
Λ(k)Z(k)′

− Z(k)Λ(k)′
)

u(k)

= µ−1u(k)T
(
2Λ(k)Z(k)′

− I
)

u(k)
(
using Z(k)λ(k)′ + Λ(k)z(k)′ = e from (26)

)
= µ−1u(k)T

(
2µZ(k)−1Z(k)′

− I
)

u(k)

≤ µ−1
∥∥∥u(k)

∥∥∥2
2

∥∥∥I − 2µz(k)−1z(k)′
∥∥∥

2

(
using definition of z(k)′ from (27)

)
=

∥∥∥u(k)
∥∥∥2

2

∥∥∥∥e − 2µZ(k)−1
(
W

(k) + Q(k)[y]
)
R(k)−1

(
W

(k)† + Q(k)†[y]
)
z−1

∥∥∥∥
2

= µ−1
∥∥∥u(k)

∥∥∥2
2

∥∥∥1 − 2N(k)e
∥∥∥

2 ≤
√

m2
µ

∥∥∥u(k)
∥∥∥2

2 ,

A.A. Oulha, B. Alzalg 371

where the last inequality follows from (26) and from the fact that ‖I − 2N(k)
‖2 ≤ 1,

which is due to I − 2N(k)
� I.

Differentiating η(x, µ)(ξ, ξ) with respect to µ, we get

∣∣∣∣{D2
xxη(x, µ)(ξ, ξ)

}′∣∣∣∣ ≤ √
m2
µ

K∑
k=1

u(k)T u(k)
−

(〈
P
†[ξ]s−1, ζ

〉
+

〈(
A
† +P†[x]

)
S−2 (A +P[x]) ξ, ζ

〉)
≤

√
m2
µ

 K∑
k=1

u(k)T u(k)
− µ

(〈
P
†[ξ]s−1, ζ

〉
+

〈(
A
† +P†[x]

)
S−2 (A +P[x]) ξ, ζ

〉)
≤ −

√
m2
µ D

2
xxη(x, µ)(ξ, ξ).

The proof is complete. 2

The result in the following theorem is now immediate and it is the most important
result in this work.

Theorem 2. The family of function {η(·, µ) : µ > 0} is a strongly self-concordant family with the
following parameters:

α1(µ) = µ, α2(µ) = α3(µ) = 1, α4(µ) =

√
m1 + km2

µ
, α5(µ) =

√
m2

2µ
.

Proof Condition (i) in Definition 2 is satisfied by Property 3. Theorem 1 satisfies
Condition (ii) and Lemmas 2 and 3 prove Inequalities (iiia) and (iiia). The result is
established. 2

Families of functions having a property similar to that in Theorem 2 have nice features,
Most importantly, the parameters defining the self-concordant family allow us to
relate the rate at which the barrier parameter µ is varied and the number of Newton
steps required to maintain the proximity to the central path of the perturbed problem.
The results in this section means that we can generalize the logarithmic-barrier de-
composition interior-point algorithm for the finite-dimensional case to the infinite-
dimensional case and keep a polynomial time execution of the proposed algorithm.
We will see that the obtained complexity estimates are similar to those in the finite-
dimensional setting.

6. The proposed algorithm

In Section 5, we have established that the recourse functions η(·, µ) form a strongly
self-concordant family. We have also calcualted the Fréchet derivativesDxη(x, µ) and
D

2
xxη(x, µ) in Section 4, which are required for computing the Newton direction:

4x , −{∇2
xxη(x, µ)}−1 (

Dxη(x, µ) − ξ∗(x)
)

= −{∇2
xxη(x, µ)}−1

a0 + P0x + µ

m1∑
i=1

ai + Pix
si(x, µ)

 − ξ∗(x)

 , (32)

372 A path-following algorithm

where ξ∗(x) is the unique vector in G⊥ such that 4x ∈ G.
We can determine the measure of proximity of the current point x to the central path
by

δ(x, µ) ,
√
−µ−1D2

xxη(x, µ)(4x,4x). (33)

Note that ξ∗ is the solution to the minimization problem

min
{
∇

2
xxη(x, µ)

}−1 (
Dxη(x, µ) − ξ,Dxη(x, µ) − ξ

)
s.t. ξ ∈ G⊥.

(34)

The solution of the minimization problem (34) is unique and can be characterized by

{
∇

2
xxη(x, µ)

}−1 (
Dxη(x, µ) − ξ̄

)
∈ G,

hence ξ
T
(x) = ξ̄ ∈ G⊥.

Note also that δ(·, ·) in (28) vanishes at (x, µ) if and only if

(
x, s; y(1), z(1); . . . ; y(K), z(k)

)
=

(
x(µ), s(µ), y(µ)(1), s(µ)(1); . . . ; y(µ)(k), z(µ)(k)

)
,

provided that (x, s; y(1), z(1); . . . ; y(K), z(k)) is a feasible solution for (14). Based on
the self-concordance analysis established in the preceding section, we propose a
logarithmic-barrier path-following interior-point decomposition algorithm for the
infinite-dimensional two-stage SQCCQP problem; see Algorithm 1 and Figure 1.
We initialize Algorithm 1 with x0 ∈ F1 as an initial first-stage feasible solution and
µ0 > 0 as an initial value for the barrier parameter, and start it with ε > 0 as the
required accuracy of the final solution, and γ as the reduction parameter. We also
use β as a threshold for calculating the distance (which is δ) between the current
point x and the central path. If the current x is too far from the central path, i.e.,
δ > β, we use Newton’s method to identify a location near to the central path. The
value of µ is then lowered by a factor γ, and the procedure is repeated until the
value of µ falls within the tolerance ε. We can trace the central path as µ approaches
to zero in order to find a strictly feasible ε-optimal solution to Problem (10).

7. Complexity analysis

This part is devoted to presenting with proofs the time complexity of Algorithm 1.
Note that the proposed algorithm can be branched into two versions based on the
selection of γ: The short-step algorithm and long-step algorithm. In the short-step
algorithm, the barrier parameter µ is decreased by a factor γ , 1 − δ/(m1 + km2)1/2,
with δ < 0.1 in each iteration. For the long-step algorithm, the barrier parameter is

A.A. Oulha, B. Alzalg 373

Algorithm 1: A logarithmic-barrier path-following interior-point decomposition
algorithm for the infinite-dimensional two-stage SQCCQP problem (10) and (11)

1 input ε, θ, γ, µ0, β, x0

2 ensure ε > 0, θ > 0, γ ∈ (0, 1), µ0 > 0, β > 0, x0
∈ F0

3 initialize µ = µ0, x = x0

4 while µ ≥ ε do
5 for k = 1, 2, . . . ,K do
6 solve (13) to obtain y, z(k), λ(k)

7 compute Dxη(x, µ) andD2
xxη(x, µ) using (22) and (23)

8 compute ξ∗(x) by solving (34)
9 compute 4x using (32)

10 compute δ(x, µ) using (33)
11 while δ > β do
12 set x = x + θ 4 x
13 for k=1,2,. . . ,K do
14 solve (13) to obtain (y, z(k), λ(k))
15 computeDxη(x, µ) andD2

xxη(x, µ) using (22) and (23)
16 compute ξ∗(x) by solving (34)
17 compute 4x using (32)
18 compute δ(x, µ) using (33)
19 set µ = γµ

decreased by the constant factor γ ∈ (0, 1) which is independent of m1,m2 and K. We
want to determine an upper bound on Itr, which is the number of Newton iterations
needed to find the point xk, such that at each complete iteration, the algorithm
performs an outer iteration which updates the parameter µ by the factor γ, this is
followed by an inner loop involving several inner Newton iterations. Hence, the
total number of Newton iterations needed by the algorithm is not more than

Itr = Itrout × Itrin,

where Itrout and Itrin are upper bounds on the number of iterations performed by
the outer while loop (which reduce the parameter µ) and the number of iterations
performed by the inner while loop, respectively.
First, we want to estimate Itrout for both short- and long-step algorithms. Let µk be
the parameter at kth outer iteration, then we have

µk = γµk−1 = · · · = γkµ0,

where γ is the update factor. Then µk < ε if

γkµ0
≤ ε,

or equivalently

k ≥
(
ln

(
µ0

ε

))/
lnγ−1,

374 A path-following algorithm

Figure 1. A flowchart of Algorithm 1.

and hence

Itrout ≤

(
ln

(
µ0

ε

))/
lnγ−1 + 1.

For short-step algorithm, since γ = ln(1 − σ/
√

m1 + km2) ≈ −σ/
√

m1 + km2, we have

Itrout = O(1)
√

m1 + Km2 ln
µ0

ε
.

A.A. Oulha, B. Alzalg 375

For long-step algorithm, since γ = O(1) is a constant, we have

Itrout = O(1) ln
µ0

ε
.

Now, we need to estimate the number of inner iterations of Newton’s method using
two different merit function to measure the agreement of the progress of Newton’s
iterates. If the agreement is good, the merit function is small. We use δ(x, µ) for
the short-step algorithm and the first-stage objective function η(x, µ) for the long
step algorithm. The following lemma estimates the reduction of the merit function,
which corresponds to [16, Theorem 2.2.3] in the finite-dimensional case. This lemma
is based on [11] for the infinite-dimensional case. More precisely, Item (i) is due to
[11, Proposition 3.4] and Item (ii) is due to [11, Proposition 3.3].

Lemma 4. For any µ > 0 and x ∈ F1, let x+ , x + 4x, 4x+ be the Newton direction calculated at

x+ and δ(µ, x+) ,
√
−

1
µD

2
xxη(x, µ) (4x+,4x+). Then the following statements hold:

(i) If δ < 2 −
√

3, then δ(µ, x+) ≤ δ/2.

(ii) If δ ≥ 2 −
√

3, then η(x, µ) − η(µ, x + θ̄ 4 x) ≥ µ(δ − ln(1 + δ)), where θ̄ , (1 − δ)−1.

In the remaining part of this section, we estimate the upper bound on number of
inner iterations of Newton’s method.

Complexity of short-step algorithm The short-step algorithm is executed as
follows. At the beginning of the kth iteration, xk is close to the central path because
it satisfies δ(µk, x) ≤ β. After reducing the parameter µ to µ(k+1) = γµ, we have that
δ(µk, x) ≤ 2β. Then one Newton step with step size θ = 1 is taken to construct a
new point xk+1 with δ(µk, x) ≤ β. We present the complexity result of the short-step
algorithm in the following theorem, for which the proof is based on Lemma 5 given
in Appendix A.

Theorem 3. Consider Algorithm 1. Let µ0 be an initial barrier parameter, ε > 0 be the stopping
criterion, and β = (2 −

√
3)/2. If the starting point x0 is sufficiently close to the central path, i.e.,

δ(µ0, x0) ≤ β, then the short-step reduces the parameter µ at linear rate and terminates within

O

(√
m1 + Km2 ln

(
µ0

ε

))
.

Proof Using Item (i) in Lemma 4, and Lemma 5, we find that Algorithm 1 reduces
the parameter µ by the factor γ = 1 − 0.1/

√
m1 + km2 at each iteration, and requires

only one Newton step in each inner loop (i.e., Itrin = 1). The proof complete.

376 A path-following algorithm

Complexity of long-step algorithm Because iterates generated by the long-step al-
gorithm may be distant from x(µ), the condition δ < 2−

√
3 could be violated, which

means that only Item (ii) in Lemma 4 can be used, hence we use η as our merit
function. The long-step algorithm is executed as follows. At the beginning of the
kth iteration, we have a point xk−1 that is sufficiently near to x(µk−1) (which is the
solution to (10) for µ , µk−1). When the barrier parameter is reduced from µk−1 to
µk , γµk−1, where γ ∈ (0, 1), we search for a point xk that is sufficiently close to x(µk).
This produces a finite sequence of points p1, p2, . . . , pItr ∈ F1. We take xk to be pItr. So
we need to determine an upper bound on Itr, the total number of Newton iterations.
Let

φ , η(x, µ) − η(µ, x(µ))

be the difference between the minimum objective value η(µk, x(µk−1)) at the beginning
of the kth iteration and the objective value η(µk, x(µk)) at the end of kth iteration. We
present the complexity result of the long-step algorithm in the following theorem.

Theorem 4. Consider Algorithm 1. Let µ0 be an initial parameter, ε > 0 be the stopping criterion,
and β = 1/6. If the starting point x0 is sufficiently close to the central path, i.e., δ(µ0, x0) ≤ β, then the
long-step algorithm reduces the parameter µ at linear rate and terminates within

O

(
m1 + Km2 ln

(
µ0

ε

))
.

Proof First we need to find an upper bound on φ(µ+, x). Let µ+ , γµ with γ ∈ (0, 1)
and define

δ̃ , δ̃(x, µ) ,

√
−

1
µ
D2

xxη(x, µ)(4̃x+, 4̃x+).

We show that if δ̃ < 1, then

η(µ+, x(µ+)) − η(µ+, x) ≤ O(m1 + Km2)µ+. (35)

Note that

φ(µ, x) , η(µ, x(µ)) − η(x, µ) =

∫ 1

0
Dxη(µ, x + τ4̃x)(4̃x+)dτ.

Since x(µ) is the optimal solution, we have

Dxη(µ, x(µ)) = 0. (36)

Then, for any µ > 0, by applying chain rule, using (36) and applying Mean-Value
Theorem, we get

φ′(x, µ) = η′(µ, x(µ)) − η′(x, µ) −Dxη(µ, x(µ))(x′(µ))
= η′(µ, x(µ)) − η′(x, µ)
= Dxη(µ, x(µ) + ω4̃x)(4̃x).

(37)

A.A. Oulha, B. Alzalg 377

Now, we differentiate (37) with respect to µ to get

φ
′′

(x, µ) = η
′′

(x, µ) − η
′′

(µ, x(µ)) −Dxη(µ, x(µ))(x′(µ)). (38)

We want to bound the terms−Dxη(µ, x(µ)(x′(µ)) andφ
′′

(x, µ) in (38). By differentiating
ρ(k)(x, µ) with respect to µ and using (28) and (15), we get

ρ(k)′(x, µ) = 〈Q(k)
0 y, y′〉 + 〈w(k)

0 , y
′
〉 − eT

ln z(k)
− µeTZ(k)−1z(k)′

= 〈Q(k)
0 y + w(k)

0 , y
′
〉 − eT

ln z(k)
−Λ(k)z(k)′ (

using (13)
)

= 〈Q(k)
0 y + w(k)

0 , y
′
〉 − eT

ln z(k)

−Λ(k)
(
W

(k) + Q(k)[y]
)
R(k)−1

(
W

(k)† + Q(k)†[y]
)
z(k)−1 (

using (27)
)

=
(
Q(k)

0 y + w(k)
0 , y

′
〉
− eT

ln z(k)

+Λ(k)
(
W

(k) + Q(k)[y]
) (
−R(k)−1

(
W

(k)† + Q(k)†[y]
)
z(k)−1

)
=

(
Q(k)

0 y + w(k)
0 , y

′
〉
− eT

ln z(k) + Λ(k)
(
W

(k) + Q(k)[y]
)
y′

=
(
Q(k)

0 y + w(k)
0 , y

′
〉
− eT

ln z(k) +

〈 m2∑
j=1

(
λ(k)w(k)

j + λ(k)Q(k)
j y

)
, y′

〉
= −

m2∑
j=1

ln z(k)
j .

Note that N(k)2 = N(k). Now, differentiating ρ(k)′ with respect to µ and using (28) and
(15), we get

ρ(k)′′(µ, x(µ)) = eTZ(k)−1z(k)′

= eTZ(k)−1
(
W

(k) + Q(k)[y]
)
R(k)−1

(
W

(k)† + Q(k)†[y]
)
z(k)−1

= eTZ(k)−1L(k)−1N(k)L(k)−1z(k)−1.

Thus we have

ρ(k)′′(µ, x(µ)) ≤ e
T
z(k)−1L(k)−2z(k)−1 = e

T
z(k)−1λ(k)−1 =

m2

µ
,

and hence

ρ(k)′′(µ, x(µ)) ≤
Km2

µ
. (39)

We differentiate the optimality condition of the first-stage problem and get

x′(µ) = −
{
∇

2
xxη(µ, x(µ))

}−1 ({
Dxη(µ, x(µ))

}′) . (40)

It follows that

{
Dxη((µ, x(µ))

}′ (x′(µ)) = −
{
∇

2
xxη(x(µ), µ)

}−1 (
{Dxη(µ, x(µ))}′, {Dxη(µ, x(µ))}′

)
≤ µ−1(m1 + Km2).

(41)

378 A path-following algorithm

Combining (39) and (41) and using η′′(µ, x) ≥ 0 we have

φ
′′

(x, µ) ≤ (µ−1(m1 + 2Km2)).

Now, using (41), and applying Mean-Value Theorem, we have

φ(µ+, x) = φ(x, µ) + φ′(x, µ)(µ+
− µ) +

∫ µ+

µ

∫ τ

µ
φ
′′

(v, x)dvdτ

≤ µ
(
δ̃

1−δ + ln(1 − δ̃)
)
−
√

m1 + Km2 ln(1 − δ̃)(µ+
− µ)

+(m1 + 2Km2)(µ+
− µ) lnγ−1.

Table 1. The short-step algorithm versus the long-step algorithm.

Features Short-step algorithm Long-step algorithm

Factor γ γ = 1 − δ/
√

m1 + m2, δ > 0 γ ∈ (0, 1)
Merit function δ(x, µ) η(x, µ)
Number of inner iterations Itrin = 1 Itrin = O(1)(m1 + Km2)
Number of outer iterations Itrout = O(1)

√
m1 + km2 ln(µ0/ε) Itrout = ln(µ0/ε)

As we have already shown, Algorithm 1 reduces the barrier parameter, µ, Itrout times,
such that Itrout = O(ln(µ0/ε)), each outer iteration has several inner Newton’s itera-
tions. Now we are looking for an upper bound of Itrin. Assume that η(µk−1, xk−1) ≤ β
and µk = γµk−1, and let

x̃0 , xk−1, x̃1 , xk, . . . , x̃ j, . . .

be the inner iterates that are generated in the kth loop. We choose β to be small
enough so that δ̃ ≤ β̃ < 1 at (µk−1, xk−1) (see Lemma 8). From (35), there is a positive
constant υ such that

φ(µk, xk−1) = η(µk, xk−1) − η(µk, x(µk)) ≤ υ(m1 + Km2)µk.

Assume that δi , δ(µk, x̃i) > β, for all i = 1, . . . , j − 1, and denote δ , β − ln(1 + β) > 0.
Then

δ < δi
− ln(1 + δi), i = 0, 1, . . . , j − 1.

Note that, from Item (ii) in Lemma 4, we have

η(µk, x̃i+1) ≤ η(µk, x̃i + θ 4 x) ≤ η(µk, x̃i) − (δi
− ln(1 + δi))µk

≤ η(µk, x̃i) − σµk.

As a result
η(µk, x(µ)) ≤ η(µk, x̃i) ≤ η(µk, xk−1) − jσµk + η(µk, x(µ)).

Therefore j ≤ ε(m1 +km2)/σ, which means that σ ≤ β for any j > (m1 +km2)σ iterations.
Since σ is a constant, we have Itrin = O(m1 + km2). The proof complete.

A.A. Oulha, B. Alzalg 379

Theorems 3 and 4 are the counterparts of Theorems 4.1 and 4.2 in [15] as well as
Theorems 6.1 and 6.2 in [4]. One can see that the complexity results in Theorems
3 and 4 coincide with the best known ones for the finite-dimensional case. This
confirms that the time execution of Algorithm 1 is independent of the underlying
Hilbert space. We end this section with Table 1, which compares between the short-
and long-step versions of Algorithm 1.

8. An illustrative example

In this section, we give an example from stochastic control theory and solve it using
the algorithm proposed in Section 6. The notations in this section might be a bit
different from those in the other sections. The stochastic model under interest extends
the control design model problem (see [11], for example) by applying a relaxation on
its assumptions that include deterministic data to include random data.
We let H , Lm

2 [0,T] be set of all measurable square integrable functions on [0,T] with
values in Rm. For i = 1, 2, . . . ,m1, we define

pi(x,u) ,
1
2

∫ T

0

(
x

T
(t)Pi(t)x(t) + u

T
(t)Ri(t)u(t)

)
dt + bi,

where Pi(t) (respectively, Ri(t)) is an m1×m1 (respectively, p1×p1) symmetric positive
definite matrix which depends continuously on t ∈ [0,T], for i = 0, 1, . . . ,m1, and
b ∈ Rm1 . The control objective function is to find (x,u) that minimizes the cost
criterion function given by

p0(x,u) ,
1
2

∫ T

0

(
x

T
(t)P0(t)x(t) + u

T
(t)R0(t)u(t)

)
dt.

For j = 0, 1, . . . ,m2, we also define

q j(y, v, ω) ,
1
2

∫ T

0

(
y(t)

T
Q(k)

j (t, ω)y(t) + v(t)
T
S (k)

j (t, ω)v(t)
)

dt,

and Q j(t, ω)) (respectively, S j(t, ω))) is an m2 × m2 (respectively, p2 × p2) symmetric
positive definite random matrix which depends continuously on t ∈ [0,T] and its
randomness depends on an underling outcome ω in an event space Ω with a known
probability function P, for j = 0, 1, . . . ,m2.

380 A path-following algorithm

We consider the following closed subspaces of H:

G ,

(x,u) ∈ Lm1

2 [0,T] × Lp1

2 [0,T] :
x is absolutely continuous on [0,T],
ẋ ∈ Lm1

2 [0,T], x(0) = 0,
ẋ(t) = A(t)x(t) + B(t)u(t)

for all t ∈ [0,T]

 ,

G(ω) ,

(y, v) ∈ Lm2

2 [0,T] × Lp2

2 [0,T] :
y is absolutely continuous on [0,T],
ẏ ∈ Lm2

2 [0,T], y(0) = 0,
ẏ(t) = W(t, ω)y(t) + D(t, ω)v(t)
for all t ∈ [0,T]

 ,
where ẋ(t) and ẏ(t) are the time derivatives of the functions x(·) and y(·) with respect
to time t, A(t) (respectively, B(t)) is an m1 × m1 (respectively, m1 × p1) matrix which
depends continuously on t ∈ [0,T], and W(t, ω) (respectively, D(t, ω)) is an m2 × m2

(respectively, m2 × p2) random matrix which depends continuously on t ∈ [0,T] and
its randomness depends on an underling outcome ω in an event space Ω with a
known probability function P.
We are interested in a problem of the form:

min p0(x,u) + E[ρ(y, v, ω)]

s.t. pi(x,u) ≤ 0, i = 1, 2, . . . ,m1,

(x,u) ∈ G,

(42)

where ρ(ω, x,u) is the minimum value of a problem of the form:

min q0(y, v, ω)

s.t. q j(y, v, ω) +

∫ T

0

(
w

T
j (ω)y(t) + w j(ω)Tv(t)

)
dt ≤ h j(ω) −

∫ T

0

(
t
T
j (ω)x(t) + t

T
j (ω)u(t)

)
dt,

j = 1, 2, . . . ,m2,

(y, v) ∈ G(ω).

(43)

Assuming that the event space Ω is discrete and finite with K realizations, the dis-
cretization of q j(·, ·, ω) and G(ω) are given by

q(k)
j (y, v) ,

1
2

∫ T

0

(
y(t)

T
Q(k)

j (t)y(t) + v(t)
T
S (k)

j (t)v(t)
)

dt, for j = 0, 1, . . . ,m2,

and

G(k) ,

(y, v) ∈ Lm2

2 [0,T] × Lp2

2 [0,T] :
y is absolutely continuous on [0,T],
ẏ ∈ Lm2

2 [0,T], y(0) = 0,
ẏ(t) = W(k)(t)y(t) + D(k)(t)v(t)
for all t ∈ [0,T]

 ,

A.A. Oulha, B. Alzalg 381

for k = 1, 2, . . . ,K, where W(k)(t) (respectively, D(k)(t),Q(k)
j (t),S (k)

j (t)) is related to

W(t, ω) (respectively, D(t, ω), Q j(t, ω),S j(t, ω)) in the same way as w(k)
j is related

to w j(ω) in Section 3. Given this, we have E[ρ(y, v, ω)] =
∑K

k=1 q(k)
0 (y, v), and the

discretization of (43) is:

min q(k)
0 (y, v)

s.t. q(k)
j (y, v) +

∫ T

0

[
w(k)T

j y(t) + w(k)T

j v(t)
]

dt ≤ h(k)
j −

∫ T

0

[
t(k)T

j x(t) + t(k)T

j u(t)
]

dt,

j = 1, 2, . . . ,m2,

(y, v) ∈ G(k).

(44)

Problems (42) and (44) are already on the form of Problems (6) and (8), respectively. In
this context, the following logarithmic-barrier problem is the counterpart of Problem
(14).

min f (x,u, µ) = p0 +

K∑
k=1

q(k)
0 (y, v) − µ

 m1∑
i=1

ln(si(x,u)) +

m2∑
j=1

ln z(k)
j

s.t.

1
2

∫ T

0

(
x

T
(t)Qi(t)x(t) + u

T
(t)Ri(t)u(t)

)
dt + si + bi = 0, 1 ≤ i ≤ m1,

q(k)
j (y, v) +

∫ T

0

(
w(k)T

j y(t) + w(k)T

j v(t)
)

dt + z(k)
j = h(k)

j −

∫ T

0

(
t(k)T

j x(t) + t(k)T

j u(t)
)

dt,

1 ≤ j ≤ m2, 1 ≤ k ≤ K,

(x,u) ∈ G, (y, v) ∈ G(k),

s, z(k)
j > 0, 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, 1 ≤ k ≤ K,

where µ > 0 is a barrier parameter. Here, si , −pi(x(t),u(t)), i = 1, 2, . . . ,m1, and

z(k)
j , h(k)

j − q(k)
j (y(t), v(t)) −

∫ T

0

(
w(k)T

j y(t) + w(k)T

j v(t)
)

dt

−

∫ T

0

(
t(k)T

j x(t) + t(k)T

j u(t)
)

dt, j = 1, . . . ,m2, k = 1, . . . ,K.

Now, we compute the first and second derivatives of p(x,u, µ) based on the results in
Section 4.
For the sake of simplicity, we drop the index time t and let α , (x,u) ∈ F1 , {(x,u) ∈
G : s = −p(x,u) > 0}. The first Fréchet derivative of p with respect to α is

Dαp(µ, α) =

P0x + µ

m1∑
i=1

Pix
si(α)

−

K∑
k=1

m2∑
j=1

λ j(x)t(k)
j

R0u +

m1∑
i=1

Riu
si(α)

−

K∑
k=1

m2∑
j=1

λ j(u)t(k)
j

, (45)

382 A path-following algorithm

or equivalently

Dαp(µ, α) =

P0x + µP†[x]s−1(α) −

K∑
k=1

T
(k)†λ(x)

R0u + µR†[u]s−1(α) −
K∑

k=1

T
(k)†λ(u)

 . (46)

Next, for any (ξ, ζ) ∈ H, the second Fréchet derivative of p with respect to α is

D
2
ααp(µ, α)(ξ, ζ) =

P0ξ + µ

m1∑
i=1

 Piξ
si(α)

+
liPix
s2

i (α)

 − K∑
k=1

m2∑
j=1

Dα

(
λ(k)

j (x)
)
(ξ)

〈
t(k)

j , ξ
〉

R0ζ + µ

m1∑
i=1

 Riζ
si(α)

+
liRiu
s2

i (α)

 − K∑
k=1

m2∑
j=1

Dα

(
λ(k)

j (u)
)
(ζ)

〈
t(k)

j , ζ
〉

,

or equivalently

D
2
ααp(µ, α)(ξ, ζ) =

P0ξ + µ

(
P
†[x]

)
S−2 (P[x]) l −

K∑
k=1

T
(k)†
Jα

[
λ(k)(x)

]
ξ

R0ζ + µ
(
R
†[x]

)
S−2 (R[x]) l −

K∑
k=1

T
(k)†
Jα

[
λ(k)(u)

]
ζ

 ,

where

li ,
∫ T

0

(
x

T
(t)Piξ + u

T
Riζ

)
dt, i = 1, 2, . . . ,m1

and more compactly

l ,
∫ T

0
(Q[ξ]x(t) + R[ζ]u(t)) dt.

Using (17), we get

D
2
ααp(µ, α)(ξ, ζ) =

P0ξ + µ

(
P
†[x]

)
S−2 (P[x]) l −

K∑
k=1

T
(k†L(k)N(k)L(k)

T
(k)ξ

R0ζ + µ
(
R
†[x]

)
S−2 (R[x]) l −

K∑
k=1

T
(k†L(k)N(k)L(k)

T
(k)ζ

 , (47)

where the matrices L(k) and N(k), k = 1, 2, . . . ,K, are defined in (18).
The orthogonal complements of subspaces G and G(k), k = 1, 2, . . . ,K, are given by
[11]

A.A. Oulha, B. Alzalg 383

G⊥ =

{ $̇ + AT
$

BT
$

 : $ is absolutely continuous on [0,T], $(T) = 0

and $̇ ∈ Ln
2[0,T]

}
,

G(k)⊥ =

{ %̇ + W(k)T%

D(k)T%

 : % is absolutely continuous on [0,T], %(T) = 0

and %̇ ∈ Ln
2[0,T]

}
.

(48)

From (32), the Newton direction at the point α = (x,u) ∈ H is of the form:

4α = −{D2
ααp(µ, α)}−1 (

Dαp(µ, α) − β∗(α)
)
,

β∗(α) ∈ G⊥.
(49)

If 4α =

ξζ
 ∈ G, then by using (47) and (48) we have

Dαp(µ, α) − β∗(α) = D2
ααp(µ, α) 4 α, 4α ∈ G.

LetDαp(µ, α) =

x̄ū
, then this is equivalent to

$̇ + AT
$ − x̄ = K2(µ, α)ξ +P†[x]S−2(α)l,

BT
$ − ū = K2(µ, α)ζ + R†[x]S−2(α)l,

(50)

where

K1(µ, α) ,P0 + µP†[ξ](s−1(α)) −
K∑

k=1

T
(k†L(k)N(k)L(k)

T
(k),

K2(µ, α) , R0 + µR†[ζ](s−1(α)) −
K∑

k=1

T
(k†L(k)N(k)L(k)

T
(k).

We also have
ξ̇ = Aξ + Bζ, ξ(0) = 0, $(T) = 0. (51)

Now we need to solve (50)-(51) with respect to ξ and ζ. This problem is somehow
similar to the one arising in connection with the standard linear-quadratic control
problem (see[12]); the difference is that the constants li, i = 1, 2, . . . ,m1, are unknown.

384 A path-following algorithm

One can solve (50)-(51) by the numerical integration of Riccati equation that admits
unique solution in [0,T]. To see this, we find $ in the form

$(t) = K(t)ξ(t) + γ(t),

and substitute $(t) and (51) in both equations of (50) to obtain

K̇ + KA + ATK + KB(t)K −1
2 (µ, α)BT

(t)K −K1(µ, α) = 0, K(T) = 0,
γ̇(t) = −

(
AT + KB(t)K2(µ, α)−1BT

(t)K
)
γ + x̄ + P†[x]S−2(α)l−

B
(
K −1

2 (µ, α)ū + K −1
2 (µ, α)R†[u]S−2(α)l

)
, γ(T) = 0.

(52)

The first equation in System (52) is a matrix Ricatti differential equation which admits
unique solution in [0,T] under natural constraints on A and B, and the second
equation is a fundamental matrix for a linear time-dependent system. This brings us
to solve an m1 ×m1 system of linear algebraic equation, and means that System (49)
can be efficiently solved.

9. Conclusion

In this paper, we have studied the two-stage stochastic convex quadratic pro-
gramming problem with quadratic constraints in Hilbert space and developed a
logarithmic barrier decomposition interior point algorithm for solving this class of
optimization problems. One of the chief attractions of this paper is that it explicitly
computes the expressions for the derivatives of the recourse function and completely
identifies the barrier parameters for the corresponding self-concordant family.
Based on a self-concordance analysis, we have analyzed the proposed algorithm
and have found that, given m1 quadratic constraints in the first-stage problem, m2

quadratic constraints in the second-stage problem, and K number of realizations,
we need at most O((m1 + Km2)1/2 ln(µ0/ε)) Newton iterations in short-step version
of the algorithm to follow the first-stage central path from a starting value of the
barrier µ0 to a terminating value ε, and need at most O(m1 + Km2 ln(µ0/ε)) Newton
iterations in the long-step version class of the algorithm to follow the first-stage
central path. These complexity results coincide with the best known ones for
the finite-dimensional case, confirming that the time execution of the proposed
algorithm is independent of the underlying Hilbert space. As an example, we have
considered an application of these results to an important stochastic control problem
and have shown that the corresponding infinite-dimensional system can be obtained
to find the Newton-type search direction. This study extends the work of Alzalg
[4] for infinite-dimensional stochastic linear programming to infinite-dimensional
stochastic quadratically constrained convex quadratic programming.

Conflict of interest. The author declares that they have no conflict of interest.

A.A. Oulha, B. Alzalg 385

Data Availability. Data sharing is not applicable to this article as no datasets were
generated or analyzed during the current study.

References

[1] B. Alzalg, Decomposition-based interior point methods for stochastic quadratic second-
order cone programming, Appl. Math. Comput. 249 (2014), 1–18.
https://doi.org/10.1016/j.amc.2014.10.015.

[2] , Homogeneous self-dual algorithms for stochastic second-order cone program-
ming, J. Optim. Theory Appl. 163 (2014), no. 1, 148–164.
https://doi.org/10.1007/s10957-013-0428-z.

[3] , Volumetric barrier decomposition algorithms for stochastic quadratic second-
order cone programming, Appl. Math. Comput. 265 (2015), 494–508.
https://doi.org/10.1016/j.amc.2015.05.014.

[4] , Logarithmic-barrier decomposition interior-point methods for stochastic linear
optimization in a Hilbert space, Numer. Funct. Anal. Optim. 41 (2020), no. 8, 901–
928.
https://doi.org/10.1080/01630563.2019.1709499.

[5] B. Alzalg and K.A. Ariyawansa, Logarithmic barrier decomposition-based interior
point methods for stochastic symmetric programming, J. Math. Anal. Appl. 409 (2014),
973–995.
https://doi.org/10.1016/j.jmaa.2013.07.075.

[6] B. Alzalg, K. Badarneh, and A. Ababneh, An infeasible interior-point algorithm for
stochastic second-order cone optimization, J. Optim. Theory Appl. 181 (2019), no. 1,
324–346.
https://doi.org/10.1007/s10957-018-1445-8.

[7] B. Alzalg, A. Gafour, and L. Alzaleq, Volumetric barrier cutting plane algorithms
for stochastic linear semi-infinite optimization, IEEE Access 8 (2019), 4995–5008.
https://doi.org/10.1109/ACCESS.2019.2962840.

[8] B. Alzalg and M. Pirhaji, Primal-dual path-following algorithms for circular program-
ming, Commun. Comb. Optim. 2 (2017), no. 2, 65–85.
https://doi.org/10.22049/cco.2017.25865.1051.

[9] K. Ariyawansa and Y. Zhu, A class of polynomial volumetric barrier decomposition al-
gorithms for stochastic semidefinite programming, Math. Comput. 80 (2011), no. 275,
1639–1661.
https://doi.org/10.1090/s0025-5718-2010-02449-4.

[10] G.M. Cho, Log-barrier method for two-stage quadratic stochastic programming, Appl.
Math. Comput. 164 (2005), no. 1, 45–69.
https://doi.org/10.1016/j.amc.2004.04.095.

[11] L. Faybusovich and J.B. Moore, Infinite-dimensional quadratic optimization: interior-
point methods and control applications, Appl. Math. Optim. 36 (1997), no. 1, 43–66.

386 A path-following algorithm

https://doi.org/10.1007/BF02683337.
[12] , Long-step path-following algorithm for convex quadratic programming prob-

lems in a Hilbert space, J. Optim. Theory Appl. 95 (1997), no. 3, 615–635.
https://doi.org/10.1023/A:1022626006554.

[13] S. Mehrotra and M. Gokhan Ozevin, Decomposition based interior point methods for
two-stage stochastic convex quadratic programs with recourse, Oper. Res. 57 (2009),
no. 4, 964–974.
https://doi.org/10.1287/opre.1080.0659.

[14] S. Mehrotra and M.G. Özevin, Decomposition-based interior point methods for two-
stage stochastic semidefinite programming, SIAM J. Optim. 18 (2007), no. 1, 206–222.
https://doi.org/10.1137/050622067.

[15] S. Mehrotra and M.G. Ozevin, Decomposition based interior point methods for two-
stage stochastic convex quadratic programs with recourse, Oper. Res. 57 (2009), no. 4,
964–974.
http://doi.org/10.1287/opre.1080.0659.

[16] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex
Programming, SIAM, 1994.

[17] J. Renegar, Linear programming, complexity theory and elementary functional analysis,
Math. Program. 70 (1995), no. 1, 279–351.
https://doi.org/10.1007/BF01585941.

[18] , A Mathematical View of Interior-Point Methods in Convex Optimization,
SIAM, 2001.

[19] C. Roos and J.P. Vial, A polynomial method of approximate centers for linear program-
ming, Math. Program. 54 (1992), no. 1, 295–305.
https://doi.org/10.1007/BF01586056.

[20] G. Zhao, A log-barrier method with Benders decomposition for solving two-stage
stochastic linear programs, Math. Program. 90 (2001), no. 3, 507–536.
https://doi.org/10.1007/PL00011433.

Appendices

A. Technical lemmas for the complexity proofs

In this appendix, we state without proofs some technical lemmas which were required
to prove Theorems 3 and 4 in Section 7. The proofs of the following lemmas are based
on Nestrov and Nemirovskii [16] for the finite-dimensional case and Faybusovich
and Moore [12] for the infinite-dimensional case.
In the proof of Theorem 3, we made use of Theorem 3.1.1 of Nestrov and Nemirovskii
[16] and Theorem 3.3 of Faybusovich and Moore [11], which are restated for our
setting in the following lemmas.

A.A. Oulha, B. Alzalg 387

Lemma 5. Let χ(η;µ, µ+) ,
(

1+
√

m2
2 +

√
m1+km2

κ

)
lnγ−1. Assume that δ(x, µ) < κ and µ+ , γµ

satisfies χk(η, µ, µ+) ≤ 1 − δ(x, µ)/κ. Then, δ(µ+, x) < κ.

Lemma 6. Let µ+ = γµ, where γ = 1 − δ(x, µ)/
√

m1 + Km2 and σ ≤ 0.1. Furthermore, let
β = (2 −

√
3)/2. If δ(x, µ) ≤ β, then δ(µ+, x) ≤ 2β.

In the proof of Theorem 4, we made use of the following lemma whose proof is
similar to that of [20, Lemma 7].

Lemma 7. For any µ > 0 and x ∈ F1, we denote 4̃x , x − x(µ) and define

δ̃ , δ̃(x, µ) ,

√
−

1
µ
D2

xxη(x, µ) (4̃x+, 4̃x+). (53)

For any µ > 0 and x ∈ F1, if δ̃ < 1, the following inequalities hold:

φ(x, µ) ≤ µ
(
δ̃

1 − δ̃
+ ln(1 − δ̃)

)
, and

∣∣∣φ′(x, µ)
∣∣∣ ≤ −√

(m1 + Km2) ln((1 − δ̃).

Lemma 7 requires that δ̃ < 1. However, evaluation of δ̃ explicitly may not be possible.
Now we will see that δ̃ is actually proportional to δ, which can be evaluated. The
following lemma is due to [15] and its proof follows from Propositions 3.4 and 3.8 in
[12] (see also [14, Lemma 5.5]).

Lemma 8. For any µ > 0 and x ∈ F1, we denote 4̃x , x = x(µ) and define δ̃ = δ̃(x, µ) as in (53). If
δ < 1/6, then 2δ/3 ≤ δ̃ ≤ 2δ.

	Introduction
	Notations
	Problem formulation and assumptions
	Derivatives of the recourse function
	Self-concordance analysis
	The proposed algorithm
	Complexity analysis
	An illustrative example
	Conclusion
	References
	Appendices
	Technical lemmas for the complexity proofs

