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Abstract: Let G = (V,E) be a connected graph with the vertex-set V and the edge-
set E. The subdivision graph S(G) of the graph G is obtained from G by adding a

vertex in the middle of every edge of G. In this paper, we investigate some properties

of the graphs S(G) and L(S(G)), where L(S(G)) is the line graph of S(G). We will
see that S(G) and L(S(G)) inherit some properties of G. For instance, we show that if

G � Cn, then Aut(G) ∼= Aut(L(S(G))) (as abstract groups), where Cn is the cycle of

order n.
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Constructing new families of graphs from families of graphs which are in the hand,

in some aspects, can be one of the important tasks in graph theory. For example,

line graphs are basic graph transformations with various number of results about

their properties in the literature. The line graph method is a very important tech-

nique for constructing a larger graph from a given graph. The graph constructed by

the line graph method can easily obtain many desirable properties from the original

graph, such as degree, diameter, connectivity, eulericity, hamiltonicity, and so forth.

The method of line graph has been widely used in the designing of interconnection

networks.

Another method is the power graph of a given graph [2]. Given two graphs G and H

and a positive integer k, we say that G is the k-th power of H (and denote this by

G = Hk) if the vertex-sets of G and H coincide and two distinct vertices are adjacent

in G if and only if they are at distance at most k in H. The graph H is then called

a k-th root of G. In the case k = 2, we say that G is the square of H and H is the

square root of G. It is known that if the graph G is a 2-connected graph, then the

graph G2 is a panconnected graph [4].
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Let G = (V,E) be a connected graph with the vertex-set V and the edge-set E. The

subdivision graph S(G) of the graph G is obtained from G by putting a new vertex in

the middle of every edge of G. It is easy to check that the graph S(G) is isomorphic

to the bipartite graph with the vertex-set V1 = V ∪ E in which two vertices v ∈ V
and e ∈ E are adjacent if and only if v is incident to the edge e in the graph G, that

is, e = {v, w} for some w ∈ V . Hence in the sequel, we call the latter graph as the

subdivision of the graph G.

In this paper, we investigate some properties of the graphs S(G) and L(S(G)), where

L(S(G)) is the line graph of S(G). We will see that L(S(G)) inherits some properties

of G, in such a way, it is possible to construct from the graph G other larger graphs

with some desired properties. For instance, we will see how we can construct a 3-

regular Hamiltonian graph of order greater than given integer n. Also, we determine

the automorphism group of S(G). We will see that if G � Cn, the cycle of order n,

then Aut(G) ∼= Aut(S(G)) ∼= Aut(L(S(G))) (as abstract groups). This fact helps us

in constructing large graphs with some desired symmetry properties.

1. Preliminaries

In this paper, a graph G = (V,E) is considered as a finite undirected simple graph

where V = V (G) is the vertex-set and E = E(G) is the edge-set. For all the termi-

nology and notation not defined here, we follow [1, 2, 5].

A (connected) bipartite graph is said to be biregular if all vertices on the same side

of the bipartition have the same degree. Particularly, we refer to a bipartite graph

with parts of size m and n as an (r, s)-bipartite biregular graph if the m vertices in

the same part each has degree r and the n vertices in the same part each has degree

s. A graph G of order n > 2 is called pancyclic if G contains a cycle of length l for

each integer l with 3 ≤ l ≤ n. A graph G of order n > 2 is called panconnected if

for every two vertices u and v, there is a u-v path of length l for every integer l with

d(u, v) ≤ l ≤ n− 1. Note that if a graph G is panconnected, then G is pancyclic. A

graph G of order n > 2 is called Hamilton-connected if for any pair of distinct vertices

u and v, there is a Hamilton u-v path, namely, there is a u-v path of length n − 1.

It is clear that if G is a panconnected graph then G is a Hamilton-connected graph.

If n > 2, then the graph Kn, the complete graph on n vertices, is a panconnected

graph.

A vertex cut of the graph G is a subset U of V such that the subgraph G-U which is

induced by the set V -U is either trivial or not connected. The connectivity κ(G) of

a nontrivial connected graph G is the minimum cardinality of all vertex cuts of G. If

we denote by δ(G) the minimum degree of G, then κ(G) ≤ δ(G). A graph G is called

k-connected (for a positive integer k) if |V (G)| > k and G−X is connected for every

subset X ⊂ V (G) with |X| < k. It is trivial that if a positive integer m is such that

m ≤ κ(G), then G is an m-connected graph.

Theorem 1. [3] If G is a 2-connected graph, then G2 is Hamilton-connected.
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By Theorem 1, and [4] we can deduce the following result.

Theorem 2. The square of a graph G is panconnected whenever G is a 2-connected
graph.

2. Main Results

Definition 1. Let G = (V,E) be a connected graph. The subdivision graph S(G) of G is
a bipartite graph with the vertex set V ∪E in which vertices v ∈ V and e ∈ E are adjacent
if and only if the vertex v is incident on the edge e in the graph G. In other words, each
edge e = {u, v} ∈ E is deleted and replaced by two edges {u,w} and {w, v} with the new
vertex w = we.

The graphs Q3 (cube) and S(Q3) are depicted in Figure 1.

Figure 1. Q3 and S(Q3)

Example 1. Definition 1, implies that if G is the cycle C4 then the graph S(G) is the
cycle C8. In fact if n ≥ 3 is an integer and G = Cn, then S(G) is a connected 2-regular
graph with 2n vertices, and hence S(G) is isomorphic with the cycle C2n.

Note Let G = (V,E) be a graph and e = {x, y} be an edge of G. In the sequel we

write e = xy instead of e = {x, y}.

Let G = (V,E) be a connected graph. Definition 1, follows that if v is a vertex of

degree k in the graph G, then deg(v) in the graph S(G) is k whereas the degree of each

e ∈ E in S(G) is 2. Hence, if G is a k regular graph, then S(G) is a (k, 2)-bipartite

biregular graph.

Let G = (V,E) be a graph. If P : v1, v2, . . . , vm be a path (walk) in G, then

Q : v1, v1v2, v2, . . . , vm−1, vm−1vm, vm is a path (walk) in S(G). In other words,

corresponding to any path (walk) in G there is a path (walk) in S(G). Nothing this

observation, we can easily obtain the following result.

Proposition 1. If G = (V,E) is a connected graph, then S(G) is a connected graph.
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Proof. The proof is straightforward.

Let G be a graph and D(G) be its diameter. We can easily deduce the following

result.

Corollary 1. Let G = (V,E) be a connected graph, then we have D(S(G)) ≤ 2D(G) + 2.

The obtained bound in Corollary 1, is sharp, that is, there are graphs G with diameter

D such that the diameter of the graph S(G) is 2D+ 2. In fact if n ≥ 4 and G = Kn,

the complete graph of order n which is a graph with diameter 1, then it is easy to

check that D(S(G)) = 4 = 2× 1 + 2.

Theorem 3. If G = (V,E) is a 2-connected graph, then the graph S(G) is a 2-connected
graph.

Proof. We know that a graph X is a 2-connected graph if and only if the graph

X − w is a connected graph for every vertex w in the graph G. Hence we show that

the graph S(G)− w is a connected graph for every vertex w in the graph S(G). Let

w be a vertex in the graph S(G). We consider two cases.

Case 1. w ∈ V .

We show that if v1 and v2 are vertices in the graph S(G) − w, then there is a path

from v1 to v2 in the graph S(G)−w. There are three cases, namely, (i) v1, v2 ∈ V −w,

(ii) v1 ∈ V − w and v2 ∈ E, (iii) v1, v2 ∈ E.

(i) Let v1, v2 ∈ V −w. Since the graph G is a 2-connected graph, then there is a path

P between v1 and v2 in the graph G − w. We now can easily check that there is a

path from v1 to v2 in the graph S(G)− w.

(ii) Let v1 ∈ V − w and v2 ∈ E. Let v2 = {x, y} = xy, where x, y ∈ V . It is clear

that x 6= w or y 6= w. Let x 6= w. Then by the case (i), there is a path P from the

vertex v1 to the vertex x in the graph G−w. Now it is not hard to check that there

is a path from v1 to v2 in the graph S(G)− w.

(iii) Let v1, v2 ∈ E. Let v1 = xy and v2 = uv, where x, y, u, v ∈ V . We can assume

that x 6= w and u 6= w. Then, from the case (i) it follows that there is a path P from

the vertex x to the vertex u in the graph G− w. We now can deduce that there is a

path from x to u in the graph S(G)− w.

Case 2. w ∈ E.

Let w = xy where x, y ∈ V . We show that if v1 and v2 are vertices in the graph

S(G)−w, then there is a path from v1 to v2 in the graph S(G)−w. There are three

cases, namely, (i) v1, v2 ∈ V , (ii) v1 ∈ V and v2 ∈ E − w, (iii) v1, v2 ∈ E − w.

(i) Let v1, v2 ∈ V . Since the graph G is a 2-connected graph, then λ(G) = λ ≥ 2,

where λ(G) is the edge connectivity of G. Note that in fact we have λ(G) ≥ κ(G)

[2]. Hence we can construct a path P from v1 to v2 in the graph G such that P does

not contain the edge w = xy. Thus, by a similar method which has been seen in the
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proof of the Case 1 we can conclude that there is a path from v1 to v2 in the graph

S(G)− w.

The proof for the cases (ii) and (iii) are similar to the case (i) of Case 2 and cases (ii)

and (iii) of cases 1.

Remark 1. Note that since δ(S(G)), the minimum degree of the graph S(G) is 2, then we
have κ(S(G)) ≤ 2. Hence if the graph G = (V,E) is a 2-connected graph, then by Theorem
3, the connectivity of the graph S(G) is maximal.

Let G = (V,E) be a graph. The line graph L(G) of the graph G is constructed by

taking the edges of G as vertices of L(G), and joining two vertices in L(G) whenever

the corresponding edges in G have a common vertex. If e = xy is a vertex in L(G),

then degL(G) e = deg(x)+deg(y)−2. Hence if G is a connected k-regular graph, then

L(G) is a connected 2k − 2-regular graph. Thus the valency of the line graph of the

k-regular graph G is ‘almost’ twofold of the valency of the graph G.

From Theorem 3, some interesting results follow. Consider the graph S2(G), the

square of the subdivision graph of the graph G. It is not hard to check that S2(G)

is graph with the vertex-set V ∪ E and the edge set E ∪ E(L(G)) ∪ E(S(G)). Note

that two vertices v, w ∈ V are adjacent in S2(G) if and only if they are at distance

2 in S(G), that is, there is an edge between v and w in the graph G, hence v and w

are adjacent in G. By a similar reason, two vertices e1, e2 ∈ E are adjacent in S2(G)

if and only if they are adjacent in the graph L(G). In the literature sometimes the

graph S2(G) is referred to as the total graph of G, denoted by T (G) [6]. Now, from

Theorem 3, and Theorem 2, the following interesting result follows.

Corollary 2. If the graph G is a 2-connected graph, then the total graph T (G) is a
panconnected graph.

Let G = (V,E) be a connected k-regular graph of order n with k ≥ 2. We now

want to investigate some properties of the graph L(S(G)), the line graph of the graph

S(G). The graph LS = L(S(G)) has some interesting properties. It is clear that the

order of LS is kn = 2|E(G)| which is greeter than the orders of the graphs G and

L(G). If w = {v, e}, v ∈ V, e ∈ E is a vertex in the graph LS, then for its degree

we have deg(w) = deg(v) + deg(e) − 2 = k + 2 − 2 = k. Hence LS is a k-regular

graph. In other words, the valency of the graph LS is equal to the valency of the

graph G. By Proposition 1, the graph S(G) is a connected graph, hence the graph

LS = L(S(G)) is a k-regular connected graph. Therefore by a recursive method, we

can construct connected k-regular graphs of orders greeter than any given integer i,

from any connected k-regular graph X in the hand. Moreover if the graph X is a

2-connected graph, then by Theorem 3, the constructed graphs by our method are

2-connected.

If k is an even integer, then the degree of each vertex in the graph S(G) is an even

integer (namely, 2 or k), thus the graph S(G) is Eulerian [2]. Therefore, if k is an
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even integer and G is a connected k-regular graph, then the graph LS = L(S(G)) is

a k-regular Hamiltonian graph.

Some symmetry properties of the graph S(G)

The group of all permutations of a set V is denoted by Sym(V ) or just Sym(n) when

|V | = n. A permutation group Γ on V is a subgroup of Sym(V ). In this case we

say that Γ acts on V . If G is a graph with vertex-set V , then we can view each

automorphism of G as a permutation of V , and so Aut(G) is a permutation group on

V. Let the group Γ act on V , we say that Γ is transitive (or Γ acts transitively on V )

if there is just one orbit. This means that given any two element u and v of V , there

is an element β of G such that β(u) = v. The graph G is called vertex-transitive if

Aut(G) acts transitively on V (G). The action of Aut(G) on V (G) induces an action

on E(G) by the rule β{x, y} = {β(x), β(y)}, where β ∈ Aut(G), and G is called

edge-transitive if this action is transitive. The graph G is called symmetric (arc-

transitive), if for all vertices u, v, x, y of G such that u and v are adjacent, and x and

y are adjacent, there is an automorphism α such that α(u) = x, and α(v) = y. It is

clear that a symmetric graph is vertex-transitive and edge-transitive.

One of the problems concerning a graph G = (V,E) is the determination of its au-

tomorphism group. Although in most situations it is difficult to determine the auto-

morphism group of a graph G, there are various papers concerning this matter in the

literature, and some of the recent works include [9, 11–17].

Let G = (V,E) be a connected graph and S = S(G). In this subsection we show

that the graph S inherits some symmetry properties from the graph G. Let α be an

automorphism of the graph G. This automorphism induces an automorphism fα of

the graph S. In fact if we define the mapping fα: V (S)→ V (S) by this rule,

fα(w) =

{
α(w) if w ∈ V
{α(x), α(y)} if w ∈ E,w = {x, y}, x, y ∈ V

(1)

then fα is an automorphism of the graph S with this property, fα(V ) = V, fα(E) =

E. Note that if e = {v, {v, w}} is an edge of the graph S, then fα(e) =

{α(v), {α(v), α(w)}}, is an edge of graph S. It is easy to see that if H = {fα | α ∈
Aut(G)}, then H is isomorphic to the group Aut(G). Hence Aut(S(G)) contains a

subgroup isomorphic to the group Aut(G).

Proposition 2. Let G = (V,E) be a connected graph. If G is an arc-transitive graph,
then the graph L = L(S(G)) is a vertex-transitive graph.

Proof. It is clear that if a graph X is edge-transitive, then its line graph L(X) is

a vertex-transitive graph. Thus, we show that S(G) is an edge-transitive graph. Let

e1 = {x, xy} and e2 = {u, uv} be edges in S(G). Since the graph G is an arc-transitive

graph, then there is an automorphism α ∈ Aut(G) such that α(x) = u and α(y) = v.
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Then, from (1) we have;

fα(e1) = {α(x), α(x)α(y)} = {u, uv} = e2

Since fα is an automorphism of the graph S(G), then S(G) is an edge-transitive

graph.

Let G = (V,E) be a connected graph of order n. If the degree of every vertex in G is

2, then G is the cycle Cn. Thus by Proposition 1, S(G) is a 2-regular connected graph

of order 2n and hence S(G) is the cycle C2n. We know that Aut(Cn) ∼= Dn, where Dn
is the dihedral group of order 2n. Therefore Aut(S(G)) ∼= D4n � Aut(G). We show

that this is the only exceptional case, that is, if G � Cn, then Aut(S(G)) ∼= Aut(G).

In the sequel, we need the following result.

Lemma 1. Let G = (U ∪W,E), U ∩W = ∅ be a connected bipartite graph. If f is an
automorphism of the graph G, then f(U) = U and f(W ) = W , or f(U) = W and f(W ) = U .

Proof. Automorphisms of G preserve the distance between vertices and since two

vertices are in the same part if and only if they are at even distance from each other,

the result follows.

We have the following definition due to Sabidussi [18].

Definition 2. Let G = (V,E) be a graph with the vertex-set V and the edge-set E. Let
N(v) denote the set of neighbors of the vertex v of G. We say that G is an irreducible graph
if for every pair of distinct vertices x, y ∈ V we have N(x) 6= N(y).

From Definition 2, it follows that the cycle Cn, n 6= 4, is irreducible, but the complete

bipartite graph Km,n is not irreducible, when (m,n) 6= (1, 1). It is easy to check

that if G is a simple connected graph of order n ≥ 3, then its subdivision S(G) is

irreducible.

Lemma 2. Let G = (U ∪W,E), U ∩W = ∅ be a bipartite irreducible graph. If f is an
automorphism of G such that f(u) = u for every u ∈ U , then f is the identity automorphism
of G.

Proof. Let w ∈ W be an arbitrary vertex. Since f is an automorphism of the

graph G, then for the set N(w) = {u | u ∈ U, {u,w} ∈ E(G)}, we have f(N(w)) =

{f(u) | u ∈ U, {f(u), f(w)} ∈ E(G)} = N(f(w)). On the other hand, since for every

u ∈ U , f(u) = u, then we have f(N(w)) = N(w), and therefore N(f(w)) = N(w).

Now since G is an irreducible graph we must have f(w) = w. Hence, for every vertex

x in V (G) we have f(x) = x and thus f is the identity automorphism of the graph

G.
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Theorem 4. Let G = (V,E) be a connected graph of order n ≥ 3 such that G � Cn.
Then Aut(S(G)) ∼= Aut(G).

Proof. We know that S(G) is a connected bipartite graph with the vertex set V1 =

V ∪ E such that each of its vertices which is in E is of degree 2. Let f be an

automorphism of the graph S(G). Since G � Cn, then then there is a vertex v in

V = V (G) such that deg(v) 6= 2. We know that deg(f(v)) = deg(v), thus f(v) /∈ E.

Therefore f(v) ∈ V , and hence by Lemma 1, we have f(V ) = V . Let α = f|V , be the

restriction of the mapping f to V . Then α is a bijection of the set V . We assert that in

fact α is an automorphism of the graphG. Let v and w be adjacent vertices inG. Then

v and w, as vertices of S(G), have a common neighbor in the graph S(G), namely, the

vertex {v, w}. Thus, f(v) = α(v) and f(w) = α(w) as vertices of S(G) have a common

neighbor in S(G), and hence they are adjacent in the graph G. We now deduce that

α is an automorphism of the graph G. Let fα be the induced automorphism of

α which is defined in (1). If we let l = f−1fα, then l is an automorphism of the

graph S(G) such that l(v) = v for every v ∈ V. Since S(G) is an irreducible graph,

hence from Lemma 2, it follows that l = I, the identity automorphism of S(G), and

hence f = fα. Therefore, Aut(S(G)) ≤ H = {fα | α ∈ Aut(G)}. It is clear that

H ≤ Aut(S(G)), hence we have H = Aut(S(G)). On the other hand H ∼= Aut(G),

hence Aut(S(G)) ∼= Aut(G).

Let G = (V,E) be a graph and L(G) be its line graph. There is an important relation

between Aut(G) and Aut(L(G). In fact, we have the following result [1, chapter 15].

Theorem 5. Let G be a connected graph. The mapping θ : Aut(G)→ Aut(L(G) defined
by the rule,

θ(g){u, v} = {g(u), g(v)}, g ∈ Aut(G), {u, v} ∈ E(G),

is a group homomorphism and in fact we have;
(i) θ is a monomorphism provided G 6= K2;
(ii) θ is an epimorphism provided G is not K4, K4 with one edge deleted, or K4 with two
adjacent edges deleted.

From Theorem 4, and Theorem 5, we have the following result.

Theorem 6. Let n ≥ 5 and G = (V,E) be a connected graph such that G � Cn. Then
Aut(L(S(G))) ∼= Aut(G).

Remark 2. Let [n] = {1, 2, . . . , n} and Kn be the complete graph with the vertex-set [n].
It is easy to see that S(Kn) is the bipartite graph with the vertex-set V = V1 ∪ V2, where
V1 = {v : v ⊂ [n], |v| = 1} and V2 = {v : v ⊂ [n], |v| = 2}, in which two vertices v and w
are adjacent if and only if v ⊂ w or w ⊂ v. Now consider the graph G = L(S(Kn)). This
graph is the same as the graph which has been investigated in [11] under the name L(n). In
other words, we have L(S(Kn)) ∼= L(n). Figure 2. depicts the graph L(4).
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[2, 23]

[3, 23]

[4, 34] [3, 34]
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[3, 13]
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Figure 2. The graph L(4)

Note that in this figure [i, ij] denotes the vertex {{i}, {i, j}}. The graph L(n) has some
interesting properties, for instance it is an integral graph with exactly five eigenvalues, -
2,-1,0,n − 2,n − 1 [10]. Moreover, L(n) is a Cayley graph if and only if n is a power of a
prime integer [13]. An interesting property of the graph S(Kn) has been appeared in [8]
(S(Kn) is (isomorphic to) the square root of the Johnson graph J(n+ 1, 2), that is, S2(Kn)
is isomorphic to the Johnson graph J(n + 1, 2)). Concerning the automorphism group of
the graph L(n), since Aut(Kn) ∼= Sym([n]), hence by Theorem 6, we have Aut(L(n)) ∼=
Aut(L(S(Kn))) ∼= Sym([n]).

Hamiltonian properties of the graph L(S(G))

Let G = (V,E) be a connected graph. We saw that if G is a k-regular graph with k is

an even integer, then the graph L(S(G)) is a Hamiltonian graph. We now show that

if G is Hamiltonian then L(S(G)) is a Hamiltonian graph. For our purpose we need

the following result due to Harary and Nash-Williams [7].

Theorem 7. Let G be a graph of order n with n ≥ 4. Then the line graph L(G) has
a Hamiltonian cycle if and only if G has a closed trail which includes at least one vertex of
each edge of G.

Theorem 8. Let G = (V,E) be a connected graph of order n with n ≥ 3. If G is a
Hamiltonian graph, then L(S(G)) is a Hamiltonian graph.

Proof. When n = 3, then G = C3, the cycle of order 3, which is a Hamiltonian

graph. Note that S(G) is C6, hence L(S(G)) is C6, which is a Hamiltonian graph.

Hence in the remainder of the proof, we assume that n ≥ 4. Let G = (V,E) be

a Hamiltonian graph and V = {v1, v2, . . . , vn}. Hence, G has a Hamiltonian cy-

cle C : w1, w2, . . . , wn, w1, where {v1, v2, . . . , vn} = {w1, w2, . . . , wn}. Therefore

P : w1, w1w2, w2, w2w3, . . . , wn−1, wn−1wn, wn, wnw1, w1 is a closed trail (in fact is

a cycle) in the graph S(G). If e = {wi, wiwj} is an edge of the graph S(G), then P

clearly includes the vertex wi of e. Therefore by Theorem 7, the graph L(S(G)) is a

Hamiltonian graph.
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We know that Kn is a Hamiltonian graph, hence by Theorem 8, we have the following

result.

Corollary 3. The graph L(n) ∼= L(S(Kn)) is a Hamiltonian graph.

3. Conclusion

In this paper, we investigated some properties of the graph S(G), the subdivision

of G, and its line graph L(S(G)). We saw in Theorem 3, Theorem 4, Theorem 6,

and Theorem 8, that the graphs S(G) and L(S(G)) inherit some desired properties

of the graph G. In particular, L(S(G)) inherits Hamiltonicity and some symmetry

properties from G.
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