Face-Magic Labelings of Some Grid-Related Graphs

Bryan Freyberg
Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, USA
frey0031@d.umn.edu

Received: 1 January 2023; Accepted: 28 March 2023
Published Online: 30 March 2023

Abstract

A type $(1,1,1)$ face-magic labeling of a planar graph $G=(V, E, F)$ is a bijection from $V \cup E \cup F$ to the set of labels $\{1,2, \ldots,|V|+|E|+|F|\}$ such that the weight of every n-sided face of G is equal to the same fixed constant. The weight of a face $\mathcal{F} \in F$ is equal to the sum of the labels of the vertices, edges, and face that determine \mathcal{F}. It is known that the grid graph $P_{m} \square P_{n}$ admits a type ($1,1,1$) facemagic labeling, but the proof in the literature is quite lengthy. We give a simple proof of this result and show two more infinite families of gridded graphs admit type ($1,1,1$) face-magic labelings.

Keywords: type (a, b, c) face-magic graph labeling, edge-magic total graph labeling.
AMS Subject classification: 05C78

1. Introduction

Let $G=(V, E, F)$ be a planar graph. A labeling of G is an assignment of integers, or sometimes elements of a group, to a subset of $V \cup E \cup F$. In 1983, Lih introduced the following labeling of the vertices, edges, and faces of a planar graph [5]. Let $\ell: V \cup E \cup F \rightarrow\{1,2, \ldots,|V|+|E|+|F|\}$ be a bijection and define $N(\mathcal{F})$ as the set of vertices and edges that comprise the face $\mathcal{F} \in F$. The weight of each face $\mathcal{F} \in F$ is defined as

$$
w(\mathcal{F})=\ell(\mathcal{F})+\sum_{x \in N(\mathcal{F})} \ell(x) .
$$

If the weight of every n-sided face is equal to the same fixed constant $\mu(n)$, then we say ℓ is a type $(1,1,1)$ face-magic labeling of G. We refer to $\mu(n)$ as the magic constant and to G as a face-magic graph of type $(1,1,1)$.
Lih's definition has become a subcase of a broader family known as type (a, b, c) face-magic labelings. We refer the reader to Gallian's dynamic survey for details and recently updated results involving these and other types of graph labelings [4].
(C) 2023 Azarbaijan Shahid Madani University

A somewhat related labeling is as follows. Let $G=(V, E)$ be a graph and $f: V \cup E \rightarrow$ $\{1,2, \ldots,|V|+|E|\}$ a bijection. If there exists a constant k such that

$$
f(x)+f(x y)+f(y)=k
$$

for every edge $\{x, y\} \in E$, then f is an edge-magic total labeling (EMT) of G and G is an EMT graph. The author generalized this labeling and showed how it can be used as a tool for producing face-magic labelings of many types in [3].
It is well known that paths and cycles admit EMT labelings. Figueroa-Centeno, Ichishima, and Muntaner-Batle showed the following in [2].

Theorem 1 (Figueroa-Centeno, et al. [2]). Let G be a bipartite or tripartite edge-magic total graph and m be any odd integer. Then $m G$, the graph of m disjoint copies of G, is also an edge-magic total graph.

We will use this result to construct face-magic labelings of type $(1,1,1)$ for some grid-related graphs in the sections that follow.

2. A new proof of an old result

The planar grid graph $G=(V, E, F) \cong P_{m} \square P_{n}$ is the graph with

$$
V(G)=\{(i, j): 1 \leq i \leq m, 1 \leq j \leq n\}
$$

and

$$
\begin{aligned}
E(G) & =\{\{(i, j),(i, j+1)\}: 1 \leq i \leq m, 1 \leq j \leq n-1\} \\
& \cup\{\{(i, j),(i+1, j)\}: 1 \leq i \leq m-1,1 \leq j \leq n\}
\end{aligned}
$$

Assuming its natural embedding in the plane, we associate each of the $(m-1)(n-1) 4$ sided faces $\mathcal{F}_{i, j}$ with the vertex (i, j) in its upper left corner. The exterior ($2 m+2 n-4$)sided face is denoted \mathcal{F}_{∞}. In total, G contains $4 m n-2 m-2 n+2$ vertices, edges, and faces. Bača proved the following result in 1992. We give a much shorter proof using edge-magic total labelings.

Theorem 2 (Bac̆a [1]). The planar grid graph $P_{m} \square P_{n}$ is a type $(1,1,1)$ face-magic graph for all $m, n \geq 2$ and $m+n \neq 4$

Proof. Let $G=(V, E, F) \cong P_{m} \square P_{n}$ be embedded in the plane as its namesake suggests and f be an edge-magic total labeling of $H \cong(2 m-1) P_{n}$ with magic constant k. Such a labeling exists by Theorem 1 . For convenience, let $t=|V|+|E|+|F|=$ $4 m n-2 m-2 n+2$. Write $V(H)=\left\{v_{j}^{i}: 1 \leq i \leq 2 m-1,1 \leq j \leq n\right\}$ where $\left(v_{1}^{i}, v_{2}^{i}, \ldots, v_{n}^{i}\right)$ is the $i^{\text {th }}$ copy of P_{n}. Therefore, $f: V(H) \cup E(H) \rightarrow\{1,2, \ldots, t-1\}$, is a bijection and

$$
f\left(v_{j}^{i}\right)+f\left(\left\{v_{j}^{i}, v_{j+1}^{i}\right\}\right)+f\left(v_{j+1}^{i}\right)=k
$$

for $1 \leq i \leq 2 m-1$, and $1 \leq j \leq n-1$.
We claim the following labeling, $\ell: V \cup E \cup F \rightarrow\{1,2, \ldots, t\}$ is a type $(1,1,1)$ face-magic labeling of G. Let $\ell\left(\mathcal{F}_{\infty}\right)=t$ and

$$
\begin{aligned}
& \ell(i, j)=f\left(v_{j}^{i}\right) \text { for } 1 \leq i \leq m, 1 \leq j \leq n \\
& \ell(\{(i, j),(i, j+1)\})=f\left(\left\{v_{j}^{i}, v_{j+1}^{i}\right\}\right) \text { for } 1 \leq i \leq m, 1 \leq j \leq n-1 \text {, } \\
& \ell(\{(i, j),(i+1, j)\})=f\left(v_{i}^{m+i}\right) \text { for } 1 \leq i \leq m-1,1 \leq j \leq n \text {, and } \\
& \ell\left(\mathcal{F}_{i, j}\right)=f\left(v_{i}^{m+i}, v_{i+1}^{m+i}\right) \text { for } 1 \leq i \leq m-1,1 \leq j \leq n-1
\end{aligned}
$$

Obviously ℓ is a bijection, and since $2(m+n)-4>4$, the weight of the exterior face is irrelevant, so we need only check the weight of each 4 -sided face. Let $\mathcal{F}_{i, j} \in F$ be given. Then

$$
\begin{aligned}
& w\left(\mathcal{F}_{i, j}\right)=\ell(i, j)+\ell(\{(i, j),(i, j+1)\})+\ell(i, j+1) \\
& +\ell(\{(i, j),(i+1, j)\})+\ell\left(\mathcal{F}_{i, j}\right)+\ell(\{(i, j+1),(i+1, j+1)\}) \\
& +\ell(i+1, j)+\ell(\{(i+1, j),(i+1, j+1)\})+\ell(i+1, j+1) \\
& =3 k
\end{aligned}
$$

Notice that the sum of the three terms in each of the first three lines in the above sum equal k. Since k is a constant, the proof is complete.

3. Tent graphs

For positive integers m and n where $m, n \geq 2$, we define the $m \times n$ tent graph $T(m, n)$ as follows. Let $G \cong T(m, n)$ and

$$
\begin{aligned}
V(G) & =\{(i, j): 1 \leq i \leq m, 1 \leq j \leq n\} \cup\{p\}, \\
E(G) & =\{\{p,(1, j)\}: 1 \leq j \leq n\} \\
& \cup\{\{(i, j),(i, j+1)\}: 1 \leq i \leq m, 1 \leq j \leq n-1\} \\
& \cup\{\{(i, j),(i+1, j)\}: 1 \leq i \leq m-1,1 \leq j \leq n\}, \\
F(G) & =\left\{\mathcal{F}_{i, j}: 1 \leq i \leq m-1,1 \leq j \leq n-1\right\} \\
& \cup\left\{\mathcal{F}_{p, j}: 1 \leq j \leq n-1\right\} \\
& \cup\left\{\mathcal{F}_{\infty}\right\} .
\end{aligned}
$$

$T(m, n)$ is the graph obtained by adding a single vertex p to the Cartesian product $P_{m} \square P_{n}$ and joining p with every vertex in the top row. See Figure 1 for a depiction of the graph. The Mongolian tent graph is a similar graph, but contains only 4-sided faces [4].

Figure 1. The $m \times n$ tent graph, $T(m, n)$

We associate each of the $(m-1)(n-1) 4$-sided faces $\mathcal{F}_{i, j}$ with the vertex (i, j) in its upper left corner and each of the $n-13$-sided faces $\mathcal{F}_{p, j}$ with the vertex in its lower left corner, $(1, j)$. The exterior $(2 m+n-1)$-sided face is denoted \mathcal{F}_{∞}. In total, G contains $4 m n-2 m+2$ vertices, edges, and faces.

Theorem 3. The $m \times n$ tent graph $T(m, n)$ is a type $(1,1,1)$ face-magic graph for all $m, n \geq 2$.

Proof. Assume the natural embedding of $G=(V, E, F) \cong T(m, n)$ and apply the labeling ℓ from the proof of Theorem 2 to the subgraph $H \cong P_{m} \square P_{n}$ of G. For convenience, let $t=4 m n-2 m-2 n+2$. Thus far, the exterior face has been labeled as well as the vertices, edges, and faces forming the 4 -sided faces using the integers $\{1,2, \ldots, t\}$. Furthermore, the weight of every 4 -sided face is equal to some constant $3 k^{\prime}$.
We need only label the vertex p, edges in the set $\{\{p,(1, j)\}: 1 \leq j \leq n\}$, and the faces in the set $\left\{\mathcal{F}_{p, j}: 1 \leq j \leq n-1\right\}$. Let f be an edge-magic total labeling of the path $P_{n} \cong\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ with magic constant k and define

$$
\begin{aligned}
& \ell(\{p,(1, j)\})=f\left(v_{j}\right)+t \text { for } 1 \leq j \leq n, \\
& \ell\left(\mathcal{F}_{p, j}\right)=f\left(\left\{v_{j}, v_{j+1}\right\}\right)+t \text { for } 1 \leq j \leq n-1, \text { and } \\
& \ell(p)=2 n+t
\end{aligned}
$$

Clearly, $\ell: V \cup E \cup F \rightarrow\{1,2, \ldots, 4 m n-2 m+2\}$ is a bijection, so we need only check the weights. Let $\mathcal{F} \in F$. If \mathcal{F} has 4 sides, we have already established that
$w(\mathcal{F})=3 k^{\prime}$. If $\mathcal{F}=\mathcal{F}_{\infty}$, then it is the only $(2 m+n-1)$-sided face so its weight is irrelevant. Finally, if \mathcal{F} has 3 sides, then $\mathcal{F}=\mathcal{F}_{p, j}$ for some $1 \leq j \leq n-1$ and we have

$$
\begin{aligned}
w(\mathcal{F}) & =\ell(1, j)+\ell(\{(1, j),(1, j+1)\})+\ell(1, j+1) \\
& +\ell(\{p,(1, j)\})+\ell\left(\mathcal{F}_{p, j}\right)+\ell(\{p,(1, j+1)\})+\ell(p) \\
& =k^{\prime}+f\left(v_{j}\right)+f\left(\left\{v_{j}, v_{j+1}\right\}\right)+f\left(v_{j+1}\right)+2 n+4 t \\
& =k^{\prime}+k+2 n+4 t \\
& =k^{\prime}+16 m n-8 m-6 n+4
\end{aligned}
$$

Since every s-sided face has the same weight for $s \in\{3,4,2 m+n-1\}$, the proof is complete.

Wrapping the tent graph around a cylinder and adding edges that connect the boundary vertices forms a graph we call a circular tent graph. For positive integers $m \geq 2$ and $n \geq 3$, define the $m \times n$ circular tent $\operatorname{graph} C T(m, n)$ as follows. Let $G \cong C T(m, n)$ and

$$
\begin{aligned}
& V(G)=\{(i, j): 1 \leq i \leq m, 1 \leq j \leq n\} \cup\{p\}, \\
& E(G)=\{\{p,(1, j)\}: 1 \leq j \leq n\} \\
& \cup \cup\{\{(i, j),(i, j+1)\}: 1 \leq i \leq m, 1 \leq j \leq n\} \\
& \cup\{\{(i, j),(i+1, j)\}: 1 \leq i \leq m-1,1 \leq j \leq n\}, \\
& F(G)=\left\{\mathcal{F}_{i, j}: 1 \leq i \leq m-1,1 \leq j \leq n\right\} \\
& \cup\left\{\mathcal{F}_{p, j}: 1 \leq j \leq n\right\} \\
& \cup\left\{\mathcal{F}_{\infty}\right\},
\end{aligned}
$$

with arithmetic taken modulo n where appropriate. Simply, $C T(m, n)$ is the graph obtained from the Cartesian product $P_{m} \square C_{n}$ by adding a single vertex p and joining it with every vertex in the innermost layer isomorphic to C_{n}. In total, $C T(m, n)$ contains $4 m n+2$ vertices, edges, and faces. See Figure 2 for a rendition of $C T(m, n)$. Notice that $C T(1, n)$ is isomorphic to the wheel graph $W_{n} \cong C_{n}+K_{1}$.

Theorem 4. The $m \times n$ circular tent graph $C T(m, n)$ is a type $(1,1,1)$ face-magic graph for all $m \geq 1$ and $n \geq 5$.

Proof. Assume the embedding of $G=(V, E, F) \cong C T(m, n)$ as in Figure 2 and let f be an edge-magic total labeling of $H \cong(2 m-1) C_{n}$ with magic constant k. Such a labeling exists by Theorem 1. Write $V(H)=\left\{v_{j}^{i}: 1 \leq i \leq 2 m-1,1 \leq j \leq n\right\}$ where $\left(v_{1}^{i}, v_{2}^{i}, \ldots, v_{n}^{i}, v_{1}^{i}\right)$ is the $i^{\text {th }}$ copy of C_{n}. Observe that $f: V(H) \cup E(H) \rightarrow$ $\{1,2, \ldots, 4 m n-2 n\}$ is a bijection with the property

$$
f\left(v_{j}^{i}\right)+f\left(\left\{v_{j}^{i}, v_{j+1}^{i}\right\}\right)+f\left(v_{j+1}^{i}\right)=k
$$

Figure 2. The $m \times n$ circular tent $\operatorname{graph} C T(m, n)$
for $1 \leq i \leq 2 m-1$ and $1 \leq j \leq n$ (with arithmetic performed modulo n where appropriate). Similarly, let f^{\prime} be an edge-magic total labeling of $H^{\prime}=$ $C_{n} \cong\left(v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right)$ with magic constant k^{\prime}. Note that $f^{\prime}: V\left(H^{\prime}\right) \cup E\left(H^{\prime}\right) \rightarrow$ $\{1,2, \ldots, 2 n\}$ is a bijection with the property

$$
f^{\prime}\left(v_{i}\right)+f^{\prime}\left(\left\{v_{i}, v_{i+1}\right\}\right)+f^{\prime}\left(v_{i+1}\right)=k^{\prime}
$$

for $i=1,2, \ldots, n$ (with arithmetic performed modulo n).
We claim the following labeling, $\ell: V \cup E \cup F \rightarrow\{1,2, \ldots, 4 m n+2\}$ is a type $(1,1,1)$ face-magic labeling of G. Let $\ell(p)=4 m n+1$ and $\ell\left(\mathcal{F}_{\infty}\right)=4 m n+2$. Then define

$$
\begin{aligned}
& \ell(i, j)=f\left(v_{j}^{i}\right) \text { and } \\
& \ell(\{(i, j),(i, j+1)\})=f\left(\left\{v_{j}^{i}, v_{j+1}^{i}\right\}\right) \text { for } 1 \leq i \leq m, 1 \leq j \leq n, \\
& \ell(\{(i, j),(i+1, j)\})=f\left(v_{i}^{m+i}\right) \text { and } \\
& \ell\left(\mathcal{F}_{i, j}\right)=f\left(v_{i}^{m+i}, v_{i+1}^{m+i}\right) \text { for } 1 \leq i \leq m-1,1 \leq j \leq n, \text { and } \\
& \ell(\{p,(1, j)\})=f^{\prime}\left(v_{j}\right)+4 m n-2 n, \\
& \ell\left(\mathcal{F}_{p, j}\right)=f^{\prime}\left(\left\{v_{j}, v_{j+1}\right\}\right)+4 m n-2 n, \\
& \ell(\{p,(1, j+1)\})=f^{\prime}\left(v_{j+1}\right)+4 m n-2 n \text { for } 1 \leq j \leq n .
\end{aligned}
$$

Obviously ℓ is a bijection, and since $n>4$, the weight of the exterior face is irrelevant, so we need only check the weights of the 3 - or 4 -sided faces. Let $\mathcal{F}_{i, j} \in F$ be given. If $i=p$ and $1 \leq j \leq n$, then $\mathcal{F}_{i, j}$ is a 3 -sided face and

$$
\begin{aligned}
w\left(\mathcal{F}_{p, j}\right) & =\ell(1, j)+\ell(\{(1, j),(1, j+1)\})+\ell(1, j+1) \\
& +\ell(\{p,(1, j)\})+\ell\left(\mathcal{F}_{p, j}\right)+\ell(\{p,(1, j+1)\})+\ell(p) \\
& =k+k^{\prime}+16 m n-6 n+1
\end{aligned}
$$

On the other hand, if $1 \leq i \leq m-1$ and $1 \leq j \leq n$, then $\mathcal{F}_{i, j}$ is a 4 -sided face and

$$
\begin{aligned}
& w\left(\mathcal{F}_{i, j}\right)=\ell(i, j)+\ell(\{(i, j),(i, j+1)\})+\ell(i, j+1) \\
& +\ell(\{(i, j),(i+1, j)\})+\ell\left(\mathcal{F}_{i, j}\right)+\ell(\{(i, j+1),(i+1, j+1)\}) \\
& +\ell(i+1, j)+\ell(\{(i+1, j),(i+1, j+1)\})+\ell(i+1, j+1) \\
& =3 k
\end{aligned}
$$

Since the weight is constant in both cases, the proof is complete.

References

[1] M. Bac̆a, On magic labelings of grid graphs, Ars Combin. 33 (1992), 295-299.
[2] R.M. Figueroa-Centeno, R. Ichishima, and F.A. Muntaner-Batle, On edge-magic labelings of certain disjoint unions of graphs, Australas. J. Comb. 32 (2005), 225242.
[3] B. Freyberg, Face-magic labelings of type (a, b, c) from edge-magic labelings of type (α, β), Bull. Inst. Combin. Appl. 93 (2021), 83-102.
[4] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 23 (2020), DS6.
[5] K.W. Lih, On magic and consecutive labelings of plane graphs, Util. Math. 24 (1983), 165-197.

