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Abstract: A type (1, 1, 1) face-magic labeling of a planar graph G = (V,E, F ) is a
bijection from V ∪ E ∪ F to the set of labels {1, 2, . . . , |V | + |E| + |F |} such that the

weight of every n-sided face of G is equal to the same fixed constant. The weight of

a face F ∈ F is equal to the sum of the labels of the vertices, edges, and face that
determine F . It is known that the grid graph Pm�Pn admits a type (1, 1, 1) face-

magic labeling, but the proof in the literature is quite lengthy. We give a simple proof
of this result and show two more infinite families of gridded graphs admit type (1, 1, 1)

face-magic labelings.
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1. Introduction

Let G = (V,E, F ) be a planar graph. A labeling of G is an assignment of integers,

or sometimes elements of a group, to a subset of V ∪E ∪ F . In 1983, Lih introduced

the following labeling of the vertices, edges, and faces of a planar graph [5]. Let

` : V ∪E ∪ F → {1, 2, . . . , |V |+ |E|+ |F |} be a bijection and define N(F) as the set

of vertices and edges that comprise the face F ∈ F. The weight of each face F ∈ F is

defined as

w(F) = `(F) +
∑

x∈N(F)

`(x).

If the weight of every n-sided face is equal to the same fixed constant µ(n), then

we say ` is a type (1, 1, 1) face-magic labeling of G. We refer to µ(n) as the magic

constant and to G as a face-magic graph of type (1, 1, 1).

Lih’s definition has become a subcase of a broader family known as type (a, b, c)

face-magic labelings. We refer the reader to Gallian’s dynamic survey for details and

recently updated results involving these and other types of graph labelings [4].
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A somewhat related labeling is as follows. Let G = (V,E) be a graph and f : V ∪E →
{1, 2, . . . , |V |+ |E|} a bijection. If there exists a constant k such that

f(x) + f(xy) + f(y) = k

for every edge {x, y} ∈ E, then f is an edge-magic total labeling (EMT) of G and G is

an EMT graph. The author generalized this labeling and showed how it can be used

as a tool for producing face-magic labelings of many types in [3].

It is well known that paths and cycles admit EMT labelings. Figueroa-Centeno,

Ichishima, and Muntaner-Batle showed the following in [2].

Theorem 1 (Figueroa-Centeno, et al. [2]). Let G be a bipartite or tripartite
edge-magic total graph and m be any odd integer. Then mG, the graph of m disjoint copies
of G, is also an edge-magic total graph.

We will use this result to construct face-magic labelings of type (1, 1, 1) for some

grid-related graphs in the sections that follow.

2. A new proof of an old result

The planar grid graph G = (V,E, F ) ∼= Pm�Pn is the graph with

V (G) = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n},

and
E(G) = {{(i, j), (i, j + 1)} : 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1}

∪ {{(i, j), (i+ 1, j)} : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n}

Assuming its natural embedding in the plane, we associate each of the (m−1)(n−1) 4-

sided faces Fi,j with the vertex (i, j) in its upper left corner. The exterior (2m+2n−4)-

sided face is denoted F∞. In total, G contains 4mn−2m−2n+ 2 vertices, edges, and

faces. Bac̆a proved the following result in 1992. We give a much shorter proof using

edge-magic total labelings.

Theorem 2 (Bac̆a [1]). The planar grid graph Pm�Pn is a type (1, 1, 1) face-magic
graph for all m,n ≥ 2 and m+ n 6= 4

Proof. Let G = (V,E, F ) ∼= Pm�Pn be embedded in the plane as its namesake

suggests and f be an edge-magic total labeling of H ∼= (2m−1)Pn with magic constant

k. Such a labeling exists by Theorem 1. For convenience, let t = |V | + |E| + |F | =

4mn − 2m − 2n + 2. Write V (H) = {vij : 1 ≤ i ≤ 2m − 1, 1 ≤ j ≤ n} where

(vi1, v
i
2, . . . , v

i
n) is the ith copy of Pn. Therefore, f : V (H) ∪E(H)→ {1, 2, . . . , t− 1},

is a bijection and

f(vij) + f({vij , vij+1}) + f(vij+1) = k
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for 1 ≤ i ≤ 2m− 1, and 1 ≤ j ≤ n− 1.

We claim the following labeling, ` : V ∪ E ∪ F → {1, 2, . . . , t} is a type (1, 1, 1)

face-magic labeling of G. Let `(F∞) = t and

`(i, j) = f(vij) for 1 ≤ i ≤ m, 1 ≤ j ≤ n,
`({(i, j), (i, j + 1)}) = f({vij , vij+1}) for 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1,

`({(i, j), (i+ 1, j)}) = f(vm+i
i ) for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n, and

`(Fi,j) = f(vm+i
i , vm+i

i+1 ) for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1.

Obviously ` is a bijection, and since 2(m+ n)− 4 > 4, the weight of the exterior face

is irrelevant, so we need only check the weight of each 4-sided face. Let Fi,j ∈ F be

given. Then

w(Fi,j) = `(i, j) + `({(i, j), (i, j + 1)}) + `(i, j + 1)

+ `({(i, j), (i+ 1, j)}) + `(Fi,j) + `({(i, j + 1), (i+ 1, j + 1)})
+ `(i+ 1, j) + `({(i+ 1, j), (i+ 1, j + 1)}) + `(i+ 1, j + 1)

= 3k.

Notice that the sum of the three terms in each of the first three lines in the above

sum equal k. Since k is a constant, the proof is complete.

3. Tent graphs

For positive integers m and n where m,n ≥ 2, we define the m×n tent graph T (m,n)

as follows. Let G ∼= T (m,n) and

V (G) = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {p},

E(G) = {{p, (1, j)} : 1 ≤ j ≤ n}
∪ {{(i, j), (i, j + 1)} : 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1}
∪ {{(i, j), (i+ 1, j)} : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n},

F (G) = {Fi,j : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1}
∪ {Fp,j : 1 ≤ j ≤ n− 1}
∪ {F∞}.

T (m,n) is the graph obtained by adding a single vertex p to the Cartesian product

Pm�Pn and joining p with every vertex in the top row. See Figure 1 for a depiction

of the graph. The Mongolian tent graph is a similar graph, but contains only 4-sided

faces [4].
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(1, 1) (1, 2) (1, 3) (1, n)

(2, 1) (2, 2) (2, 3) (2, n)

(3, 1) (3, 2) (3, 3) (3, n)

(m, 1) (m, 2) (m, 3) (m,n)

p

Figure 1. The m× n tent graph, T (m,n)

We associate each of the (m− 1)(n− 1) 4-sided faces Fi,j with the vertex (i, j) in its

upper left corner and each of the n− 1 3-sided faces Fp,j with the vertex in its lower

left corner, (1, j). The exterior (2m + n − 1)-sided face is denoted F∞. In total, G

contains 4mn− 2m+ 2 vertices, edges, and faces.

Theorem 3. The m × n tent graph T (m,n) is a type (1, 1, 1) face-magic graph for all
m,n ≥ 2.

Proof. Assume the natural embedding of G = (V,E, F ) ∼= T (m,n) and apply the

labeling ` from the proof of Theorem 2 to the subgraph H ∼= Pm�Pn of G. For

convenience, let t = 4mn− 2m− 2n+ 2. Thus far, the exterior face has been labeled

as well as the vertices, edges, and faces forming the 4-sided faces using the integers

{1, 2, . . . , t}. Furthermore, the weight of every 4-sided face is equal to some constant

3k′.

We need only label the vertex p, edges in the set {{p, (1, j)} : 1 ≤ j ≤ n}, and the

faces in the set {Fp,j : 1 ≤ j ≤ n − 1}. Let f be an edge-magic total labeling of the

path Pn
∼= (v1, v2, . . . , vn) with magic constant k and define

`({p, (1, j)}) = f(vj) + t for 1 ≤ j ≤ n,
`(Fp,j) = f({vj , vj+1}) + t for 1 ≤ j ≤ n− 1, and

`(p) = 2n+ t.

Clearly, ` : V ∪ E ∪ F → {1, 2, . . . , 4mn − 2m + 2} is a bijection, so we need only

check the weights. Let F ∈ F. If F has 4 sides, we have already established that
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w(F) = 3k′. If F = F∞, then it is the only (2m + n − 1)-sided face so its weight is

irrelevant. Finally, if F has 3 sides, then F = Fp,j for some 1 ≤ j ≤ n − 1 and we

have
w(F) = `(1, j) + `({(1, j), (1, j + 1)}) + `(1, j + 1)

+ `({p, (1, j)}) + `(Fp,j) + `({p, (1, j + 1)}) + `(p)

= k′ + f(vj) + f({vj , vj+1}) + f(vj+1) + 2n+ 4t

= k′ + k + 2n+ 4t

= k′ + 16mn− 8m− 6n+ 4.

Since every s-sided face has the same weight for s ∈ {3, 4, 2m + n − 1}, the proof is

complete.

Wrapping the tent graph around a cylinder and adding edges that connect the

boundary vertices forms a graph we call a circular tent graph. For positive inte-

gers m ≥ 2 and n ≥ 3, define the m× n circular tent graph CT (m,n) as follows. Let

G ∼= CT (m,n) and

V (G) = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {p},

E(G) = {{p, (1, j)} : 1 ≤ j ≤ n}
∪ {{(i, j), (i, j + 1)} : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
∪ {{(i, j), (i+ 1, j)} : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n},

F (G) = {Fi,j : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n}
∪ {Fp,j : 1 ≤ j ≤ n}
∪ {F∞},

with arithmetic taken modulo n where appropriate. Simply, CT (m,n) is the graph

obtained from the Cartesian product Pm�Cn by adding a single vertex p and joining

it with every vertex in the innermost layer isomorphic to Cn. In total, CT (m,n)

contains 4mn+ 2 vertices, edges, and faces. See Figure 2 for a rendition of CT (m,n).

Notice that CT (1, n) is isomorphic to the wheel graph Wn
∼= Cn +K1.

Theorem 4. The m×n circular tent graph CT (m,n) is a type (1, 1, 1) face-magic graph
for all m ≥ 1 and n ≥ 5.

Proof. Assume the embedding of G = (V,E, F ) ∼= CT (m,n) as in Figure 2 and let

f be an edge-magic total labeling of H ∼= (2m − 1)Cn with magic constant k. Such

a labeling exists by Theorem 1. Write V (H) = {vij : 1 ≤ i ≤ 2m − 1, 1 ≤ j ≤ n}
where (vi1, v

i
2, . . . , v

i
n, v

i
1) is the ith copy of Cn. Observe that f : V (H) ∪ E(H) →

{1, 2, . . . , 4mn− 2n} is a bijection with the property

f(vij) + f({vij , vij+1}) + f(vij+1) = k
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(1, 2)(1, 3)
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(m, 4)

(m, 5)

Figure 2. The m× n circular tent graph CT (m,n)

for 1 ≤ i ≤ 2m − 1 and 1 ≤ j ≤ n (with arithmetic performed modulo n

where appropriate). Similarly, let f ′ be an edge-magic total labeling of H ′ =

Cn
∼= (v1, v2, . . . , vn, v1) with magic constant k′. Note that f ′ : V (H ′) ∪ E(H ′) →

{1, 2, . . . , 2n} is a bijection with the property

f ′(vi) + f ′({vi, vi+1}) + f ′(vi+1) = k′

for i = 1, 2, . . . , n (with arithmetic performed modulo n).

We claim the following labeling, ` : V ∪E ∪F → {1, 2, . . . , 4mn+ 2} is a type (1, 1, 1)

face-magic labeling of G. Let `(p) = 4mn+ 1 and `(F∞) = 4mn+ 2. Then define

`(i, j) = f(vij) and

`({(i, j), (i, j + 1)}) = f({vij , vij+1}) for 1 ≤ i ≤ m, 1 ≤ j ≤ n,
`({(i, j), (i+ 1, j)}) = f(vm+i

i ) and

`(Fi,j) = f(vm+i
i , vm+i

i+1 ) for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n, and

`({p, (1, j)}) = f ′(vj) + 4mn− 2n,

`(Fp,j) = f ′({vj , vj+1}) + 4mn− 2n,

`({p, (1, j + 1)}) = f ′(vj+1) + 4mn− 2n for 1 ≤ j ≤ n.

Obviously ` is a bijection, and since n > 4, the weight of the exterior face is irrelevant,

so we need only check the weights of the 3- or 4-sided faces. Let Fi,j ∈ F be given.

If i = p and 1 ≤ j ≤ n, then Fi,j is a 3-sided face and

w(Fp,j) = `(1, j) + `({(1, j), (1, j + 1)}) + `(1, j + 1)

+ `({p, (1, j)}) + `(Fp,j) + `({p, (1, j + 1)}) + `(p)

= k + k′ + 16mn− 6n+ 1.
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On the other hand, if 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n, then Fi,j is a 4-sided face and

w(Fi,j) = `(i, j) + `({(i, j), (i, j + 1)}) + `(i, j + 1)

+ `({(i, j), (i+ 1, j)}) + `(Fi,j) + `({(i, j + 1), (i+ 1, j + 1)})
+ `(i+ 1, j) + `({(i+ 1, j), (i+ 1, j + 1)}) + `(i+ 1, j + 1)

= 3k.

Since the weight is constant in both cases, the proof is complete.
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