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Abstract: The main aim of the paper is to give the crossing number of the join

product G∗ + Dn for the graph G∗ isomorphic to 4-regular graph on six vertices ex-

cept for two distinct edges with no common vertex such that two remaining vertices
are still adjacent, and where Dn consists of n isolated vertices. The proofs are done

with possibility of an existence of a separating cycle in some particular drawing of the

investigated graph G∗ and also with the help of well-known exact values for crossing
numbers of join products of two subgraphs Hk of G∗ with discrete graphs.
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1. Introduction

The issue of reducing the number of crossings on edges of simple graphs is interesting

in a lot of areas. Probably one of the most popular areas is the implementation

of the VLSI layout because it caused a significant revolution in circuit design and

thus had a strong effect on parallel calculations. Crossing numbers have also been

studied to improve the readability of hierarchical structures and automated graphs.

The visualized graph should be easy to read and understand. For the sake of clarity of

graphic drawings, some reduction of an edge crossing is probably the most important.

Note that examining number of crossings of simple graphs is an NP-complete problem

by Garey and Johnson [8].

The crossing number cr(G) of a simple graph G with the vertex set V (G) and the

edge set E(G) is the minimum possible number of edge crossings in a drawing of G

in the plane (for the definition of a drawing see Klešč [19]). It is easy to see that

a drawing with minimum number of crossings (an optimal drawing) is always a good
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drawing, meaning that no edge crosses itself, no two edges cross more than once, and

no two edges incident with the same vertex cross. Let D be a good drawing of the

graph G. We denote the number of crossings in D by crD(G). Let Gi and Gj be

edge-disjoint subgraphs of G. We denote the number of crossings between edges of

Gi and edges of Gj by crD(Gi, Gj), and the number of crossings among edges of Gi

in D by crD(Gi). It is easy to see that for any three mutually edge-disjoint subgraphs

Gi, Gj , and Gk of G, the following equations hold:

crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,

crD(Gi ∪Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk) .

Throughout this paper, some parts of proofs will be based on Kleitman’s result [16]

on crossing numbers for some complete bipartite graphs Km,n on m+n vertices with

a partition V (Km,n) = V1∪V2 and V1∩V2 = ∅ containing an edge between every pair

of vertices from V1 and V2 of sizes m and n, respectively. He showed that

cr(Km,n) =
⌊m

2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
, if min{m,n} ≤ 6. (1)

For an overview of several exact values of crossing numbers for specific graphs or

some families of graphs, see Clancy et al. [5]. The main goal of this survey is to

summarize all such published results for crossing numbers along with references also

in an effort to give priority to the author who published the first result. Chapter 4

is devoted to the issue of crossing numbers of join product with all simple graphs

of order at most six mainly due to unknown values of cr(Km,n) for both m,n more

than six in (1). The join product of two graphs Gi and Gj , denoted Gi + Gj , is

obtained from vertex-disjoint copies of Gi and Gj by adding all edges between V (Gi)

and V (Gj). For |V (Gi)| = m and |V (Gj)| = n, the edge set of Gi +Gj is the union of

the disjoint edge sets of the graphs Gi, Gj , and the complete bipartite graph Km,n.

Let Dn denote the discrete graph (sometimes called empty graph) on n vertices. The

exact values for crossing numbers of G + Dn for all graphs G of order at most four

are given by Klešč and Schrötter [21], and also for some connected graphs G of order

five and six [1–3, 6, 7, 10–15, 17–20, 22, 23, 26–29, 31–34]. The aim of this paper is to

extend known results concerning this topic to new connected graphs. Note also that

cr(G + Dn) are known only for some disconnected graphs G, see [24, 25, 30].

For this purpose, we present a new technique regarding the use of knowledge from

the subgraphs whose values of crossing numbers are already known. It is appropriate

to combine this idea with possibility of an existence of a separating cycle in some

particular drawing of investigated graph. In a good drawing D of some graph G, we

say that a cycle C separates two different vertices of the subgraph G \ C if they are

contained in different components of R2 \ C. This considered cycle C is said to be

a separating cycle of the graph G in D.

In Section 2 we refer the graph G1 on six vertices and eight edges isomorphic to the

complete bipartite graph K2,4 for which the crossing number of G1 +Dn was obtained
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by Ho [14]. The crossing numbers of Gk + Dn for two other graphs Gk, k = 2, 3 on

six vertices are given in Corollaries 1 and 2 by adding new edges to the graph G1.

Section 3 is devoted to the graph G∗ = (V (G∗), E(G∗)) isomorphic to 4-regular graph

on six vertices except for two distinct edges with no common vertex such that two

remaining vertices are still adjacent. Many possible drawings of the graph G∗ are

partially solved using redrawings of two edges of G∗ in Figures 5 and 6(a) together

with well-known exact values of cr(Hk + Dn) for two subgraphs Hk of G∗ presented

in Theorems 2 and 3.

In Figure 1, the edges of K6,n cross each other 6
(dn2 e

2

)
+ 6
(bn2 c

2

)
= 6

⌊
n
2

⌋⌊
n−1

2

⌋
times

and each subgraph T i crosses edges of G∗ twice. Thus, 6
⌊
n
2

⌋⌊
n−1

2

⌋
+ 2n crossings

appear among edges of the graph G∗ + Dn in this drawing. The main goal of our

paper is to show that the crossing number of G∗ +Dn is equal to this upper bound.

Figure 1. The good drawing of G∗ + Dn with 6
⌊

n
2

⌋⌊
n−1
2

⌋
+ 2n crossings

The crossing number of G∗ + Dn equal to 6
⌊
n
2

⌋⌊
n−1

2

⌋
+ 2n will be determined in

Theorem 4 with the proof that is strongly based on Lemma 2. This lemma in a very

special form could also be used to establish crossing numbers of other graphs. In the

proofs of the paper, we will often use the term “region” also in nonplanar subdrawings.

In this case, crossings are considered to be vertices of the “map”.

2. Three Graphs G1, G2 and G3

Let G1 be the graph isomorphic to the complete bipartite graph K2,4. The crossing

numbers of the join products of K2,4 with the discrete graphs Dn have been well-

known by Ho [14]. Let G2 be the graph obtained from the planar drawing of G1

in Figure 2 by adding the edge v1v2, i.e., G2 = G1 ∪ {v1v2}. Similarly, let G3 =

G1 ∪ {v1v2, v3v4}.

Theorem 1 ([14]). If n ≥ 1, then cr(G1 +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2n.

Due to Theorem 1, the good drawing of G1 +Dn in Figure 3 is optimal. We can add
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Figure 2. Planar drawings of three graphs G1, G2 and G3

Figure 3. The good drawing of G1 + Dn with 6
⌊

n
2

⌋⌊
n−1
2

⌋
+ 2n crossings

both edges v1v2 and v3v4 into this drawing without additional crossings, and therefore,

the drawings of G2 + Dn and G3 + Dn with exactly 6
⌊
n
2

⌋⌊
n−1

2

⌋
+ 2n crossings are

obtained. On the other hand, G1 + Dn is a subgraph of G2 + Dn that is a subgraph

of G3 + Dn, and therefore, cr(G3 + Dn) ≥ cr(G2 + Dn) ≥ cr(G1 + Dn). Thus, the

next results are obvious.

Corollary 1. If n ≥ 1, then cr(G2 +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2n.

Corollary 2. If n ≥ 1, then cr(G3 +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2n.

3. The Crossing Number of G∗ +Dn

The join product G∗ + Dn (sometimes used notation G∗ + nK1) consists of one copy

of the graph G∗ and n vertices t1, . . . , tn, and any vertex ti is adjacent to every vertex

of the graph G∗. We denote by T i the subgraph induced by six edges incident with
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the fixed vertex ti, which yields that

G∗ + Dn = G∗ ∪K6,n = G∗ ∪
( n⋃

i=1

T i

)
. (2)

We consider a good drawing D of G∗ + Dn. By the rotation rotD(ti) of a vertex ti
in D we understand the cyclic permutation that records the (cyclic) counterclockwise

order in which edges leave ti, as defined by Hernández-Vélez et al. [9] or Woodall [35].

We use the notation (123456) if the counter-clockwise order of edges incident with the

fixed vertex ti is tiv1, tiv2, tiv3, tiv4, tiv5 and tiv6. We recall that rotation is a cyclic

permutation. In the given drawing D, it is highly desirable to separate n subgraphs

T i into three mutually disjoint subsets depending on how many times edges of G∗

could be crossed by T i in D. Let us denote by RD and SD the set of subgraphs for

which crD(G∗, T i) = 0 and crD(G∗, T i) = 1, respectively. Edges of G∗ are crossed by

each remaining subgraph T i at least twice in D. Note that if D is a good drawing of

G∗ + Dn with the empty set RD ∪ SD, then
∑n

i=1 crD(G∗, T i) ≥ 2n enforces at least

6
⌊
n
2

⌋⌊
n−1

2

⌋
+ 2n crossings in D provided by

crD(G∗ + Dn) = crD(K6,n) + crD(G∗,K6,n) + crD(G∗) ≥ 6
⌊n

2

⌋⌊n− 1

2

⌋
+ 2n.

According to the expected result of the main Theorem 4, this leads to a consideration

of the nonempty set RD ∪ SD in all good drawings of G∗ + Dn.

Let us discuss all possible drawings of G∗ induced by D with the degree sequence

(3, 3, 3, 3, 4, 4). There are exactly two vertices of degree 3 adjacent with both vertices

of degree 4. The graph G∗ contains a cycle C4 induced on four remaining vertices of

degree 4, 4, 3, and 3 as a subgraph (for brevity, we write C4(G∗)), and let v1, v2, v3,

and v4 be their vertex notation in the appropriate order of the cycle C4(G∗). In the

rest of the paper, suppose also that deg(v5) = 3 and deg(v6) = 3 if v4v5, v3v6 6∈ E(G∗).

Let H1 be the graph consisting of two leaves adjacent with two opposite vertices of

one 4-cycle. Let H2 be the graph consisting of one 3-cycle and three leaves of which

exactly two are adjacent with the same vertex of such 3-cycle. See also their drawings

in Figure 4. The crossing numbers of the join products of H1 and H2 with the discrete

graphs Dn have been well-known by Berežný and Staš [2], and Staš [32], respectively.

Figure 4. Two graphs Hk on six vertices with well-known values of cr(Hk + Dn), where k = 1, 2
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Theorem 2 ([2], Theorem 3.1). If n ≥ 1, then cr(H1 +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2

⌊
n
2

⌋
.

Theorem 3 ([32], Theorem 1). If n ≥ 1, then cr(H2 +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2

⌊
n
2

⌋
.

In Figure 5(a), we can redraw a crossing of two edges of C4(G∗) to get a new drawing of

G∗ induced by D (with vertex notation in a different order) with fewer edge crossings.

The redrawing of C4(G∗) in Figure 5(b) produces a drawing of the graph G3. Both

considered redrawings of the cycle C4(G∗) allow us to suppose that edges of C4(G∗)

do not cross each other in all discussed good drawings of G∗.

Figure 5. Elimination of a crossing on edges of C4(G∗). (a): redrawing of the graph G∗ with vertex
notation in a different order; (b): redrawing of the cycle C4(G∗) which causes a drawing of
new graph G3

In an effort to reach less than 6
⌊
n
2

⌋⌊
n−1

2

⌋
+ 2n crossings, two remaining vertices v5

and v6 of the graph G∗ must be placed in the same region of the considered good

subdrawing D(C4(G∗)) because removing all edges of C4(G∗) results a good drawing

of H1 + Dn with at least 6
⌊
n
2

⌋⌊
n−1

2

⌋
+ 2

⌊
n
2

⌋
crossings. Note that C4(G∗) would

be a separating cycle in this drawing and thus crossed at least n times through all

subgraphs T i. Besides that the subdrawing D(G∗) cannot be planar if at least one

of the sets RD and SD should be nonempty. Clearly, 6
⌊
n
2

⌋⌊
n−1

2

⌋
+ 2
⌊
n
2

⌋
+ n + 1 is

at least as much as our expected result of 6
⌊
n
2

⌋⌊
n−1

2

⌋
+ 2n. Based on that, in the

rest of the paper, let both vertices v5 and v6 be placed in common outer region of

D(C4(G∗)).

The edge v1v5 cannot cross the edge v3v4 of the cycle C4(G∗) in any optimal drawing

of G∗+Dn, otherwise, we also obtain a new drawing of G∗ induced by D (with vertex

notation in a different order) with fewer edge crossings by redrawing of subgraph in

Figure 6(a).

Of course, the same holds for pair of edges v3v5 and v1v4. Removing all edges of

the separating cycle v2v3v5v2 in Figure 6(b) produces a good drawing which includes

H1 + Dn as a subgraph. Consequently, the result of Theorem 2 implies at least

6
⌊
n
2

⌋⌊
n−1

2

⌋
+ 2
⌊
n
2

⌋
+n+ 1 + 1 crossings on edges of G∗+Dn. Finally, considering the
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Figure 6. Elimination of a crossing and two separating cycles on edges of G∗

planar subdrawing D(G∗ \ v6), the vertex v6 is placed in the quadrangular region of

D(G∗ \ v6) with four vertices v1, v3, v4 and v5 of G∗ on its boundary provided by we

assume the nonempty set RD ∪ SD. Again using the idea of a separating cycle, if we

consider subdrawing of the graph G∗ presented in Figure 6(c) then the well-known

value of cr(H2 + Dn) enforces at least 6
⌊
n
2

⌋⌊
n−1

2

⌋
+ 2
⌊
n
2

⌋
+ n + 1 crossings on edges

of G∗ + Dn. Due to symmetry of the graph G∗, the same discussion with respect to

the vertex v6 of G∗ offers same results. The proof of Lemma 1 can be omitted based

on all the above observations.

Lemma 1. In any optimal drawing D of the join product G∗ +Dn, edges of C4(G
∗) do

not cross each other. Moreover, if both vertices v5 and v6 are placed in common region of
D(C4(G

∗)) then the drawing of G∗ induced by D is isomorphic to one of the two drawings
depicted in Figure 7.

Figure 7. Two considered nonplanar drawings of the graph G∗ with a possibility of obtaining a subgraph
T i by which edges of G∗ can be crossed at most once

In the proof of Theorem 4, the following lemma related to some restricted subdrawings

of the graph G∗ + Dn is also required.
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Lemma 2. For n ≥ 2, let D be a good drawing of G∗ + Dn in which for some i,
i ∈ {1, . . . , n}, and for all j = 1, . . . , n, j 6= i, crD(G∗ ∪ T i, T j) ≥ 5. If crD(G∗ ∪ T i, T j) > 5
for p different subgraphs T j, then D has at least 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ 4

⌊
n
2

⌋
+ p + crD(G∗ ∪ T i)

crossings.

Proof. Assume, without loss of generality, that the edges of Fn = G∗ ∪ Tn are

crossed in D at least five times by the edges of every subgraph T j , j = 1, . . . , n − 1,

and that p of the subgraphs T j cross the edges of Fn more than five times. As

G∗ + Dn = K6,n−1 ∪ Fn, we have

crD(G∗ + Dn) = crD (K6,n−1) + crD(K6,n−1, F
n) + crD(Fn)

≥ 6
⌊
n−1

2

⌋⌊
n−2

2

⌋
+ 5(n− 1) + p + crD(G∗ ∪ Tn)

≥ 6
⌊
n
2

⌋⌊
n−1

2

⌋
+ 4
⌊
n
2

⌋
+ p + crD(G∗, Tn) + crD(G∗).

Note that the last estimate used in the proof of Lemma 2 does not offer at least

6bn2 cb
n−1

2 c+2n crossings only for n odd with p+crD(G∗∪Tn) ≤ 1. In the following,

we are able to compute the exact values of crossing numbers of the join products

of the graph G∗ with both discrete graphs D1 and D2 using the algorithm located

on the website http://crossings.uos.de/. This algorithm can find the crossing

numbers of small undirected graphs. It uses an ILP formulation, based on Kuratowski

subgraphs, and solves it via branch-and-cut-and-price. The system also generates

verifiable formal proofs, as described by Chimani and Wiedera [4]. Unfortunately,

the capacity of this system is restricted.

Lemma 3. cr(G∗ +D1) = 2 and cr(G∗ +D2) = 4.

Theorem 4. If n ≥ 1, then cr(G∗ +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2n.

Proof. By Lemma 3, the result is true for n = 1 and n = 2. The drawing in

Figure 1 shows that cr(G∗ +Dn) ≤ 6
⌊
n
2

⌋⌊
n−1

2

⌋
+ 2n. To prove the reverse inequality

by induction on n, suppose now that there is a drawing D of G∗ + Dn with

crD(G∗ + Dn) < 6
⌊n

2

⌋⌊n− 1

2

⌋
+ 2n for some n ≥ 3, (3)

and let

cr(G∗ + Dm) = 6
⌊m

2

⌋⌊m− 1

2

⌋
+ 2m for any positive integer m < n. (4)
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For easier reading, if r = |RD| and s = |SD|, then the assumption (3) together with

crD(K6,n) ≥ 6
⌊
n
2

⌋⌊
n−1

2

⌋
using (1) imply the following relation with respect to edge

crossings of G∗ in D:

crD(G∗) +
∑

T i∈RD

crD(G∗, T i) +
∑

T i∈SD

crD(G∗, T i) +
∑

T i 6∈RD∪SD

crD(G∗, T i) < 2n,

i.e.,

crD(G∗) + 0r + 1s + 2(n− r − s) < 2n. (5)

The obtained inequality (5) forces r + s ≥ 1, and so there is at least one subgraph

T i by which edges of G∗ are crossed at most once in D. Lemma 1 together with the

assumption (3) offer only two possible nonplanar subdrawings of the graph G∗ shown

in Figure 7. For both such subdrawings, the set RD must be nonempty because there

is no possibility to obtain a subgraph T i ∈ SD.

Let us first consider the subdrawing of G∗ induced by D given in Figure 7(a). For

any T i ∈ RD, the reader can easily see that the subgraph F i = G∗ ∪ T i is uniquely

represented by rotD(ti) = (143526). Since edges of F i are crossed by each other

subgraph T j at least five times, Lemma 2 contradicts the assumption (3) in D. Now,

assume the subdrawing of G∗ induced by D given in Figure 7(b). In this case, the

subgraph F i = G∗ ∪ T i is represented by rotD(ti) = (164352). If there is some T j

such that crD(G∗ ∪ T i, T j) < 5, then the vertex tj must be placed in the pentagonal

region of subdrawing D(G∗) with two vertices v3 and v4 of G∗ on its boundary, and

crD(G∗ ∪T i, T j) = 4 enforces crD(T i, T j) = 0. Thus, by fixing the subgraph T i ∪T j ,

we have

crD(G∗ + Dn−2) + crD(T i ∪ T j) + crD(K6,n−2, T
i ∪ T j) + crD(G∗, T i ∪ T j)

≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 2(n− 2) + 0 + 6(n− 2) + 4 = 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2n,

where edges of T i ∪ T j are crossed by each other subgraph T k at least six times

using crD(K6,3) ≥ 6 again thanks to (1). This subcase again confirms a contradiction

with (3) in D.

We have shown that there are at least 6
⌊
n
2

⌋⌊
n−1

2

⌋
+2n crossings in each good drawing

D of G∗ + Dn, and this completes the proof of Theorem 4.

4. Conclusions

We expect that similar forms of discussions can be used to estimate unknown values

of the crossing numbers of other graphs on six vertices with a much larger number

of edges in the join products with discrete graphs, and also with paths and cycles.



250 The crossing numbers of join product

Conflict of interest. The author declares that they have no conflict of interest.

Data Availability. Data sharing is not applicable to this article as no datasets were

generated or analyzed during the current study.

References

[1] K. Asano, The crossing number of K1,3,n and K2,3,n, J. Graph Theory. 10 (1986),

no. 1, 1–8.

https://doi.org/10.1002/jgt.3190100102.
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