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Abstract: A µ-way (v, k, t) trade T of volume m consists of µ pairwise disjoint col-
lections T1, . . . , Tµ, each of m blocks of size k such that for every t-subset of a v-set

V, the number of blocks containing this t-subset is the same in each Ti for 1 ≤ i ≤ µ.

If any t-subset of the v-set V occurs at most once in each Ti for 1 ≤ i ≤ µ, then T is
called a µ-way (v, k, t) Steiner trade. In 2016, it was proved that there exists a 3-way

(v, k, 2) Steiner trade of volume m when 12(k − 1) ≤ m for each k. Here we improve
the lower bound to 8(k − 1) for even k, by using a recursive construction.
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1. Introduction and preliminaries

Given a set of v treatments V, let k and t be two positive integers such that t < k < v.

A (v, k, t) trade T = {T1, T2} of volume m consists of two disjoint collections T1 and

T2, each one containing m k-subsets of V, called blocks, such that every t-subset of

V is contained in the same number of blocks in T1 and T2. A (v, k, t) trade is called

(v, k, t) Steiner trade if any t-subset of V occurs at most once in T1(T2). A (v, k, t)

trade is also a (v, k, t′) trade, for all 0 < t′ < t. In a (v, k, t) trade, both collections

of blocks must cover the same set of elements. This set of elements is called the

foundation of the trade and is denoted by found(T ).
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The concept of trade was first introduced by Hedayat (1960) in the paper [9]. He-

dayat and Li applied the method of trade-off and trades to construct BIBDs with

repeated blocks (1979-1980). Later, Steiner trades were used and renamed by Milici

and Quattrocchi (1986) as DMB (disjoint and mutually balanced). However, in 1916,

Cole and Gumming used a concept that is (v, 3, 2) trade of volumes 4 and 6. De-

termining the existence and non-existence of (v, k, t) trades of certain volumes is the

most important problem in this field. Many papers have dealt with this problem (for

example, see [3, 6, 10, 12, 14]).

Trades have various applications in combinatorial design theory. For instance, in

the problems related to the structure of block designs, the method of constructing

block designs, non-isomorphic block designs, block designs with repeated blocks, and

determining defining set and intersection problem in block designs. The intersection

problem for two and three block designs has been extensively investigated (see for

example [1, 4, 13, 15, 19]). Now, we give an example of a connection between trades

and intersection problem.

Example 1. Construct an S(2, 4, 13) design (V,B) with V = Z10 ∩ {a, b, c}. All blocks
are listed below.

0 0 0 0 1 1 1 2 2 3 3 4 5
1 2 4 6 2 5 7 3 6 4 7 8 9
3 8 5 a 4 6 b 5 7 6 8 9 a
9 c 7 b a 8 c b 9 c a b c

Now, consider the permutation (7, b, c, 6) on V and construct the new block design (V,B′).
All blocks of the new design are listed below.

0 0 0 0 1 1 1 2 2 3 3 4 5
1 2 4 7 2 5 b 3 7 4 b 8 9
3 8 5 a 4 7 c 5 b 7 8 9 a
9 6 b c a 8 6 c 9 6 a c 6

Two block designs have two common blocks. Note that removing common blocks of the two
block designs results in a trade of volume 13− 2 = 11.

Recently, a generalization of the concept of trade has been defined in [16] as follows.

Definition 1. A µ-way (v, k, t) trade of volume m consists of µ pairwise disjoint collec-
tions T1, . . . , Tµ each of m blocks, such that for every t-subset of a v-set V , the number of
blocks containing this t-subset is the same in each Ti for 1 ≤ i ≤ µ. In other words, any set
T = {Ti, Tj} for i 6= j is a (v, k, t) trade of volume m.

Definition 2. A µ-way (v, k, t) trade is a µ-way (v, k, t) Steiner trade if any t-subset of
found(T ) occurs at most once in every Tj for j ≥ 1.
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Each Ti contains m blocks B1i, B2i, . . . , Bmi, where Bij denotes ith block of Tj . A

type of µ-way (v, k, t) Steiner trade with an additional property has an important role

in constructing the Steiner trade is defined as follows.

Definition 3. Let T = {T1, . . . , Tµ} be a µ-way (v, k, t) Steiner trade. It is called a
µ-way t-solely balanced set if there exist no blocks Bij and Bab such that |Bij ∩Bab| > t for
1 ≤ j < b ≤ µ. In other words, Tj and Tb (1 ≤ j < b ≤ µ) contain no common (t+1)−subset.

Theorem 1. ([16]) The following statements hold.
(i) Let T = {T1, . . . , Tµ} be a µ-way (v, k, t) trade of volume m. Based on T, a µ-way
(v + µ, k + 1, t+ 1) trade T ∗ of volume µm can be constructed.
(ii) If T is also a µ-way t-solely balanced, then a µ-way (v+µ, k+ 1, t+ 1) Steiner trade T ∗

can be constructed.

We need some notation. Let T and T ∗ be two µ-way (v, k, t) trades of volume m.

We consider T + T ∗ = {T1 ∪ T ∗1 , . . . , Tµ ∪ T ∗µ}. It is easy to see that T + T ∗ is a

µ-way (v, k, t) trade. If T and T ∗ are Steiner trades and found(T) ∩ found(T∗) = φ,

then T + T ∗ is also a Steiner trade. So the problem of determining the set of all

possible volume sizes of a µ-way (v, k, t) trade is one of the most important problems

in combinatorial subjects. Some papers have dealt with this problem (for instance,

see [2, 5, 16]). Let S3s(t, k) denote the set of all possible volume sizes of a 3-way

(v, k, t) Steiner trade. The values of S2s(2, k) have been completely specified by Gray

and Ramsay [7, 8] and Khodkar and Hoffman [11]. We also have the following.

Theorem 2. [17, 18] m ∈ S3s(2, k) for all m ≥ 12(k − 1) and each k.

In this paper,by giving a new construction and some new results, we improve the

lower bound to 8(k − 1) for even k.

1.1. Construction (Recursive)

In this section, we introduce a construction that is used in the main results. The

1-solely balanced sets are the main bases for this construction.

Construction 3.

• Consider three (k − 1)× (k − 1) tables A, B, and C, for even k with r common rows.

• Construct three 4-way 1-solely balanced sets SA, SB , and SC with block size k − 1
from tables A, B, and C respectively. The blocks of S1A are the rows of the table
A, the blocks of S2A are the columns of the table A, the blocks S3A are the main
diagonals of the table A, and the blocks of S4A are the secondary diagonals of table A.
In other words, the collections of each 4-way 1-solely balanced set have the following
frame:
Collection one: {(i, j)| 0 ≤ j ≤ k − 2}, 0 ≤ i ≤ k − 2.
Collection two:{(i− j, j)| 0 ≤ j ≤ k − 2}, 0 ≤ i ≤ k − 2.
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Collection three: Rename (i, j) as vi+j(k−1), for each 0 ≤ i ≤ k−2 consider the blocks
{vj | i(k − 1) ≤ j ≤ i(k − 1) + k − 2}.
Collection four: {(j − i, j)|0 ≤ j ≤ k − 2}, 0 ≤ i ≤ k − 2.

We observe that the second collection {(i − j, j)|0 ≤ j ≤ k − 2}, 0 ≤ i ≤ k − 2,
and the last collection {(j − i, j)|0 ≤ j ≤ k − 2}, 0 ≤ i ≤ k − 2 for even k − 1 have
the repeated pair. For i = 0, the pair ((−j, j), (j, j)) for j = 0 and k−1

2
is repeated.

Therefore, we can apply this method only for even k.

• Construct three 4-way Steiner trades with block size k from 1-solely balanced sets by
applying Theorem 1.

• Remove the second collection from each of them and obtain three 3-way Steiner trades
(In each case, the suitable collection will be removed).

• Add these three 3-way Steiner trades and remove the common blocks.

In the following example, we construct a 3-way (29, 6, 2) Steiner trade of volume 59 by

using Construction 3. The details of Construction 3 can be observed in the following

example.

Example 2.
Steps one and two of Construction 3:
The 4-way 1-solely balanced sets SA, SB , and SC are obtained from the tables A, B, and
C, respectively. The blocks of S1A are the rows of the table A, the blocks of S2A are the
columns of the table A, the blocks S3A are the main diagonals of A, and the blocks of S4A

are the secondary diagonals of A. Consider the following three tables.

A :

1 2 3 4 5

a b c d e

f g h i j

k l m n o

p q r s t

B :

1 2 3 4 5

a′ b′ c′ d′ e′

f ′ g′ h′ i′ j′

k′ l′ m′ n′ o′

p′ q′ r′ s′ t′

C :

1 2 3 4 5

a′′ b′′ c′′ d′′ e′′

f ′′ g′′ h′′ i′′ j′′

k′′ l′′ m′′ n′′ o′′

p′′ q′′ r′′ s′′ t′′

Now consider the following 4-way 1-solely balanced sets:

SA :

S1A S2A S3A S4A

12345 1afkp 1bhnt 1eimq

abcde 2gblq 2ciop 2ajnr

fghij 3chmr 3djkq 3bfos

klmno 4dins 4eflr 4cgkt

pqrst 5ejot 5agms 5dhlp

SB :

S1B S2B S3B S4B

12345 1a′f ′k′p′ 1′b′h′n′t′ 1e′i′m′q′

a′b′c′d′e′ 2g′b′l′q′ 2c′i′o′p′ 2a′j′n′r′

f ′g′h′i′j′ 3c′h′m′r′ 3d′j′k′q′ 3b′f ′o′s′

k′l′m′n′o′ 4d′i′n′s′ 4e′f ′l′r′ 4c′g′k′t′

p′q′r′s′t′ 5e′j′o′t′ 5a′g′m′s′ 5d′h′l′p′

SC :

S1C S2C S3C S4C

12345 1a′′f ′′k′′p′′ 1b′′h′′n′′t′′ 1e′′i′′m′′q′′

a′′b′′c′′d′′e′′ 2g′′b′′l′′q′′ 2c′′i′′o′′p′′ 2a′′j′′n′′r′′

f ′′g′′h′′i′′j′′ 3c′′h′′m′′r′′ 3d′′j′′k′′q′′ 3b′′f ′′o′′s′′

k′′l′′m′′n′′o′′ 4d′′i′′n′′s′′ 4e′′f ′′l′′r′′ 4c′′g′′k′′t′′

p′′q′′r′′s′′t′′ 5e′′j′′o′′t′′ 5a′′g′′m′′s′′ 5d′′h′′l′′p′′
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Step three of Construction 3:
Now, we construct three 4-way (29, 6, 2) Steiner trades TA, TB , and Tc of volume 20,
respectively, from 4-way 1-solely balanced sets SA, SB , and SC by applying Theorem 1.

TA :

T1A T2A T3A T4A

x̃12345 x̃1afkp x̃1bhnt x̃1eimq

x̃abcde x̃2gblq x̃2ciop x̃2ajnr

x̃fghij x̃3chmr x̃3djkq x̃3bfos

x̃klmno x̃4dins x̃4eflr x̃4cgkt

x̃pqrst x̃5ejot x̃5agms x̃5dhlp

ỹ1afkp ỹ1bhnt ỹ1eimq ỹ12345

ỹ2gblq ỹ2ciop ỹ2ajnr ỹabcde

ỹ3chmr ỹ3djkq ỹ3bfos ỹfghij

ỹ4dins ỹ4eflr ỹ4cgkt ỹklmno

ỹ5ejot ỹ5agms ỹ5dhlp ỹpqrst

z̃1bhnt z̃1eimq z̃12345 z̃1afkp

z̃2ciop z̃2ajnr z̃abcde z̃2gblq

z̃3djkq z̃3bfos z̃fgijh z̃3chmr

z̃4eflr z̃4cgkt z̃klmno z̃4dins

z̃5agms z̃5dhlp z̃pqrst z̃5ejot

w̃1eimq w̃12345 w̃1afkp w̃1bhnt

w̃2ajnr w̃abcde w̃2gblq w̃2ciop

w̃3bfos w̃fghij w̃3chmr w̃3djkq

w̃4cgkt w̃klmno w̃4dins w̃4eflr

w̃5dhlp w̃pqrst w̃5ejot w̃5agms

TB :

T1B T2B T3B T4B

ŷ12345 ŷ1afkp ŷ1bhnt ŷ1eimq

ŷa′b′c′d′e′ ŷ2g′b′l′q′ ŷ2c′i′o′p′ ŷ2a′j′n′r′

ŷf ′g′h′i′j′ ŷ3c′h′m′r′ ŷ3d′j′k′q′ ŷ3b′f ′o′s′

ŷk′l′m′n′o′ ŷ4d′i′n′s′ ŷ4e′f ′l′r′ ŷ4c′g′k′t′

ŷp′q′r′s′t′ ŷ5e′j′o′t′ ŷ5a′g′m′s′ ŷ5d′h′l′p′

x̂1a′f ′k′p′ x̂1b′h′n′t′ x̂1e′i′m′q′ x̂12345

x̂2g′b′l′q′ x̂2c′i′o′p′ x̂2a′j′n′r′ x̂a′b′c′d′e′

x̂3c′h′m′r′ x̂3d′j′k′q′ x̂3b′f ′o′s′ x̂f ′g′h′i′j′

x̂4d′i′n′s′ x̂4e′f ′l′r′ x̂4c′g′k′t′ x̂k′l′m′n′o′

x̂5ejot x̂5agms x̂5dhlp x̂pqrst

ŵ1b′h′n′t′ ŵ1e′i′m′q′ ŵ12345 ŵ1a′f ′k′p′

ŵ2c′i′o′p′ ŵ2a′j′n′r′ ŵa′b′c′d′e′ ŵ2g′b′l′q′

ŵ3d′j′k′q′ ŵ3b′f ′o′s′ ŵfg′i′j′h′ ŵ3c′h′m′r′

ŵ4e′f ′l′r′ ŵ4c′g′k′t′ ŵk′l′m′n′o′ ŵ4d′i′n′s′

ŵ5a′g′m′s′ ŵ5d′h′l′p′ ŵp′q′r′s′t′ ŵ5e′j′o′t′

ẑ1e′i′m′q′ ẑ12345 ẑ1a′f ′k′p′ ẑ1b′h′n′t′

ẑ2a′j′n′r′ ẑa′b′c′d′e′ ẑ2g′b′l′q′ ẑ2c′i′o′p′

ẑ3b′f ′o′s′ ẑf ′g′h′i′j′ ẑ3c′h′m′r′ ẑ3d′j′k′q′

ẑ4c′g′k′t′ ẑk′l′m′n′o′ ẑ4d′i′n′s′ ẑ4e′f ′l′r′

ẑ5d′h′l′p′ ẑp′q′r′s′t′ ẑ5e′j′o′t′ ẑ5a′g′m′s′

TC :

T1C T2C T3C T4C

z̀12345 z̀1a′′f ′′k′′p′′ z̀1b′′h′′n′′t′′ z̀1e′′i′′m′′q′′

z̀a′′b′′c′′d′′e′′ z̀2g′′b′′l′′q′′ z̀2c′′i′′o′′p′′ z̀2a′′j′′n′′r′′

z̀f ′′g′′h′′i′′j′′ z̀3c′′h′′m′′r′′ z̀3d′′j′′k′′q′′ z̀3b′′f ′′o′′s′′

z̀k′′l′′m′′n′′o′′ z̀4d′′i′′n′′s′′ z̀4e′′f ′′l′′r′′ z̀4c′′g′′k′′t′′

z̀p′′q′′r′′s′′t′′ z̀5e′′j′′o′′t′′ z̀5a′′g′′m′′s′′ z̀5d′′h′′l′′p′′

ẁ1a′′f ′′k′′p′′ ẁ1b′′h′′n′′t′′ ẁ1e′′i′′m′′q′′ ẁ12345

ẁ2g′′b′′l′′q′′ ẁ2c′′i′′o′′p′′ ẁ2a′′j′′n′′r′′ ẁa′′b′′c′′d′′e′′

ẁ3c′′h′′m′′r′′ ẁ3d′′j′′k′′q′′ ẁ3b′′f ′′o′′s′′ ẁf ′′g′′h′′i′′j′′

ẁ4d′′i′′n′′s′′ ẁ4e′′f ′′l′′r′′ ẁ4c′′g′′k′′t′′ ẁk′′l′′m′′n′′o′′

ẁ5e′′j′′o′′t′′ ẁ5a′′g′′m′′s′′ ẁ5d′′h′′l′′p′′ ẁp′′q′′r′′s′′t′′

x̀1b′′h′′n′′t′′ x̀1e′′i′′m′′q′′ x̀12345 x̀1a′′f ′′k′′p′′

x̀2c′′i′′o′′p′′ x̀2a′′j′′n′′r′′ x̀a′′b′′c′′d′′e′′ x̀2g′′b′′l′′q′′

x̀3d′′j′′k′′q′′ x̀3b′′f ′′o′′s′′ x̀f ′′g′′i′′j′′h′′ x̀3c′′h′′m′′r′′

x̀4e′′f ′′l′′r′′ x̀4c′′g′′k′′t′′ x̀k′′l′′m′′n′′o′′ x̀4d′′i′′n′′s′′

x̀5a′′g′′m′′s′′ x̀5d′′h′′l′′p′′ x̀p′′q′′r′′s′′t′′ x̀5e′′j′′o′′t′′

ỳ1e′′i′′m′′q′′ ỳ12345 ỳ1a′′f ′′k′′p′′ ỳ1b′′h′′n′′t′′

ỳ2a′′j′′n′′r′′ ỳa′′b′′c′′d′′e′′ ỳ2g′′b′′l′′q′′ ỳ2c′′i′′o′′p′′

ỳ3b′′f ′′o′′s′′ ỳf ′′g′′h′′i′′j′′ ỳ3c′′h′′m′′r′′ ỳ3d′′j′′k′′q′′

ỳ4c′′g′′k′′t′′ ỳk′′l′′m′′n′′o′′ ỳ4d′′i′′n′′s′′ ỳ4e′′f ′′l′′r′′

ỳ5d′′h′′l′′p′′ ỳp′′q′′r′′s′′t′′ ỳ5e′′j′′o′′t′′ ỳ5a′′g′′m′′s′′

Now, we have three 4-way (29, 6, 2) Steiner trades TA, TB , and TC , of volume 20 . By adding
three trades we obtain one 4-way Steiner trade of volume 60.
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Step four of Construction 3:
Take x̃ = x̂ = x̀. Then there exists the common block x̃12345 in these trades. This block
is not in the second collection of the trades TA, TB , and TC . Remove T2A, T2B , and T2C

from 4-way (29, 6, 2) Steiner trades TA, TB , and TC and Obtain three 3-way (29, 6, 2) Steiner
trades T ′A, T

′
B , and T ′C of volume 20.

Step five of Construction 3:
We now add three 3-way (29, 6, 2) Steiner trades T ′A, T

′
B , and T ′C , of volume 20 and remove

the common block x̃12345. By adding these trades, we have a 3-way (29, 6, 2) Steiner trade
of volume 20 + 20 + 20− 1 = 60− 1 = 12× 5− 1.

By using the above construction, we obtain some theorems that are used in the main

results.

2. Main Results

In [17], it was proved that there exists a 3-way (v, k, 2) Steiner trade of volume m

when m ≥ 12(k−1) for k ≥ 15. In [18], it was shown that it is correct also for k ≤ 14.

In the following theorem, we improve the lower bound from 12(k − 1) to 11(k − 1),

when k is even. In this theorem, we apply Construction 3.

Theorem 4. There exists a 3-way (v, k, 2) Steiner trade of volume 12(k − 1) − r for
r ∈ {0, . . . , k − 2} with block size k for even k.

Proof. The first step of Construction 3: Take three (k− 1)× (k− 1) matrices A, B,

and C with r common rows.

The second step of Construction 3: Construct three 4-way 1-solely balanced sets

SA, SB , and SC of volume k − 1 as shown in Example 2.

The third step of Construction 3: Now apply Theorem 1 to construct three 4-way

Steiner trades of volume 4(k − 1) with block size k denoted by TA, TB , and Tc.

In this proof, take x̃=x̂ = x̄.

TA :

T1A T2A T3A T4A

x̃S1A x̃S2A x̃S3A x̃S4A

ỹS2A ỹS3A ỹS4A ỹS1A

z̃S3A z̃S4A z̃S1A z̃S2A

w̃S4A w̃S1A w̃S2A w̃S3A

TB :

T1B T2B T3B T4B

ŷS1B ŷS2B ŷS3B ŷS4B

x̃S2B x̃S3B x̃S4B x̃S1B

ŵS3B ŵS4B ŵS1B ŵS2B

ẑS4B ẑS1B ẑS2B ẑS3B

TC :

T1C T2C T3C T4C

z̄S1C z̄S2C z̄S3C z̄S4C

w̄S2C w̄S3C w̄S4C w̄S1C

x̃S3C x̃S4C x̃S1C x̃S2C

ȳS4C ȳS1C ȳS2C ȳS3C
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The fourth step of Construction 3: The bold parts of trades contain the r common

blocks. Remove, the second collection from each 4-way Steiner trade and obtain three

3-way Steiner trades.

The fifth step of Construction 3: These trades have r common blocks in the different

collections.

Therefore, T : (T1, T2, T3) = (T1A, T3A, T4A) + (T1B , T3B , T4B) + (T1C , T3C , T4C) is

a 3-way (v, k, 2) Steiner trade of volume 12(k − 1) − r for r ∈ {0, . . . , k − 2}. The r

common blocks are removed when the trades are added.

In the following theorem, we improve the lower bound and prove that m ∈ S3s(2, k)

for all m ≥ 10(k − 1) + 1 when k is even. In this theorem, we apply Construction 3.

Theorem 5. There exists a 3-way (v, k, 2) Steiner trade of volume 11(k − 1) − r for
r ∈ {0, . . . , k − 2} with block size k for even k.

Proof. The first step of Construction 3: Take three (k− 1)× (k− 1) matrices A, B,

and C with r common rows.

The second step of Construction 3: Construct two 4-way 1-solely balanced sets SA, SB
of volume k − 1 and one 3-way 1-solely balanced set SC of volume k − 1 as shown in

Example 2.

The third step of Construction 3: Now apply Theorem 1 to construct two 4-way

Steiner trades of volume 4(k−1) with block size k denoted TA and TB , and construct

one 3-way Steiner trade of volume 3(k − 1) with block size k denoted TC . In this

proof, take x̃ = x̂ = x̄.

TA :

T1A T2A T3A T4A

x̃S1A x̃S2A x̃S3A x̃S4A

ỹS2A ỹS3A ỹS4A ỹS1A

z̃S3A z̃S4A z̃S1A z̃S2A

w̃S4A w̃S1A w̃S2A w̃S3A

TB :

T1B T2B T3B T4B

ŷS1B ŷS2B ŷS3B ŷS4B

x̃S2B x̃S3B x̃S4B x̃S1B

ŵS3B ŵS4B ŵS1B ŵS2B

ẑS4B ẑS1B ẑS2B ẑS3B

TC :

T1C T2C T3C

z̄S1C z̄S2C z̄S3C

x̃S3C x̃S1C x̃S2C

ȳS1C ȳS2C ȳS3C

The fourth step of Construction 3: The bold parts of trades contain the r common

blocks. Now remove the third collection from TA, and TB .

The fifth step of Construction 3: We obtain three 3-way Steiner trades. These trades

have r common blocks in the different collections. Therefore, T : (T1, T2, T3) =

(T1A, T2A, T4A) + (T1B , T2B , T4B) + (T1C , T2C , T3C) is a 3-way (v, k, 2) Steiner trade

of volume 11(k − 1)− r for r ∈ {0, . . . , k − 2}.

In what follows, we improve the lower bound and prove that m ∈ S3s(2, k) for all

m ≥ 9(k − 1) + 1 when k is even. In this theorem, we apply Construction 3.
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Theorem 6. There exists a 3-way (v, k, 2) Steiner trade of volume 10(k − 1) − r for
r ∈ {0, . . . , k − 2} with block size k for even k.

Proof. The first step of Construction 3: Take three (k− 1)× (k− 1) matrices A, B,

and C with r common rows.

The second step of Construction 3: Construct two 3-way 1-solely balanced sets

SA, SC of volume k − 1 and one 4-way 1-solely balanced set SB of volume k − 1 as

shown in Example 2.

The third step of Construction 3: Now apply Theorem 1 to construct two 3-way

Steiner trade of volume 3(k− 1) with block size k denoted TA and TC , and construct

one 4-way Steiner trade of volume 4(k − 1) with block size k denoted TB . In this

proof, take x̃ = x̂ = x̄.

TA :

T1A T2A T3A

x̃S1A x̃S2A x̃S3A

ỹS2A ỹS3A ỹS4A

z̃S3A z̃S4A z̃S1A

TB :

T1B T2B T3B T4B

ŷS1B ŷS2B ŷS3B ŷS4B

x̃S2B x̃S3B x̃S4B x̃S1B

ŵS3B ŵS4B ŵS1B ŵS2B

ẑS4B ẑS1B ẑS2B ẑS3B

TC :

T1C T2C T3C

z̄S1C z̄S2C z̄S3C

x̃S3C x̃S1C x̃S2C

ȳS1C ȳS2C ȳS3C

The fourth step of Construction 3: The bold part of trades contains the r common

blocks. Now remove the first collection of TB .

The fifth step of Construction 3: We obtain three 3-way Steiner trades. These trades

have r common blocks in the different collections. Therefore, T : (T1, T2, T3) =

(T1A, T2A, T3A) + (T2B , T3B , T4B) + (T1C , T2C , T3C) is a 3-way (v, k, 2) Steiner trade

of volume 10(k − 1)− r for r ∈ {0, . . . , k − 2}.

Theorem 7. There exists a 3-way (v, k, 2) Steiner trade of volume 9(k − 1) − r for
r ∈ {0, . . . , k − 2} with block size k for even k.

Proof. The first step of Construction 3: Take three (k− 1)× (k− 1) matrices A, B,

and C with r common rows.

The second step of Construction 3: Construct three 3-way 1-solely balanced sets

SA, SB , and SC of volume k − 1 as shown in Example 2.

The third step of Construction 3: Now apply Theorem 1 to construct two 3-way

Steiner trade of volume 3(k− 1) with block size k denoted TA and TC , and construct

one 4-way Steiner trade of volume 4(k − 1) with block size k denoted TB . In this

proof, take x̃ = x̂ = x̄.
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TA :

T1A T2A T3A

x̃S1A x̃S2A x̃S3A

ỹS2A ỹS3A ỹS4A

z̃S3A z̃S4A z̃S1A

TB :

T1B T2B T3B

ŷS1B ŷS2B ŷS3B

x̃S2B x̃S3B x̃S1B

ŵS3B ŵS1B ŵS2B

ẑS1B ẑS2B ẑS3B

TC :

T1C T2C T3C

z̄S1C z̄S2C z̄S3C

x̃S3C x̃S1C x̃S2C

ȳS1C ȳS2C ȳS3C

The fourth step of Construction 3: The bold part of trades contains the r common

blocks. Now remove the first collection of TB .

The fifth step of Construction 3: We obtain three 3-way Steiner trades. These trades

have r common blocks in the different collections. Therefore, T : (T1, T2, T3) =

(T1A, T2A, T3A) + (T2B , T3B , T4B) + (T1C , T2C , T3C) is a 3-way (v, k, 2) Steiner trade

of volume 9(k − 1)− r for r ∈ {0, . . . , k − 2}.

Main Theorem:

Theorem 8. There exists a 3-way (v, k, 2) Steiner trade of volume m for m ≥ 8(k − 1)
when k ≥ 4 is even.

Proof. For k = 4, the authors already proved in [17] that S3s(2, 4) = N \
{1, 2, 3, 4, 5, 6, 7}, and it is concluded from Theorems 4, 5, 6, and 7 for k ≥ 6.
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