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Abstract: The PI index of a graphG is given by PI(G) =
∑

e∈E(G)(|V (G)|−NG(e)),

where NG(e) is the number of equidistant vertices for the edge e. Various topological

indices of bicyclic graphs have already been calculated. In this paper, we obtained the

exact value of the PI index of bicyclic graphs. We also explore the extremal graphs
among all bicyclic graphs with respect to the PI index. Furthermore, we calculate the

PI index of a cactus graph and determine the extremal values of the PI index among
cactus graphs.
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1. Introduction

A topological index is a real number related to a molecular graph that gives some

structural properties of the molecules. There are different types of topological indices,

i.e., distance-based, degree-based, and neighborhood-based topological indices. Some

examples of topological indices are the Wiener index, Szeged index, Zagreb index,

Padmakar - Ivan (PI) index, weighted PI index, etc., which have applications in the

field of chemical graph theory. The Wiener index is the oldest and most widely studied

topological index [16]. After the success of the Wiener and Szeged indices in 2000,
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426 PI index of bicyclic graphs

Khadikar proposed another index, the Padmakar-Ivan index, abbreviated as the PI

index, in [7]. It is defined as,

PIe(G) =
∑

e=uv∈E(G)

(mu(e|G) +mv(e|G)),

where mu(e|G) is the number of edges in G lying closer to the vertex u than to the

vertex v.

After a few years, Khalifeh introduced the vertex version of this index and, using this

notion, computed the exact expression for the PI index of the Cartesian product of

graphs in [10].

The vertex Padmakar-Ivan (PI) index of a graph G is defined by,

PI (G) =
∑

e=uv∈E(G)

(nu(e) + nv(e)) , (1)

where nu(e) denote the number of vertices of G whose distance to the vertex u is

smaller than the distance to the vertex v.

A vertex w ∈ V (G) is said to be an equidistant vertex of an edge e = uv if d(u,w) =

d(v, w). The set of equidistant vertices of an edge e = uv is denoted by D(e) and

is defined as, D(e) = {w ∈ G : d(u,w) = d(v, w)}. NG(e) denotes the number of

equidistant vertices of e, NG(e) = |D(e)|.
In equation (1), nu(e) + nv(e) = |V (G)| −NG(e). So vertex PI index of a graph G is

also given by,

PI(G) =
∑

e∈E(G)

(|V (G)| −NG(e)).

The former is the edge PI index and the latter is the vertex PI index. Ilić and

Milosavljević introduced another topological index, the weighted vertex PI index in

[5], and computed the exact expressions for the weighted vertex PI index of the

Cartesian product of graphs. The weighted PI index of a graph G is given by,

PIw(G) =
∑

e∈E(G)

((dG(u) + dG(v))(|V (G)| −NG(e))) .

The topological indices of some molecular graphs are studied in [1] and [16]. Khadikar

et al. investigated the chemical and biological applications of PI index in [9] and [8].

Indulal et al. constructed a class of non-bipartite graphs possessing PI-invariant

edges in [6]. Manju and Somasundaram [3] obtained the PI index for some classes of

perfect graphs like co-bipartite graphs, line graphs, and prismatic graphs. They also

calculated the exact value of the PI and weighted PI indices of powers of paths, cycles,

and their complements in [2]. Gopika et al. obtained the weighted PI index for the

direct and strong product of certain classes of graphs in [4]. In [15] and [11], authors

calculated the sharp lower and upper bounds on the edge PI index of connected
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bicyclic graphs with the constant number of vertices. They also characterize the

case of equality for both bounds. In [12], Gang Ma et al. obtained the upper and

lower bounds on the edge PI index of connected unicyclic and bicyclic graphs with

given girth and characterized the corresponding extremal graphs. The computation

of the upper bound on the edge PI index of connected bicyclic graphs with an even

number of edges has been done by the same authors in [14]. In [13], the upper and

lower bounds on the weighted vertex PI index of bicyclic graphs are obtained and the

corresponding extremal graphs are also given. Motivated by this, we discussed the

exact value of the vertex PI index of bicyclic graphs, and the corresponding extremal

graphs in this paper. We also studied the PI index of cactus graphs.

The contraction of an edge e = uv in a graph G results in a new graph in which edge

e is replaced by a new vertex, which is adjacent to all vertices that are adjacent to

u or v in G. It may contain parallel edges. G ∗ e is the new graph by excluding all

parallel edges.

If G is a bipartite graph with n vertices and m edges, PI(G) = nm [6]. In particular,

if Tn is a tree with n vertices, then PI(Tn) = n(n−1) and PI(Tn ∗e) = (n−1)(n−2).

The subdivision of any graph is a bipartite graph. If G is a graph with n vertices and

m edges, then the subdivision of G has n+m vertices and 2m edges. Therefore the

PI index of the subdivision of G is 2m(n+m).

2. PI index of unicyclic graphs

Throughout this section, we assume that G is a unicyclic graph with n vertices and

m edges with the unique cycle Ck. It is easy to see that number of vertices and edges

are the same in a unicyclic graph. Also PI(Cn)=

{
n(n− 1) if n is odd

n2 if n is even.

We observed an important property that the contribution of edges of an odd cycle Ck

to NG(e) gives a partition of n.

Lemma 1. Let G be a unicycle graph with n vertices with an odd cycle C2k+1. Then

∑
e∈E(C2k+1)

NG(e) = n.

Proof. If G ' C2n+1, then
∑
NG(e) = n. Otherwise, let Ti, i = 1, 2, . . . , k be the

trees in G rooted on each vertex vi of C2k+1 (some Ti can be empty). For any edge in

the cycle, there is only one vertex (say vi) in the cycle as the equidistant vertex, and

hence all the vertices of Ti are also equidistant. Therefore, the sum of the number of

equidistant vertices corresponding to edges in C2k+1 is n.

Lemma 2. Let G be a unicycle graph with n vertices with an odd cycle C2k+1. The edges
in C2k+1 contribute 2kn to the PI(G).
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From Lemma 1, it is easy to see that the edges in C2k+1 contribute 2kn to the PI

index of G.

Theorem 1. Let G be a unicycle graph with n vertices with unique cycle Ck. Then

PI(G) =

{
n2 if k is even

n(n− 1) if k is odd.

Proof. Let G be the unicyclic graph with n vertices and the unique cycle Ck. If k

is even, then G is a bipartite graph and so PI(G) = n2. Assume that k is odd. Let

E1 be the edges of Ck and E2 = E(G)− E1. Now PI(G) =
∑

e∈E1

(|V (G)| −NG(e)) +∑
e∈E2

(|V (G)| −NG(e)) = (k − 1)n+
∑

e∈E2

(|V (G)| −NG(e)) (by Lemma 2).

The set E2 has (n− k) edges, and each edge in E2 has no equidistant vertices in G.

Thus PI(G) = (k − 1)n+ (n− k)n = n(n− 1).

By Theorem 1, the PI index of G does not depend on k. So we can easily say that

the PI index of a unicyclic graph G is either n(n− 1) or n2, it attains its lower bound

if the cycle in G is odd and attains its upper bound if the cycle is even.

If G is a unicyclic graph, then G∗e is a unicyclic graph. Suppose G is a unicyclic graph

with n vertices and the cycle C3 thenG∗e is a tree, and hence PI(G∗e) = (n−1)(n−2).

The following corollary is an easy consequence of Theorem 1.

Corollary 1. Let G be the unicyclic graph with n vertices and the unique cycle Ck, k ≥ 4.

Then PI(G ∗ e) =

{
(n− 1)2 if k is odd and e ∈ Ck or if k is even and e /∈ Ck

(n− 1)(n− 2) if k is odd and e /∈ Ck or if k is even and e ∈ Ck.

3. PI Index of Bicyclic Graphs

A simple connected graph G is bicyclic if its number of edges is equal to one more

than the number of vertices in G. Let G = C(p, q, k) be a bicyclic graph with n

vertices, which has two cycles Cp and Cq (throughout this paper we assume that

p ≤ q) and the two cycles share k edges (k ≥ 0) e1, e2, . . . , ek. Then G has three

cycles, Cp, Cq, and Cp+q−2k. Let Cp : u1u2 . . . upu1, Cq = v1v2 . . . vqv1 and Cp+q−2k :

u1upup−1up−2 . . . uk+1vk+2vk+3 . . . vqu1 with u1 = v1, u2 = v2, . . . , uk+1 = vk+1. Let

Ti be the tree rooted at the vertex ui of Cp and T ′i be the tree rooted at vi of Cq. Let

|V (Ti)| = ti, |V (T ′i )| = t′i (including the vertices ui and vi). We can call the edges of

Cp ∪ Cq as the cyclic part and the remaining edges as the non-cyclic part of G. An

example of a bicyclic graph is shown in Figure 1.

We can easily see that a vertex u is an equidistant vertex of an edge e, then the vertices

of trees rooted on u are also equidistant of e. we call such trees, equidistant trees of

e. The equidistant trees corresponding to edges ei ∈ Cp ∩ Cq has more importance.

Let ρ be the total number of equidistant vertices corresponding to the edges common

to Cp and Cq.
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Figure 1. Example of a Bicyclic Graph

Lemma 3. Let G = C(p, q, k) be a bicyclic graph with n vertices. If G has an odd cycle
of length r then

∑
e∈Cr

(|V (G)| −NG(e)) = (r − 1)n.

Proof. Let G be a bicyclic graph with n vertices and let Cp and Cq be the two cycles

in G and we assume that p ≤ q < p+ q − 2k. Also assume k ≤ d, d is the diameter of

smaller cycle Cp. We consider three cases.

Case 1. p and q are odd.

For proving
∑

e∈Cp

(|V (G)| −NG(e)) = (p− 1)n, it needs to show that
∑

e∈Cp

NG(e) = n.

If u and v are two vertices of Cp, then the distance d(u, v) in G is equal to d(u, v) in

Cp. As k ≤ d above is the same in the case of Cq. Since p is odd, every vertex on Cp

must be an equidistant vertex exactly one edge in Cp. So ∪e∈CpD(e) includes all the

vertices on Cp. Let C be the set of edges common to Cp and Cq and |C| = k.

Let z1, z2, . . . , zk be the vertices on Cq which are equidistant to the edges in C.

Figure 2. Cyclic part of G used in the proof of Lemma 3 (Case 1)

For the vertex u1 there is an edge e = xy in Cp such that u1 is equidistant to e. Let

a be the vertex on Cq such that (a, z1) is an edge of Cq as shown in Figure 2. By

calculating the length of all paths connecting x and a, d(x, a) = d(x, u1) + d(u1, a) =
p−1
2 +( q−1

2 −(k−1)) and d(y, a) = d(y, uk+1)+d(uk+1, a) = p−1
2 −k+ q−1

2 +1, a ∈ D(e).
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Let A be the path from x to a including the vertices up, u1, vq. Since a and u1 belong

to D(e), all vertices of Cq that lies between u1 and a (along the path A) are also in

D(e). Similarly, the vertices uk+1, vk+2, . . . , b are in D(e′), where e′ is the edge in Cp,

such that vertex uk+1 is equidistant to e′ and b is the vertex next to zk as shown

in Figure 2. If a vertex v ∈ D(e) then the trees rooted on v also in D(e). Hence∑
e∈Cp

NG(e) = n. Similarly, we can prove that
∑

e∈Cq

NG(e) = n.

Case 2. p is even and q is odd.

Assume that p < q ≤ p+ q− 2k. Two odd cycles in G are Cq and Cp+q−2k. As in the

above case, ∪e∈Cq
D(e) includes all the vertices on Cq.

Figure 3. Cyclic part of G used in the proof of Lemma 3 (Case 2)

For the vertex u1 there is an edge e = xy in Cq such that u1 is equidistant to e. Let

z be the vertex on Cp such that d(uk+1, z) = p
2 (there exist such a vertex because Cp

is an even cycle).

Let A be the path from x to z containing u1, up, and B be the path from y to z

containing uk+1, uk+2 (not including the edges in path C). By considering all the

paths from y to z, d(y, z) = d(y, uk+1) + d(uk+1, z) = q − k + p
2 and d(x, z) =

d(x, u1) + d(u1, z) = q + p
2 − k. From this, we can say that z ∈ D(e), so all the

vertices on Cp that lies between u1 and z(along A) are equidistant to e. Let e′ = x′y′

be the edge on Cq such that uk+1 is equidistant to e′. Also, let w be the vertex on

Cp such that d(u1, w) = p
2 . So the vertices between uk+1 and w (along B) are in

D(e′). Therefore we can easily say that the remaining vertices between z and w are

equidistant to the edges of Cq lies between e and e′. If a vertex v ∈ D(e) and hence

the trees are rooted on v also in D(e). Hence
∑

e∈Cq
NG(e) = n.

Two edges e = xy and e′ = uv are equidistant if d(x, u) = d(y, v) or d(x, v) = d(y, u),

i.e. the distance between those edges are equal. Now consider the cycle Cp+q−2k.

E(Cp+q−2k) = (E1 ∪ E2) \ E3, where E1 = E(Cp), E2 = E(Cq) and E3 = E(Cp) ∩
E(Cq). So we only need to consider E1 \ E3. Since E1 and E3 are parts of an even

cycle, corresponding to each edge e in E3 there is an equidistant edge e′ in E1 and

NG(e) = NG(e′),
∑

e∈Cp+q−2k
NG(e) = n.

Case 3. p is odd and q is even.

It is easy to prove.

Using the same procedure we can prove the Lemma for k > d.
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Theorem 2. Let G = C(p, q, k) be a bicyclic graph with n vertices. Then

PI(G) =


n(n− 1) + ρ if p and q are odd

n(n+ 1) if p and q are even

n2 − ρ otherwise.

Proof. We prove this theorem by considering two cases.

Case 1. Assume that k ≤ d.
We distinguish three situations.

Subcase 1.1. Both p and q are odd.

Graph G has exactly two odd cycles Cp, Cq, and an even cycle Cp+q−2k. From Lemma

3, Cp and Cq contribute (p − 1)n and (q − 1)n to the PI index of G, respectively.

Consider the edge ei ∈ Cp ∩ Cq, there is one vertex uj at distance dp in Cp belongs

to D(ei) and hence the vertices of the tree Tj are also belong to D(ei). Similarly

there exist vm in Cq and hence V (T ′m) are also belongs to D(ei). Therefore NG(ei) =

tj + t′m. Thus ∪k−1r=0V (Tj+r) ∈ D(ei) and ∪k−1r=0V (T ′m+r) ∈ D(
⋃

ei∈Cp∩Cq

ei). So the

edges common to Cp and Cq contribute kn−
(

k−1∑
r=0

tj+r +
k−1∑
r=0

t′m+r

)
= kn− ρ to the

PI index of G. If we consider the non-cyclic part, each tree Ti and T ′i contributes

n(ti − 1) and n(t′i − 1) to PI(G). Hence

PI(G) = (p− 1)n+ (q − 1)n− (kn− ρ) + n

p∑
i=1

(ti − 1) + n

q∑
i=k+2

(t′i − 1)

= n

(
p+ q − 2− k +

p∑
i=1

(ti − 1) +

q∑
i=k+2

(t′i − 1)

)
+ ρ

= n

(
p+ q − k − 2 +

(
p∑

i=1

ti − p

)
+

(
q∑

i=k+2

t′i − (q − k − 1)

))
+ ρ

= n(n− 1) + ρ.

Subcase 1.2. Both p and q are even.

In this case, G is bipartite since all the three cycles in G are even in length and

therefore PI(G) = n(n+ 1).

Subcase 1.3. p is even and q is odd.

Graph G has one even cycle Cp and two odd cycles Cq and Cp+q−2k. Partition the

edge set E(G) into three sets, E1 = E(Cp+q−2k), E2 = Cp ∩Cq = {e1, e2, . . . , ek} and

E3 is the union of edges in the non-cyclic part. From the Lemma 3, E1 contributes

(p+ q − 2k − 1)n to PI index of G.

For the edge ei in E2, there is exactly one vertex vm in Cq at distance dq belongs

to D(ei) and thus V (T ′m) ⊆ D(ei). So NG(ei) = t′m. Thus the edges in Cp ∩ Cq
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contributes kn −
r=k−1∑
r=0

t′m+r = kn − ρ to PI index of G. The non-cyclic part E3

contributes the same as in Subcase 1.1. Thus

PI(G) = (p+ q − 2k − 1)n+ (kn− ρ) + n(

p∑
i=1

(ti − 1)) + n(

q∑
i=k+2

(t′i − 1))

= (p+ q − 2k − 1 + k)n− ρ+ n(

p∑
i=1

ti − p) + n(

q∑
i=k+2

t′i − (q − k − 1))

= (p+ q − 2k − 1 + k +

p∑
i=1

ti +

q∑
i=k+2

t′i − p− q + k + 1))n− ρ

= n2 − ρ.

Case 2. Assume k > d.

We consider three situations.

Subcase 2.1. Both p and q are odd.

In this case, we partition the edge set into four sets. Let E1 = E(Cp), E2 =

E(Cq), E3 = E(Cp ∩ Cq), and E4 be the union of edges in the non-cyclic part of

G. E1 and E2 contribute (p − 1)n and (q − 1)n to the PI index of G, respectively.

Also, E4 contributes the same as in the above case. Now, we have to find the

number of equidistant vertices corresponding to the common edges. Consider the

set with common edges C = {e1, e2, . . . , ek− p−1
2
, ek− p−1

2 +1, . . . , e p−1
2
, e p−1

2 +1, . . . , ek}.
Each edge in C has an equidistant vertex in Cp. Since it is a part of Cq,

possible equidistant vertex is at dq. For an edge ei = uiui+1 in C, if v is the

equidistant vertex in Cq, then length of the shortest ui − v path is dq. Such a

vertex exist if any other ui − v path (not along Cq) greater than dq, that is,

d(ui, v) = d(ui, u1)+d(u1, uk+1)+d(uk+1, v) = (i−1)+(p−k)+( q−1
2 −(k−i)) > q−1

2

implies i > k − p−1
2 . Similarly, d(ui+1, v) = dq, it is the distance of the

shortest path along Cq. If we consider any other path, the length should be

greater than dq, that is, d(ui+1, z) = d(ui+1, uk+1) + d(uk+1, u1) + d(u1, v) =

(k − i) + (p − k) + ( q−1
2 − (i − 1)) > q−1

2 implies i ≤ p−1
2 . Therefore, there exist

equidistant vertices at distance dq for the edges ek− p−1
2 +1, ek− p−1

2 +2, . . . , e p−1
2
. The

total number of vertices equidistant to edges in C is ρ. Thus we have PI(G) =

(p− 1)n+ (q− 1)n+n(
p∑

i=1

ti− p) +n(
q∑

i=k+2

t′i− (q− k− 1))− (kn− ρ) = n(n− 1) + ρ.

Subcase 2.2. p and q are even.

In this case G is bipartite graph and hence PI(G) = n(n+ 1).

Subcase 2.3. p is even, and q is odd.

The edge set of G can be partitioned as E1 = E(Cp+q−2k), E2 = E(Cp) ∩ E(Cq), E3

is the union of edges in the non-cyclic part. E1 contributes (p + q − 2k − 1)n to

the PI index of G. Now, we have to find the equidistant vertices corresponding to the

common edges. Let the common edges be C = {e1, e2, . . . , ek− p
2
, ek− p

2+1, . . . , e p
2
, e p

2
+
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1, . . . , ek}. Since the common edge is a part of Cq, a possible equidistant vertex is at

dq. Similarly, as we have done in Case 1, there exist equidistant vertices at distance

dq for the edges ek− p
2+1, ek− p

2+2, . . . , e p
2
. The total number of vertices equidistant to

edges in C is ρ. Therefore,

PI(G) = (p+ q − 2k − 1)n+ n(

p∑
i=1

(ti − 1)) + n(

q∑
i=k+2

(t′i − 1)) + (nk − ρ)

= (p+ q − 2k − 1)n+ n(

p∑
i=1

(ti − p)) + n(

q∑
i=k+2

(t′i − (q − k − 1)) + (nk − ρ)

= n(p+ q − 2k − 1 + n− p− (q − k − 1) + k)− ρ = n2 − ρ.

From the above theorem, we conclude that for any bicyclic graph, the PI index de-

pends on the number of vertices and the number of equidistant vertices ρ correspond-

ing to the common edges of two cycles Cp and Cq.

Next, we consider extremal graphs among bicyclic graphs. Let G be a bicyclic graph

with n vertices and two odd cycles, Cp, and Cq. From the Theorem 2 PI(G) =

n(n − 1) + ρ. Here, the minimum PI index is n(n − 1), which is attained by graphs

with ρ = 0. G2 in Figure 4 is such a graph. The maximum is n(n−1)+n−1 obtained

when ρ is maximum.

If G has one even and one odd cycle, PI(G) = n2 − ρ. Here, the minimum PI index

is n2 − ρ = n2 − (n − 2), which is attained by such graphs which have maximum ρ.

Maximum PI index n2 obtained when ρ = 0. G1 and G2 in Figure 4 are examples of

extremal graphs, and such graphs are not unique.

Figure 4. Extremal Graphs

Next, we consider those graphs G such that, the resulting graph G∗e has the following

property. The number of edges common to the cycles in G ∗ e should be less than

the diameter of the shortest cycle in G ∗ e, and p, q ≥ 4. We can partition the edge

set of G as E1 = Cp (not in Cq), E2 = Cq (not in Cp), E3 = E(Cp) ∩ E(Cq) and

E4 = ∪k−1i=0E(Tj+i), E5 = ∪k−1i=0E(T ′m+i) and E6 represent the remaining edges. t

and t′ are the number of equidistant vertices (for the common edges) on Cp and Cq



434 PI index of bicyclic graphs

respectively, ∗ denote the same in G∗e. The following corollary is an easy consequence

of Theorem 2.

Corollary 2. Let G be a bicyclic graph then the PI index of G ∗ e is as follows.

1. PI(G ∗ e) = (n− 1)2 − k,

k =



t(or t′) if p and q are odd and e ∈ E1(or E2) or if p is odd and q is even and

e ∈ E5
⋃

E6

t ∗′ (or t∗) if p and q are even and e ∈ E2(or E1) or if p is odd and q is even and

e ∈ E3

t− 1 if p is odd and q is even and e ∈ E4

2. PI(G ∗ e) = (n− 1)(n− 2) + k

k =


t+ t′ − 1 if p and q are odd and e ∈ E4

⋃
E5

t+ t′(or t ∗+t∗′) if p and q are odd and e ∈ E6 (or if p and q are even and e ∈ E3)

t+ t∗′ or if p is odd and q is even and e ∈ E2

3. PI(G ∗ e) = n(n− 1), otherwise.

4. Cactus graph

A cactus graph is a simple connected graph in which every block is an edge or a cycle.

That is, every cycle has at most one vertex in common.

Theorem 3. Let G be a cactus graph with n vertices, m edges, and p odd cycles. Then
PI(G) = n(m− p).

Proof. Let Ck1 , Ck2 , . . . , Ckp be the odd cycles of length k1, k2, . . . , kp in G. We claim

that each Cki
contributes (ki−1)n to the PI index of G. Let H be the graph obtained

by deleting all edges of odd cycle Cki
, it has ki components. Each vertex v on Cki

is

an equidistant vertex corresponding to some edges (exactly one) e in Cki
. All vertices

of the component containing v also belong to D(e). Thus
∑

e∈Cki
NG(e) = n. The

remaining edges (which are not parts of an odd cycle) contribute n(m − (k1 + k2 +

· · ·+ kp)) to the PI of G. Thus we have

PI(G) = ((k1 − 1)n+ (k2 − 1)n+ · · ·+ (kp − 1)n) + (n(m− (k1 + k2 + · · ·+ kp)))

= (k1 + k2 + · · ·+ kp − p)n+ n(m− (k1 + k2 + · · ·+ kp))

= n(m− p).
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From the above theorem, we can easily say that the PI index of a cactus graph G is

maximum and is equal to nm when p = 0 or G has no odd cycles. Also, the PI index

of G is minimum when p is maximum. Since the maximum number of edge-disjoint

triangles among m edges is bm3 c, the maximum feasible value of p is bm3 c. So the

minimum PI index is n(m− bm3 c).
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