Research Article

PI index of bicyclic graphs

Manju Sankaramalil Chithrabhanu ${ }^{1}$ and Kanagasabapathi Somasundaram ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, School of Physical Sciences, Kochi, Amrita Vishwa Vidyapeetham, India manjuchithrabhanu@gmail.com
${ }^{2}$ Department of Mathematics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
*s_sundaram@cb.amrita.edu

Received: 17 May 2022; Accepted: 18 January 2023
Published Online: 24 January 2023

Abstract

The PI index of a graph G is given by $P I(G)=\sum_{e \in E(G)}\left(|V(G)|-N_{G}(e)\right)$, where $N_{G}(e)$ is the number of equidistant vertices for the edge e. Various topological indices of bicyclic graphs have already been calculated. In this paper, we obtained the exact value of the PI index of bicyclic graphs. We also explore the extremal graphs among all bicyclic graphs with respect to the PI index. Furthermore, we calculate the PI index of a cactus graph and determine the extremal values of the PI index among cactus graphs.

Keywords: PI index, Unicyclic graphs, Bicyclic graphs, Extremal values
AMS Subject classification: 05C09, 05C38

1. Introduction

A topological index is a real number related to a molecular graph that gives some structural properties of the molecules. There are different types of topological indices, i.e., distance-based, degree-based, and neighborhood-based topological indices. Some examples of topological indices are the Wiener index, Szeged index, Zagreb index, Padmakar - Ivan (PI) index, weighted PI index, etc., which have applications in the field of chemical graph theory. The Wiener index is the oldest and most widely studied topological index [16]. After the success of the Wiener and Szeged indices in 2000,

[^0]Khadikar proposed another index, the Padmakar-Ivan index, abbreviated as the PI index, in [7]. It is defined as,

$$
P I_{e}(G)=\sum_{e=u v \in E(G)}\left(m_{u}(e \mid G)+m_{v}(e \mid G)\right),
$$

where $m_{u}(e \mid G)$ is the number of edges in G lying closer to the vertex u than to the vertex v.
After a few years, Khalifeh introduced the vertex version of this index and, using this notion, computed the exact expression for the PI index of the Cartesian product of graphs in [10].
The vertex Padmakar-Ivan (PI) index of a graph G is defined by,

$$
\begin{equation*}
P I(G)=\sum_{e=u v \in E(G)}\left(n_{u}(e)+n_{v}(e)\right) \tag{1}
\end{equation*}
$$

where $n_{u}(e)$ denote the number of vertices of G whose distance to the vertex u is smaller than the distance to the vertex v.
A vertex $w \in V(G)$ is said to be an equidistant vertex of an edge $e=u v$ if $d(u, w)=$ $d(v, w)$. The set of equidistant vertices of an edge $e=u v$ is denoted by $D(e)$ and is defined as, $D(e)=\{w \in G: d(u, w)=d(v, w)\} . N_{G}(e)$ denotes the number of equidistant vertices of $e, N_{G}(e)=|D(e)|$.
In equation (1), $n_{u}(e)+n_{v}(e)=|V(G)|-N_{G}(e)$. So vertex PI index of a graph G is also given by,

$$
P I(G)=\sum_{e \in E(G)}\left(|V(G)|-N_{G}(e)\right) .
$$

The former is the edge PI index and the latter is the vertex PI index. Ilić and Milosavljević introduced another topological index, the weighted vertex PI index in [5], and computed the exact expressions for the weighted vertex PI index of the Cartesian product of graphs. The weighted PI index of a graph G is given by,

$$
P I_{w}(G)=\sum_{e \in E(G)}\left(\left(d_{G}(u)+d_{G}(v)\right)\left(|V(G)|-N_{G}(e)\right)\right) .
$$

The topological indices of some molecular graphs are studied in [1] and [16]. Khadikar et al. investigated the chemical and biological applications of PI index in [9] and [8]. Indulal et al. constructed a class of non-bipartite graphs possessing PI-invariant edges in [6]. Manju and Somasundaram [3] obtained the PI index for some classes of perfect graphs like co-bipartite graphs, line graphs, and prismatic graphs. They also calculated the exact value of the PI and weighted PI indices of powers of paths, cycles, and their complements in [2]. Gopika et al. obtained the weighted PI index for the direct and strong product of certain classes of graphs in [4]. In [15] and [11], authors calculated the sharp lower and upper bounds on the edge PI index of connected
bicyclic graphs with the constant number of vertices. They also characterize the case of equality for both bounds. In [12], Gang Ma et al. obtained the upper and lower bounds on the edge PI index of connected unicyclic and bicyclic graphs with given girth and characterized the corresponding extremal graphs. The computation of the upper bound on the edge PI index of connected bicyclic graphs with an even number of edges has been done by the same authors in [14]. In [13], the upper and lower bounds on the weighted vertex PI index of bicyclic graphs are obtained and the corresponding extremal graphs are also given. Motivated by this, we discussed the exact value of the vertex PI index of bicyclic graphs, and the corresponding extremal graphs in this paper. We also studied the PI index of cactus graphs.
The contraction of an edge $e=u v$ in a graph G results in a new graph in which edge e is replaced by a new vertex, which is adjacent to all vertices that are adjacent to u or v in G. It may contain parallel edges. $G * e$ is the new graph by excluding all parallel edges.
If G is a bipartite graph with n vertices and m edges, $P I(G)=n m$ [6]. In particular, if T_{n} is a tree with n vertices, then $P I\left(T_{n}\right)=n(n-1)$ and $P I\left(T_{n} * e\right)=(n-1)(n-2)$. The subdivision of any graph is a bipartite graph. If G is a graph with n vertices and m edges, then the subdivision of G has $n+m$ vertices and $2 m$ edges. Therefore the PI index of the subdivision of G is $2 m(n+m)$.

2. PI index of unicyclic graphs

Throughout this section, we assume that G is a unicyclic graph with n vertices and m edges with the unique cycle C_{k}. It is easy to see that number of vertices and edges are the same in a unicyclic graph. Also $P I\left(C_{n}\right)= \begin{cases}n(n-1) & \text { if } n \text { is odd } \\ n^{2} & \text { if } n \text { is even. }\end{cases}$
We observed an important property that the contribution of edges of an odd cycle C_{k} to $N_{G}(e)$ gives a partition of n.

Lemma 1. Let G be a unicycle graph with n vertices with an odd cycle $C_{2 k+1}$. Then

$$
\sum_{e \in E\left(C_{2 k+1}\right)} N_{G}(e)=n .
$$

Proof. If $G \simeq C_{2 n+1}$, then $\sum N_{G}(e)=n$. Otherwise, let $T_{i}, i=1,2, \ldots, k$ be the trees in G rooted on each vertex v_{i} of $C_{2 k+1}$ (some T_{i} can be empty). For any edge in the cycle, there is only one vertex (say v_{i}) in the cycle as the equidistant vertex, and hence all the vertices of T_{i} are also equidistant. Therefore, the sum of the number of equidistant vertices corresponding to edges in $C_{2 k+1}$ is n.

Lemma 2. Let G be a unicycle graph with n vertices with an odd cycle $C_{2 k+1}$. The edges in $C_{2 k+1}$ contribute $2 k n$ to the $\operatorname{PI}(G)$.

From Lemma 1, it is easy to see that the edges in $C_{2 k+1}$ contribute $2 k n$ to the PI index of G.

Theorem 1. Let G be a unicycle graph with n vertices with unique cycle C_{k}. Then

$$
\operatorname{PI}(G)= \begin{cases}n^{2} & \text { if } k \text { is even } \\ n(n-1) & \text { if } k \text { is odd } .\end{cases}
$$

Proof. Let G be the unicyclic graph with n vertices and the unique cycle C_{k}. If k is even, then G is a bipartite graph and so $P I(G)=n^{2}$. Assume that k is odd. Let E_{1} be the edges of C_{k} and $E_{2}=E(G)-E_{1}$. Now $P I(G)=\sum_{e \in E_{1}}\left(|V(G)|-N_{G}(e)\right)+$ $\sum_{e \in E_{2}}\left(|V(G)|-N_{G}(e)\right)=(k-1) n+\sum_{e \in E_{2}}\left(|V(G)|-N_{G}(e)\right)$ (by Lemma 2).
The set E_{2} has $(n-k)$ edges, and each edge in E_{2} has no equidistant vertices in G. Thus $P I(G)=(k-1) n+(n-k) n=n(n-1)$.

By Theorem 1, the PI index of G does not depend on k. So we can easily say that the PI index of a unicyclic graph G is either $n(n-1)$ or n^{2}, it attains its lower bound if the cycle in G is odd and attains its upper bound if the cycle is even.
If G is a unicyclic graph, then $G * e$ is a unicyclic graph. Suppose G is a unicyclic graph with n vertices and the cycle C_{3} then $G * e$ is a tree, and hence $P I(G * e)=(n-1)(n-2)$. The following corollary is an easy consequence of Theorem 1.

Corollary 1. Let G be the unicyclic graph with n vertices and the unique cycle $C_{k}, k \geq 4$. Then PI $(G * e)= \begin{cases}(n-1)^{2} & \text { if } k \text { is odd and } e \in C_{k} \text { or if } k \text { is even and } e \notin C_{k} \\ (n-1)(n-2) & \text { if } k \text { is odd and } e \notin C_{k} \text { or if } k \text { is even and } e \in C_{k} .\end{cases}$

3. PI Index of Bicyclic Graphs

A simple connected graph G is bicyclic if its number of edges is equal to one more than the number of vertices in G. Let $G=C(p, q, k)$ be a bicyclic graph with n vertices, which has two cycles C_{p} and C_{q} (throughout this paper we assume that $p \leq q)$ and the two cycles share k edges $(k \geq 0) e_{1}, e_{2}, \ldots, e_{k}$. Then G has three cycles, C_{p}, C_{q}, and $C_{p+q-2 k}$. Let $C_{p}: u_{1} u_{2} \ldots u_{p} u_{1}, C_{q}=v_{1} v_{2} \ldots v_{q} v_{1}$ and $C_{p+q-2 k}$: $u_{1} u_{p} u_{p-1} u_{p-2} \ldots u_{k+1} v_{k+2} v_{k+3} \ldots v_{q} u_{1}$ with $u_{1}=v_{1}, u_{2}=v_{2}, \ldots, u_{k+1}=v_{k+1}$. Let T_{i} be the tree rooted at the vertex u_{i} of C_{p} and T_{i}^{\prime} be the tree rooted at v_{i} of C_{q}. Let $\left|V\left(T_{i}\right)\right|=t_{i},\left|V\left(T_{i}^{\prime}\right)\right|=t_{i}^{\prime}$ (including the vertices u_{i} and v_{i}). We can call the edges of $C_{p} \cup C_{q}$ as the cyclic part and the remaining edges as the non-cyclic part of G. An example of a bicyclic graph is shown in Figure 1.
We can easily see that a vertex u is an equidistant vertex of an edge e, then the vertices of trees rooted on u are also equidistant of e. we call such trees, equidistant trees of e. The equidistant trees corresponding to edges $e_{i} \in C_{p} \cap C_{q}$ has more importance. Let ρ be the total number of equidistant vertices corresponding to the edges common to C_{p} and C_{q}.

Figure 1. Example of a Bicyclic Graph

Lemma 3. Let $G=C(p, q, k)$ be a bicyclic graph with n vertices. If G has an odd cycle of length r then $\sum_{e \in C_{r}}\left(|V(G)|-N_{G}(e)\right)=(r-1) n$.

Proof. Let G be a bicyclic graph with n vertices and let C_{p} and C_{q} be the two cycles in G and we assume that $p \leq q<p+q-2 k$. Also assume $k \leq d, d$ is the diameter of smaller cycle C_{p}. We consider three cases.
Case 1. p and q are odd.
For proving $\sum_{e \in C_{p}}\left(|V(G)|-N_{G}(e)\right)=(p-1) n$, it needs to show that $\sum_{e \in C_{p}} N_{G}(e)=n$. If u and v are two vertices of C_{p}, then the distance $d(u, v)$ in G is equal to $d(u, v)$ in C_{p}. As $k \leq d$ above is the same in the case of C_{q}. Since p is odd, every vertex on C_{p} must be an equidistant vertex exactly one edge in C_{p}. So $\cup_{e \in C_{p}} D(e)$ includes all the vertices on C_{p}. Let C be the set of edges common to C_{p} and C_{q} and $|C|=k$.
Let $z_{1}, z_{2}, \ldots, z_{k}$ be the vertices on C_{q} which are equidistant to the edges in C.

Figure 2. Cyclic part of G used in the proof of Lemma 3 (Case 1)

For the vertex u_{1} there is an edge $e=x y$ in C_{p} such that u_{1} is equidistant to e. Let a be the vertex on C_{q} such that $\left(a, z_{1}\right)$ is an edge of C_{q} as shown in Figure 2. By calculating the length of all paths connecting x and $a, d(x, a)=d\left(x, u_{1}\right)+d\left(u_{1}, a\right)=$ $\frac{p-1}{2}+\left(\frac{q-1}{2}-(k-1)\right)$ and $d(y, a)=d\left(y, u_{k+1}\right)+d\left(u_{k+1}, a\right)=\frac{p-1}{2}-k+\frac{q-1}{2}+1, a \in D(e)$.

Let A be the path from x to a including the vertices u_{p}, u_{1}, v_{q}. Since a and u_{1} belong to $D(e)$, all vertices of C_{q} that lies between u_{1} and a (along the path A) are also in $D(e)$. Similarly, the vertices $u_{k+1}, v_{k+2}, \ldots, b$ are in $D\left(e^{\prime}\right)$, where e^{\prime} is the edge in C_{p}, such that vertex u_{k+1} is equidistant to e^{\prime} and b is the vertex next to z_{k} as shown in Figure 2. If a vertex $v \in D(e)$ then the trees rooted on v also in $D(e)$. Hence $\sum_{e \in C_{p}} N_{G}(e)=n$. Similarly, we can prove that $\sum_{e \in C_{q}} N_{G}(e)=n$.
Case 2. p is even and q is odd.
Assume that $p<q \leq p+q-2 k$. Two odd cycles in G are C_{q} and $C_{p+q-2 k}$. As in the above case, $\cup_{e \in C_{q}} D(e)$ includes all the vertices on C_{q}.

Figure 3. Cyclic part of G used in the proof of Lemma 3 (Case 2)

For the vertex u_{1} there is an edge $e=x y$ in C_{q} such that u_{1} is equidistant to e. Let z be the vertex on C_{p} such that $d\left(u_{k+1}, z\right)=\frac{p}{2}$ (there exist such a vertex because C_{p} is an even cycle).
Let A be the path from x to z containing u_{1}, u_{p}, and B be the path from y to z containing u_{k+1}, u_{k+2} (not including the edges in path C). By considering all the paths from y to $z, d(y, z)=d\left(y, u_{k+1}\right)+d\left(u_{k+1}, z\right)=q-k+\frac{p}{2}$ and $d(x, z)=$ $d\left(x, u_{1}\right)+d\left(u_{1}, z\right)=q+\frac{p}{2}-k$. From this, we can say that $z \in D(e)$, so all the vertices on C_{p} that lies between u_{1} and $z($ along $A)$ are equidistant to e. Let $e^{\prime}=x^{\prime} y^{\prime}$ be the edge on C_{q} such that u_{k+1} is equidistant to e^{\prime}. Also, let w be the vertex on C_{p} such that $d\left(u_{1}, w\right)=\frac{p}{2}$. So the vertices between u_{k+1} and w (along B) are in $D\left(e^{\prime}\right)$. Therefore we can easily say that the remaining vertices between z and w are equidistant to the edges of C_{q} lies between e and e^{\prime}. If a vertex $v \in D(e)$ and hence the trees are rooted on v also in $D(e)$. Hence $\sum_{e \in C_{q}} N_{G}(e)=n$.
Two edges $e=x y$ and $e^{\prime}=u v$ are equidistant if $d(x, u)=d(y, v)$ or $d(x, v)=d(y, u)$, i.e. the distance between those edges are equal. Now consider the cycle $C_{p+q-2 k}$. $E\left(C_{p+q-2 k}\right)=\left(E_{1} \cup E_{2}\right) \backslash E_{3}$, where $E_{1}=E\left(C_{p}\right), E_{2}=E\left(C_{q}\right)$ and $E_{3}=E\left(C_{p}\right) \cap$ $E\left(C_{q}\right)$. So we only need to consider $E_{1} \backslash E_{3}$. Since E_{1} and E_{3} are parts of an even cycle, corresponding to each edge e in E_{3} there is an equidistant edge e^{\prime} in E_{1} and $N_{G}(e)=N_{G}\left(e^{\prime}\right), \sum_{e \in C_{p+q-2 k}} N_{G}(e)=n$.
Case 3. p is odd and q is even.
It is easy to prove.
Using the same procedure we can prove the Lemma for $k>d$.

Theorem 2. Let $G=C(p, q, k)$ be a bicyclic graph with n vertices. Then

$$
P I(G)= \begin{cases}n(n-1)+\rho & \text { if } p \text { and } q \text { are odd } \\ n(n+1) & \text { if } p \text { and } q \text { are even } \\ n^{2}-\rho & \text { otherwise. }\end{cases}
$$

Proof. We prove this theorem by considering two cases.
Case 1. Assume that $k \leq d$.
We distinguish three situations.
Subcase 1.1. Both p and q are odd.
Graph G has exactly two odd cycles C_{p}, C_{q}, and an even cycle $C_{p+q-2 k}$. From Lemma $3, C_{p}$ and C_{q} contribute $(p-1) n$ and $(q-1) n$ to the PI index of G, respectively. Consider the edge $e_{i} \in C_{p} \cap C_{q}$, there is one vertex u_{j} at distance d_{p} in C_{p} belongs to $D\left(e_{i}\right)$ and hence the vertices of the tree T_{j} are also belong to $D\left(e_{i}\right)$. Similarly there exist v_{m} in C_{q} and hence $V\left(T_{m}^{\prime}\right)$ are also belongs to $D\left(e_{i}\right)$. Therefore $N_{G}\left(e_{i}\right)=$ $t_{j}+t_{m}^{\prime}$. Thus $\cup_{r=0}^{k-1} V\left(T_{j+r}\right) \in D\left(e_{i}\right)$ and $\cup_{r=0}^{k-1} V\left(T_{m+r}^{\prime}\right) \in D\left(\underset{e_{i} \in C_{p} \cap C_{q}}{\bigcup} e_{i}\right)$. So the edges common to C_{p} and C_{q} contribute $k n-\left(\sum_{r=0}^{k-1} t_{j+r}+\sum_{r=0}^{k-1} t_{m+r}^{\prime}\right)=k n-\rho$ to the PI index of G. If we consider the non-cyclic part, each tree T_{i} and T_{i}^{\prime} contributes $n\left(t_{i}-1\right)$ and $n\left(t_{i}^{\prime}-1\right)$ to $P I(G)$. Hence

$$
\begin{aligned}
P I(G) & =(p-1) n+(q-1) n-(k n-\rho)+n \sum_{i=1}^{p}\left(t_{i}-1\right)+n \sum_{i=k+2}^{q}\left(t_{i}^{\prime}-1\right) \\
& =n\left(p+q-2-k+\sum_{i=1}^{p}\left(t_{i}-1\right)+\sum_{i=k+2}^{q}\left(t_{i}^{\prime}-1\right)\right)+\rho \\
& =n\left(p+q-k-2+\left(\sum_{i=1}^{p} t_{i}-p\right)+\left(\sum_{i=k+2}^{q} t_{i}^{\prime}-(q-k-1)\right)\right)+\rho \\
& =n(n-1)+\rho .
\end{aligned}
$$

Subcase 1.2. Both p and q are even.
In this case, G is bipartite since all the three cycles in G are even in length and therefore $\operatorname{PI}(G)=n(n+1)$.
Subcase 1.3. p is even and q is odd.
Graph G has one even cycle C_{p} and two odd cycles C_{q} and $C_{p+q-2 k}$. Partition the edge set $E(G)$ into three sets, $E_{1}=E\left(C_{p+q-2 k}\right), E_{2}=C_{p} \cap C_{q}=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ and E_{3} is the union of edges in the non-cyclic part. From the Lemma 3, E_{1} contributes $(p+q-2 k-1) n$ to PI index of G.
For the edge e_{i} in E_{2}, there is exactly one vertex v_{m} in C_{q} at distance d_{q} belongs to $D\left(e_{i}\right)$ and thus $V\left(T_{m}^{\prime}\right) \subseteq D\left(e_{i}\right)$. So $N_{G}\left(e_{i}\right)=t_{m}^{\prime}$. Thus the edges in $C_{p} \cap C_{q}$
contributes $k n-\sum_{r=0}^{r=k-1} t_{m+r}^{\prime}=k n-\rho$ to PI index of G. The non-cyclic part E_{3} contributes the same as in Subcase 1.1. Thus

$$
\begin{aligned}
P I(G) & =(p+q-2 k-1) n+(k n-\rho)+n\left(\sum_{i=1}^{p}\left(t_{i}-1\right)\right)+n\left(\sum_{i=k+2}^{q}\left(t_{i}^{\prime}-1\right)\right) \\
& =(p+q-2 k-1+k) n-\rho+n\left(\sum_{i=1}^{p} t_{i}-p\right)+n\left(\sum_{i=k+2}^{q} t_{i}^{\prime}-(q-k-1)\right) \\
& \left.=\left(p+q-2 k-1+k+\sum_{i=1}^{p} t_{i}+\sum_{i=k+2}^{q} t_{i}^{\prime}-p-q+k+1\right)\right) n-\rho \\
& =n^{2}-\rho .
\end{aligned}
$$

Case 2. Assume $k>d$.
We consider three situations.
Subcase 2.1. Both p and q are odd.
In this case, we partition the edge set into four sets. Let $E_{1}=E\left(C_{p}\right), E_{2}=$ $E\left(C_{q}\right), E_{3}=E\left(C_{p} \cap C_{q}\right)$, and E_{4} be the union of edges in the non-cyclic part of G. E_{1} and E_{2} contribute $(p-1) n$ and $(q-1) n$ to the PI index of G, respectively. Also, E_{4} contributes the same as in the above case. Now, we have to find the number of equidistant vertices corresponding to the common edges. Consider the set with common edges $C=\left\{e_{1}, e_{2}, \ldots, e_{k-\frac{p-1}{2}}, e_{k-\frac{p-1}{2}+1}, \ldots, e_{\frac{p-1}{2}}, e_{\frac{p-1}{2}+1}, \ldots, e_{k}\right\}$. Each edge in C has an equidistant vertex in C_{p}. Since it is a part of C_{q}, possible equidistant vertex is at d_{q}. For an edge $e_{i}=u_{i} u_{i+1}$ in C, if v is the equidistant vertex in C_{q}, then length of the shortest $u_{i}-v$ path is d_{q}. Such a vertex exist if any other $u_{i}-v$ path (not along C_{q}) greater than d_{q}, that is, $d\left(u_{i}, v\right)=d\left(u_{i}, u_{1}\right)+d\left(u_{1}, u_{k+1}\right)+d\left(u_{k+1}, v\right)=(i-1)+(p-k)+\left(\frac{q-1}{2}-(k-i)\right)>\frac{q-1}{2}$ implies $i>k-\frac{p-1}{2}$. Similarly, $d\left(u_{i+1}, v\right)=d_{q}$, it is the distance of the shortest path along C_{q}. If we consider any other path, the length should be greater than d_{q}, that is, $d\left(u_{i+1}, z\right)=d\left(u_{i+1}, u_{k+1}\right)+d\left(u_{k+1}, u_{1}\right)+d\left(u_{1}, v\right)=$ $(k-i)+(p-k)+\left(\frac{q-1}{2}-(i-1)\right)>\frac{q-1}{2}$ implies $i \leq \frac{p-1}{2}$. Therefore, there exist equidistant vertices at distance d_{q} for the edges $e_{k-\frac{p-1}{2}+1}, e_{k-\frac{p-1}{2}+2}, \ldots, e_{\frac{p-1}{2}}$. The total number of vertices equidistant to edges in C is ρ. Thus we have $P I(G)=$ $(p-1) n+(q-1) n+n\left(\sum_{i=1}^{p} t_{i}-p\right)+n\left(\sum_{i=k+2}^{q} t_{i}^{\prime}-(q-k-1)\right)-(k n-\rho)=n(n-1)+\rho$.

Subcase 2.2. p and q are even.
In this case G is bipartite graph and hence $P I(G)=n(n+1)$.
Subcase 2.3. p is even, and q is odd.
The edge set of G can be partitioned as $E_{1}=E\left(C_{p+q-2 k}\right), E_{2}=E\left(C_{p}\right) \cap E\left(C_{q}\right), E_{3}$ is the union of edges in the non-cyclic part. E_{1} contributes $(p+q-2 k-1) n$ to the PI index of G. Now, we have to find the equidistant vertices corresponding to the common edges. Let the common edges be $C=\left\{e_{1}, e_{2}, \ldots, e_{k-\frac{p}{2}}, e_{k-\frac{p}{2}+1}, \ldots, e_{\frac{p}{2}}, e_{\frac{p}{2}}+\right.$
$\left.1, \ldots, e_{k}\right\}$. Since the common edge is a part of C_{q}, a possible equidistant vertex is at d_{q}. Similarly, as we have done in Case 1, there exist equidistant vertices at distance d_{q} for the edges $e_{k-\frac{p}{2}+1}, e_{k-\frac{p}{2}+2}, \ldots, e_{\frac{p}{2}}$. The total number of vertices equidistant to edges in C is ρ. Therefore,

$$
\begin{aligned}
\operatorname{PI}(G) & =(p+q-2 k-1) n+n\left(\sum_{i=1}^{p}\left(t_{i}-1\right)\right)+n\left(\sum_{i=k+2}^{q}\left(t_{i}^{\prime}-1\right)\right)+(n k-\rho) \\
& =(p+q-2 k-1) n+n\left(\sum_{i=1}^{p}\left(t_{i}-p\right)\right)+n\left(\sum_{i=k+2}^{q}\left(t_{i}^{\prime}-(q-k-1)\right)+(n k-\rho)\right. \\
& =n(p+q-2 k-1+n-p-(q-k-1)+k)-\rho=n^{2}-\rho .
\end{aligned}
$$

From the above theorem, we conclude that for any bicyclic graph, the PI index depends on the number of vertices and the number of equidistant vertices ρ corresponding to the common edges of two cycles C_{p} and C_{q}.
Next, we consider extremal graphs among bicyclic graphs. Let G be a bicyclic graph with n vertices and two odd cycles, C_{p}, and C_{q}. From the Theorem $2 \operatorname{PI}(G)=$ $n(n-1)+\rho$. Here, the minimum PI index is $n(n-1)$, which is attained by graphs with $\rho=0 . G_{2}$ in Figure 4 is such a graph. The maximum is $n(n-1)+n-1$ obtained when ρ is maximum.
If G has one even and one odd cycle, $P I(G)=n^{2}-\rho$. Here, the minimum PI index is $n^{2}-\rho=n^{2}-(n-2)$, which is attained by such graphs which have maximum ρ. Maximum PI index n^{2} obtained when $\rho=0 . G_{1}$ and G_{2} in Figure 4 are examples of extremal graphs, and such graphs are not unique.

Figure 4. Extremal Graphs

Next, we consider those graphs G such that, the resulting graph $G * e$ has the following property. The number of edges common to the cycles in $G * e$ should be less than the diameter of the shortest cycle in $G * e$, and $p, q \geq 4$. We can partition the edge set of G as $E_{1}=C_{p}\left(\right.$ not in $\left.C_{q}\right), E_{2}=C_{q}\left(\right.$ not in $\left.C_{p}\right), E_{3}=E\left(C_{p}\right) \cap E\left(C_{q}\right)$ and $E_{4}=\cup_{i=0}^{k-1} E\left(T_{j+i}\right), E_{5}=\cup_{i=0}^{k-1} E\left(T_{m+i}^{\prime}\right)$ and E_{6} represent the remaining edges. t and t^{\prime} are the number of equidistant vertices (for the common edges) on C_{p} and C_{q}
respectively, * denote the same in $G * e$. The following corollary is an easy consequence of Theorem 2.

Corollary 2. Let G be a bicyclic graph then the PI index of $G * e$ is as follows.

1. $\operatorname{PI}(G * e)=(n-1)^{2}-k$,

$$
k= \begin{cases}t\left(\text { or } t^{\prime}\right) & \text { if } p \text { and } q \text { are odd and } e \in E_{1}\left(\text { or } E_{2}\right) \text { or if } p \text { is odd and } q \text { is even and } \\ t *^{\prime}(\text { or } t *) & e \in E_{5} \bigcup E_{6} \\ & \text { if } p \text { and } q \text { are even and } e \in E_{2}\left(\text { or } E_{1}\right) \text { or if } p \text { is odd and } q \text { is even and } \\ t-1 & e \in E_{3} \\ \text { if } p \text { is odd and } q \text { is even and } e \in E_{4}\end{cases}
$$

2. $P I(G * e)=(n-1)(n-2)+k$

$$
k= \begin{cases}t+t^{\prime}-1 & \text { if } p \text { and } q \text { are odd and } e \in E_{4} \cup E_{5} \\ t+t^{\prime}\left(\text { or } t *+t *^{\prime}\right) & \text { if } p \text { and } q \text { are odd and } e \in E_{6}\left(\text { or if } p \text { and } q \text { are even and } e \in E_{3}\right) \\ t+t *^{\prime} & \text { or if } p \text { is odd and } q \text { is even and } e \in E_{2}\end{cases}
$$

3. $\operatorname{PI}(G * e)=n(n-1)$, otherwise.

4. Cactus graph

A cactus graph is a simple connected graph in which every block is an edge or a cycle. That is, every cycle has at most one vertex in common.

Theorem 3. Let G be a cactus graph with n vertices, m edges, and p odd cycles. Then $P I(G)=n(m-p)$.

Proof. Let $C_{k_{1}}, C_{k_{2}}, \ldots, C_{k_{p}}$ be the odd cycles of length $k_{1}, k_{2}, \ldots, k_{p}$ in G. We claim that each $C_{k_{i}}$ contributes $\left(k_{i}-1\right) n$ to the PI index of G. Let H be the graph obtained by deleting all edges of odd cycle $C_{k_{i}}$, it has k_{i} components. Each vertex v on $C_{k_{i}}$ is an equidistant vertex corresponding to some edges (exactly one) e in $C_{k_{i}}$. All vertices of the component containing v also belong to $D(e)$. Thus $\sum_{e \in C_{k_{i}}} N_{G}(e)=n$. The remaining edges (which are not parts of an odd cycle) contribute $n\left(m-\left(k_{1}+k_{2}+\right.\right.$ $\left.\cdots+k_{p}\right)$) to the PI of G. Thus we have

$$
\begin{aligned}
P I(G) & =\left(\left(k_{1}-1\right) n+\left(k_{2}-1\right) n+\cdots+\left(k_{p}-1\right) n\right)+\left(n\left(m-\left(k_{1}+k_{2}+\cdots+k_{p}\right)\right)\right) \\
& =\left(k_{1}+k_{2}+\cdots+k_{p}-p\right) n+n\left(m-\left(k_{1}+k_{2}+\cdots+k_{p}\right)\right) \\
& =n(m-p) .
\end{aligned}
$$

From the above theorem, we can easily say that the PI index of a cactus graph G is maximum and is equal to $n m$ when $p=0$ or G has no odd cycles. Also, the PI index of G is minimum when p is maximum. Since the maximum number of edge-disjoint triangles among m edges is $\left\lfloor\frac{m}{3}\right\rfloor$, the maximum feasible value of p is $\left\lfloor\frac{m}{3}\right\rfloor$. So the minimum PI index is $n\left(m-\left\lfloor\frac{m}{3}\right\rfloor\right)$.

Acknowledgement: The authors wish to thank the anonymous reviewers for their valuable suggestions.

Conflict of Interest: The authors declare that they have no conflict of interest.
Data Availability Statement: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] A.R. Ashrafi and A. Loghman, PI index of zig-zag polyhex nanotubes, MATCH Commun. Math. Comput. Chem. 55 (2006), no. 2, 447-452.
[2] M.S. Chithrabhanu, J. Geetha, and K. Somasundaram, PI and weighted PI indices for powers of paths, cycles, and their complements, J. Intelligent \& Fuzzy Sys. 44 (2023), no. 1, 1439-1452.
[3] M.S. Chithrabhanu and K. Somasundaram, Padmakar-Ivan index of some types of perfect graphs, Discrete Math. Lett. 9 (2022), 92-99. https://doi.org/10.47443/dml.2021.s215.
[4] C. Gopika, J. Geetha, and K. Somasundaram, Weighted PI index of tensor product and strong product of graphs, Discrete Math. Algorithms Appl. 13 (2021), no. 3, Article ID: 2150019. https://doi.org/10.1142/S1793830921500191.
[5] A. Ilić and N. Milosavljević, The weighted vertex PI index, Math. Comput. Model. 57 (2013), no. 3-4, 623-631. https://doi.org/10.1016/j.mcm.2012.08.001.
[6] G. Indulal, L. Alex, and I. Gutman, On graphs preserving PI index upon edge removal, J. Math. Chem. 59 (2021), no. 7, 1603-1609. https://doi.org/10.1007/s10910-021-01255-1.
[7] P.V. Khadikar, On a novel structural descriptor PI, National Academy Science Letters 23 (2000), no. 7/8, 113-118.
[8] , Padmakar-Ivan index in nanotechnology, Iran. J. Math. Chem. 1 (2010), no. 1, 7-42. https://doi.org/10.22052/ijmc.2010.5133.
[9] P.V. Khadikar, S. Karmarkar, and V.K. Agrawal, A novel PI index and its applications to $Q S P R / Q S A R$ studies, J. Chem. Info. Comput. Sci. 41 (2001), no. 4,

934-949.
https://doi.org/10.1021/ci0003092.
[10] M.H. Khalifeh, H. Yousefi-Azari, and A.R. Ashrafi, Vertex and edge PI indices of cartesian product graphs, Discrete Appl. Math. 156 (2008), no. 10, 1780-1789. https://doi.org/10.1016/j.dam.2007.08.041.
[11] G. Ma and Q. Bian, Correction of the paper "Bicyclic graphs with extremal values of PI index", Discrete Appl. Math. 207 (2016), 132-133. https://doi.org/10.1016/j.dam.2016.02.016.
[12] G. Ma, Q. Bian, and J. Wang, Bounds on the PI index of unicyclic and bicyclic graphs with given girth, Discrete Appl. Math. 230 (2017), 156-161.
https://doi.org/10.1016/j.dam.2017.06.011.
[13] _ The weighted vertex PI index of bicyclic graphs, Discrete Appl. Math. 247 (2018), 309-321.
https://doi.org/10.1016/j.dam.2018.03.087.
[14] _, The maximum PI index of bicyclic graphs with even number of edges, Inform. Process. Lett. 146 (2019), 13-16. https://doi.org/10.1016/j.ipl.2019.02.001.
[15] Ž.K. Vukićević and D. Stevanović, Bicyclic graphs with extremal values of PI index, Discrete Appl. Math. 161 (2013), no. 3, 395-403.
https://doi.org/10.1016/j.dam.2012.09.015.
[16] H. Wiener, Structural determination of paraffin boiling points, J. American Chem. Soc. 69 (1947), no. 1, 17-20.
https://doi.org/10.1021/ja01193a005.

[^0]: * Corresponding Author

