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Abstract: Domination in graphs and coloring of graphs are two main areas of in-

vestigation in graph theory. Power domination is a variant of domination in graphs
introduced in the study of the problem of monitoring an electric power system. Based

on the notions of power domination and coloring of a graph, the concept of power dom-

inator coloring of a graph was introduced. The minimum number of colors required
for power dominator coloring of a graph G is called the power dominator chromatic

number χpd(G) of G, which has been computed for some classes of graphs. Here we

compute the power dominator chromatic number for splitting graphs of certain classes
of graphs.
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1. Introduction

The theory of domination in graphs [6, 7] is an important and extensively investigated

topic of research in graph theory having applications in different areas. A graph

G = (V,E) is a mathematical structure with a finite set of elements, called vertices

and a finite set of pairs of vertices, called edges. We consider finite undirected graphs

without loops and multiple edges. Given a graph G = (V,E), a subset S of V is
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318 Power dominator chromatic numbers of splitting graphs

a dominating set of G if every vertex in V − S has at least one neighbour in S.

There are several variants of the notion of domination in graphs. Haynes et al. [5]

developed the concept of power domination while formulating in graph theoretical

terms, the problem of monitoring an electric power system by placing as few phase

measurement units (PMUs) in the system as possible.

In a graph G = (V,E) representing an electric power system, a vertex repre-

sents an electrical node and an edge represents a transmission line joining two

electrical nodes. A set S of vertices is defined to be a power dominating set of a

graph G if every vertex and every edge in the system is “monitored” by the set S

(following a set of rules for power system monitoring). The minimum cardinality of

a power dominating set of a graph is its power domination number.

On the other hand graph coloring [1] has been an intensively investigated area of

study in graph theory. Several variations of the notion of graph coloring have been

introduced and investigated by many researchers. A proper coloring [1] of a graph G

is an assignment of colors to the vertices of G with the property that no two adjacent

vertices receive the same color. The chromatic number χ(G), is the minimum number

of colors required for a proper coloring of G.

Based on the concept of domination in graphs, the notion of dominator coloring in

a graph has been introduced and investigated [4]. A dominator coloring [4] of G is

a proper coloring of G in which every vertex of G dominates every vertex of at least

one color class with the convention that if {v} is a color class, then v dominates

the color class {v}. In other words the vertex is either adjacent to all the vertices

of one color class or is the only vertex in its color class, by which it will dominate

its own color class. Given a graph G, while the chromatic number χ(G) represents

the minimum number of colors required to color the vertices of G so that no two

adjacent vertices receive the same color, the dominator chromatic number χd(G) is

the minimum number of colors required for a dominator coloring of G which has

been found for many classes of graphs.

Based on the concepts of coloring and power domination, a new variant of coloring

called power dominator coloring of a graph G was introduced in [10] which we recall

here in a more precise form. For a vertex u in a graph G, we associate a monitoring

set M(u) [3] as follows:

Step (i) : M(u) = N [u], the closed neighbourhood of u

Step (ii) : add a vertex w to M(u), (which is originally not in M(u)) whenever w has

a neighbour v ∈M(u) such that all the neighbours of v other than w, are already in

M(u)

Step (iii) : repeat Step (ii) until no other vertex could be added to M(u).

Then we say that u power dominates the vertices in M(u). The power dominator

coloring of G is a proper coloring of G such that every vertex of the vertex set

V power dominates all vertices of at least one color class. The power dominator

chromatic number χpd(G) is the minimum number of colors required for a power

dominator coloring of G. This has been computed for certain classes of graphs such

as corona graphs, degree splitting graphs. centipede graphs, barbell graphs, crown
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Figure 1. A Graph H with χpd(H) = 3

graphs, sunlet graphs, tadpole graphs, spider graphs, book graphs, lollipop graphs

and Kragujevac trees [10–13, 15].

We illustrate with an example.

Example 1. For the graph H in Figure 1, the power dominator chromatic number
χpd(H) = 3. In fact, a proper coloring of the vertices can be done as follows: Assign color 1
to the vertex v5, color 2 to the vertices v1, v3, v6, v8 and color 3 to the vertices v2, v4, v7, v9.
For the vertex v1, initially the monitoring set M(v1) = {v1, v2, v4} using the Step(i) in
the formation of monitoring set. Now the vertex v3 is the only vertex, which is not in
M(v1), but adjacent to v2 and hence v3 is added to M(v1) using Step(ii) in the formation of
monitoring set. Continuing the process, the vertex v5 is the only vertex adjacent to v3 but
not in M(v1) and hence is added to M(v1). No other vertex could be added to M(v1). Thus
M(v1) = {v1, v2, v3, v4, v5}. In fact each of the vertices v2, v3, v4 has the same monitoring set
as that of v1. Hence each of the vertices v1, v2, v3, v4 power dominates the vertex v5 and so
color class with color 1 as v5 is the only vertex with color 1. Note that none of these vertices
v1, v2, v3, v4 can power dominate the color class with color 2 or with color 3. Likewise each
of the vertices v6, v7, v8, v9 also power dominates the color class with color 1. The vertex v5
power dominates its own color class. Hence each vertex power dominates all the vertices in
at least one color class. It can be seen that we cannot obtain a power dominator coloring in
this graph with just two colors. Thus χpd(G) = 3. Note also that the dominator chromatic
number χd(G) for this graph is 5.

The splitting graph of a graph G was introduced by Sampathkumar and Walikar [9].

Let G be a (p, q) graph. The splitting graph S(G) of G is obtained as follows: For

each vertex v of G, a new vertex v′ is introduced and joined to all those vertices of G

which are adjacent to v. Observe that S(G) is a (2p, 3q) graph, as the construction

of S(G) introduces 2q new edges, in addition to the edges of G. A graph G and its

splitting graph S(G) are shown in Figure. 2. Some domination parameters of the

splitting graph of a graph have been studied in [2].

In the following sections we obtain the power dominator chromatic numbers of split-

ting graphs of different classes of graphs.
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Figure 2. A graph G and its splitting graph S(G)

2. Preliminaries

For standard notions on graphs and for unexplained concepts we refer to [1, 16]. A

path on n vertices is denoted by Pn and a cycle on n vertices is denoted by Cn. The

complete graph on n vertices is denoted by Kn. A complete bipartite graph with a

bipartition (V1, V2) of the vertex set, is denoted by Km,n where V1 has m vertices and

V2 has n vertices. A star graph (or simply, a star) is a complete bipartite graph with

m = 1 and it is denoted by K1,n.

Definition 1. The graph bistar, denoted by Bn,n, is a K2 with n pendant edges attached
at each end point.

Definition 2. A wheel graph W1,n is a graph obtained by joining a vertex u, called the
apex vertex, to all the vertices of a cycle Cn and the vertices of the cycle are called the rim
vertices of the wheel.

Definition 3. The Helm graph Hn with n ≥ 1, is defined to be the graph obtained from
a wheel graph W1,n by attaching a new pendant vertex at each vertex of the n-cycle.

Definition 4. The n-sunlet graph Sn is a graph on 2n vertices with a cycle Cn and each
vertex of the cycle being joined to a new pendant vertex.

We recall some known results.

Theorem 1. [10] For any graph G, χpd(G) ≤ χd(G).

Theorem 2. [10] (i) For a path Pn, n ≥ 2 on n vertices, χpd(Pn) = 2.
(ii) For a cycle Cn, n ≥ 3,

χpd(Cn) =

{
2, if n, is even

3, if n, is odd.
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Theorem 3. [10] (i) For the complete bipartite graph Km,n, χpd(Km,n) = 2.
(ii) If G is a connected graph of order n, then χpd(G) = n if and only if G = Kn.

3. Power Dominator Coloring of Splitting graphs of Some
Classes of Graphs

In this section we obtain the power dominator chromatic numbers of splitting graphs

of some standard classes of graphs. We first consider path Pn on n vertices. We

begin with an example.

Example 2. Figure 3 shows a power dominator coloring of the splitting graph S(P5) of
path P5. The colors given to vertices are shown (enclosed in parantheses) near the vertices.
The number of colors used is 4 and it can be seen that this is a minimum number. In fact if
a proper coloring of the path P5 (which requires only two colors) is done with colors 1 and 2,
then the primed vertices in the splitting graph S(P5) cannot power dominate any color class
unless all the primed vertices are given different colors. This will only increase the number
of colors used.

v1(1) v2(3) v3(1) v4(4) v5(1)

v
′
1(1) v

′
2(2) v

′
3(1) v

′
4(2) v

′
5(1)

Figure 3. Power dominator coloring of splitting graph S(P5) of path P5

Remark 1. We first compute the power dominator chromatic number of the splitting
graph of path Pn for small values of n with n = 3, 4, 5 and 6. It can be verified that the proper
coloring described below (in these cases) is such that every vertex in S(Pn), n = 3, 4, 5, 6
power dominates at least one color class and that no lesser number of colors will yield a
power dominator coloring. The vertices of path Pn are denoted by vi while the vertex in the
splitting graph corresponding to vi is denoted by v′i which is adjacent to the neighbours of
vi, i = 1, · · ·n.
When n = 3, the vertices v1 and v3 are colored by color 1 and v2 is colored by 3 while
v′i, i = 1, 2, 3 are colored by color 2. The vertex v′2 power dominates color class 1 as well as
3 while all other vertices power dominate color class 3. In this case the power dominator
chromatic number is 3.
When n = 4 the vertices v1 and v4 are colored by color 2. The vertices v2, v3 are colored by
colors 3 and 4 respectively. The vertices v′i, i = 1, 2, 3, 4 are colored by color 1. The vertices
v1 and v′1 power dominate the color class 3. The vertices v4 and v′4 power dominate the color
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class 4. The vertices v2 and v′2 power dominate the color classes 3 and 4. In this case the
power dominator chromatic number is 4.
When n = 5 the vertices v1, v3, v5 are colored by color 2. The vertices v2, v4 are colored by
colors 3 and 4 respectively. The vertices v′i, i = 1, 2, 3, 4, 5 are colored by color 1. In this case
also the power dominator chromatic number is 4.
When n = 6 the vertices v1, v3 are colored by color 1; v4, v6 are colored by color 2 and the
vertices v2 and v5 are colored by colors 3 and 4 respectively. The vertices v′i, i = 1, 2, 3, 4, 5, 6
are alternately colored by colors 1 and 2 starting with color 1 for v′1. Again in this case the
power dominator chromatic number is 4.

Theorem 4. For a path Pn of order n ≥ 7,

χpd(S(Pn)) =

{
n
2

+ 1, when n = 4k + 6, k ≥ 1

dn+1
2
e+ 1, otherwise .

Proof. Consider a path Pn, n ≥ 7 with n vertices v1, v2, v3, · · · , vn and n− 1 edges.

In constructing the splitting graph S(Pn) of the path Pn, new vertices v′1, v
′
2, · · · , v′n

are introduced and for all i, 1 ≤ i ≤ n, the vertex v′i is made adjacent to the

neighbours of vi in Pn. The graph S(Pn) consists of 2n vertices and 3(n − 1) edges.

By the definition of power domination the vertex v′1 power dominates only v2 while

v′n power dominates only vn−1. The vertex v′2 power dominates v1, v2, v3 and v′n−1
power dominates vn−2, vn−1, vn and for each i, 3 ≤ i ≤ n − 2, the vertex v′i power

dominates vi−1 and vi+1.

A power dominator coloring of S(Pn) with a minimum number of colors is obtained

as described below: In order to use a minimum number of colors, the idea employed

is that the primed vertices are given a proper coloring with just two colors and each

of these vertices is made to power dominate at least a color class of vertices in the

path Pn. But then at least 2 colors are required for the vertices of Pn and thus at

least 4 colors are needed to obtain a power dominator coloring of S(Pn) except for

n = 3.

The vertices v′i, 1 ≤ i ≤ n are assigned colors 1 and 2 alternately with v′1 assigned

the color 1. A proper coloring of vertices vi, 1 ≤ i ≤ n, is done as follows:

In each case we describe a proper coloring of vertices which yields a power

dominator coloring with a minimum number of colors : The vertices v′i, for 1 ≤ i ≤ n
are assigned colors 1 and 2 alternately beginning with color 1 for v′1.

Case 1. Let n = 4k + 3, k ≥ 1.

In this case the vertex v2 is colored by a unique color 3 and hence v2 power dominates

itself. The vertices v4m+1 and v4m+2, 1 ≤ m ≤ n−3
4 are colored by distinct colors

2m + 3 and 2m + 4 respectively and the number of colors used for these vertices is

2× n−3
4 . Each of these vertices v4m+1 and v4m+2 power dominates its own color class.

For the vertices among vi, 1 ≤ i ≤ n that remain to be colored, assign the color of the

corresponding vertices v′i. We thus obtain a power dominator coloring of S(Pn), with

every vertex power dominating at least one color class, as desired. The total number

of colors used is 3 + 2× n−3
4 = 2 + n−1

2 = dn+1
2 e+ 1.
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The remaining Cases 2, 3 and 4 respectively correspond to n = 4k + 4, k ≥ 1, n =

4k + 5, k ≥ 1 and n = 4k + 6, k ≥ 1. In each of these cases, the vertices v2 and vn−1
are colored by unique colors 3 and 4 respectively. The vertices v4m+1 and v4m+2 are

colored by distinct colors 4m+ 1 and 4m+ 2 respectively, with 1 ≤ m ≤ n−4
4 in Case

2, 1 ≤ m ≤ n−5
4 in Case 3 and 1 ≤ m ≤ n−6

4 in Case 4. The number of colors used for

these vertices is 2× n−4
4 , n ≥ 8 in Case 2, 2× n−5

4 , n ≥ 9 in Case 3 and 2× n−6
4 , n ≥ 10

in Case 4. In all these three cases, each of these vertices v4m+1 and v4m+2 power

dominates its own color class as in case 1. Again for the vertices among vi, 1 ≤ i ≤ n
that remain to be colored, assign the color of the corresponding vertices v′i. Note that

the vertices v1, v
′
1, v
′
2, v3 and v′3 power dominate the color class 3 and vn, v

′
n, v
′
n−1 vn−2

and v′n−2 power dominate the color class 4. The vertices vi and v′i, 4 ≤ i ≤ n − 3

power dominate any one of the color classes 4m + 1 or 4m + 2. We thus obtain, in

each of these cases, a power dominator coloring of S(Pn), with every vertex power

dominating at least one color class, as desired. The total number of colors used is (i)

4+2× n−4
4 = 1+ n+2

2 , n = 8, 12, . . . in Case 2, (ii) 4+2× n−5
4 = 1+ n+1

2 , n = 9, 13, . . . ,

in Case 3 and (iii) = 4 + 2× n−6
4 = 1 + n

2 , n = 10, 14, . . . , in Case 4. Hence the total

number of colors used is n
2 + 1 in Case 4 and dn+1

2 e+ 1 in all other cases. This proves

the theorem.

A result analogous to Theorem 4 is now given for the splitting graph of a cycle Cn.

We first compute the power dominator chromatic number of the splitting graph

of cycle Cn for small values of n with n = 3, 4, 5 and 6. It can be verified that

the proper coloring described below (in these cases) is such that every vertex in

S(Cn), n = 3, 4, 5, 6 power dominates at least one color class and that no lesser

number of colors will yield a power dominator coloring.

When n = 3, the vertices v1, v2 and v3 are colored by colors 1,2 and 3 respectively.

The vertices v′i, 1 ≤ i ≤ 3 are assigned by the color 4. In this case χpd(S(C3)) = 4.

When n = 4, the vertices v′i, 1 ≤ i ≤ 4 are assigned colors 1 and 2 alternately with

v′1 assigned the color 1. The vertices v1, v4 are colored by colors 3 and 4 respectively

and vertices v2 and v4 are colored by the colors of the corresponding vertices v′2 and

v′2. In this case χpd(S(C4)) = 4.

When n = 5, The vertices v′i, 1 ≤ i ≤ 4 are assigned colors 1 and 2 alternately with

v′1 assigned the color 1. The vertices v1, v4 and v5 are colored by colors 3, 4 and 5

respectively and vertices v2, v3 are colored by the colors of the corresponding primed

vertices. In this case χpd(S(C5)) = 5. When n = 6, the vertices v1 is colored by color

3 while v2 and v6 are colored by color 4. The vertices v3 and v5 are colored by color

1 and v4 is colored by color 2. The vertices v′i, 1 ≤ i ≤ 6 are assigned the color 5. In

this case also χpd(S(C6)) = 5.

We now state the result on the power dominator chromatic number of the

splitting graph of Cn for n ≥ 7. The proof of this result is on lines similar to the

Theorem 4.



324 Power dominator chromatic numbers of splitting graphs

Theorem 5. For a cycle Cn of order n ≥ 7,

χpd(S(Cn)) =

{
n
2

+ 2, when n = 4k + 4, k ≥ 1

dn+1
2
e+ 2, otherwise .

Theorem 6. For the complete graph Kn of order n ≥ 3,

χpd(S(Kn)) = n+ 1.

Proof. Let the vertex set of the complete graph Kn of order n ≥ 3 be V (Kn) =

{v1, v2, . . . , vn}. The splitting graph S(Kn) is obtained by adding a new vertex v′i
corresponding to each vertex vi, 1 ≤ i ≤ n such that v′i is adjacent to the neighbours

of vi in Kn.

A power dominator coloring of S(Kn) with minimum number of colors is obtained

as follows: Assign color i to the vertex vi for 1 ≤ i ≤ n and color all the vertices

v′i, 1 ≤ i ≤ n, with a new color n + 1. Each vertex vi power dominates itself (in

addition to dominating all the remaining vertices v1, v2, . . . , vi−1, vi+1, . . . , vn). The

vertex v′i, 1 ≤ i ≤ n power dominates at least one of the color classes i, 1 ≤ i ≤ n.

Since every vertex in a complete graph is adjacent to every other vertex, it is clear

that we require n + 1 colors to obtain a power dominator coloring of S(Kn).Hence

χpd(S(Kn)) = n+ 1.

Theorem 7. For the complete bipartite graph Km,n of order m,n ≥ 2, χpd(S(Km,n)) = 3.
In particular χpd(S(K1,1)) = 2.

Proof. Let V1 = {vi | 1 ≤ i ≤ m} and V2 = {uj | 1 ≤ j ≤ n} be the vertex partition

of Km,n. Every vertex in V1 is adjacent only to every vertex in V2. A power dominator

coloring of S(Km,n) is as follows:

In splitting graph S(Km,n) of the complete bipartite graph Km,n, new vertices v′i are

added corresponding to vi, 1 ≤ i ≤ m, and each v′i is joined to all the vertices uj ,

1 ≤ j ≤ n. Likewise, new vertices u′j are added corresponding to uj , 1 ≤ j ≤ n, and

each u′j is joined to all the vertices vi, 1 ≤ i ≤ m. The graph S(Km,n) has 2(m+ n)

vertices and 3mn edges. Assign color 1 to the vertices vi, 1 ≤ i ≤ m, and color 2

to the vertices of uj , 1 ≤ j ≤ n. The remaining vertices v′i, 1 ≤ i ≤ m, and u′j ,

1 ≤ j ≤ n, are colored by color 3. Each primed vertex power dominates either color

class 1 or 2. Each vertex vi power dominates color class 2 and uj power dominates

color class 1. Thus only three colors are needed for a power dominator coloring of

S(Km,n). But a power dominator coloring of S(Km,n) is not possible with only two

colors as already two colors are needed for the vertices of the bipartition of Km,n.

Hence χpd(S(Km,n)) = 3. When m = n = 1, clearly, χpd(S(K1,1)) = 2.

Remark 2. It follows from Theorem 7 that for the path K2, χpd(S(K2)) = 2 as K1,1 is
simply the path K2.
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Corollary 1. For splitting graph of star S(K1,n), χpd(S(K1,n)) = 3.

Theorem 8. The power dominator chromatic number of splitting graph of bistar is
χpd(S(Bn,n)) = 4 for n ≥ 2.

Proof. Consider the bistar Bn,n with vertex set {v, u, vi, ui | 1 ≤ i ≤ n} where vi, ui,

1 ≤ i ≤ n, are the pendant vertices. In order to obtain S(Bn,n) we add v′, u′, v′i, u
′
i

respectively corresponding to v, u, vi, ui where 1 ≤ i ≤ n. The splitting graph of bistar

Bn,n has 4n+ 4 vertices and 6n+ 3 edges. The vertices v and u power dominate all

the vertices of S(Bn,n). Color the vertices u and v by colors 1 and 2 respectively. In

order to obtain power dominator coloring, we assign a new color 3 to the vertices v′

and u′. The vertices v′i, u
′
i, 1 ≤ i ≤ n, are colored by the color 4. Clearly this is a

power dominator coloring. Thus χpd(S(Bn,n)) = 4.

4. Power dominator coloring of splitting graphs of some spe-
cial types of graphs

Splitting graphs of some special types of graphs, namely, wheel graph, Helm graph,

n−sunlet graph are considered and the power dominator chromatic numbers of these

splitting graphs are obtained.

Theorem 9. The power dominator chromatic number of the splitting graph of wheel
graph W1,n, n ≥ 3, is

χpd(S(W1,n)) =

{
4, if n is even

5, if n is odd.

Proof. For the wheel graph W1,n with n ≥ 3, let the apex vertex be v1 and the

vertices on the rim be v2, v3, . . . , vn+1. The splitting graph S(W1,n) of the wheel

graph W1,n is obtained by adding to each vertex vi, 1 ≤ i ≤ n+ 1, of the graph W1,n,

a new vertex v′i such that v′i is adjacent to the neighbours of vi in W1,n. A power

dominator coloring of S(W1,n) is obtained by coloring the apex vertex by 1.

When n is odd, color the rim vertices v2, v3, . . . , vn, except vn+1 alternately by 2 and

3 starting with color 2 for v2. In this case, the vertex vn receives color 3. Color the

vertex vn+1 by color 4. The vertices v′i, 1 ≤ i ≤ n+ 1, are colored by a new color 5.

Hence we require 5 colors (and clearly, no less) to color S(W1,n), when n is odd.

When n is even, as before, color the rim vertices v2, v3, . . . , vn+1, alternately by 2 and

3. The vertex vn receives color 2 and the vertex vn+1 receives color 3. The vertices

v′i, 1 ≤ i ≤ n + 1, are colored by a new color 4. Therefore we require only 4 colors

(and again, no less) to color S(W1,n), when n is even.

In both the cases it can be see that each of the vertices power dominates at least one

color class. Hence χpd(S(W1,n)), n ≥ 3 is as stated in the theorem.
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Theorem 10. The power dominator chromatic number of splitting graph of Helm graph
Hn, n ≥ 4 is χpd(S(Hn)) = n+ 2.

Proof. By the definition of Helm graph, Hn is obtained from a wheel graph by

attaching a pendant edge at each vertex of the n-cycle. Let V (Hn) = {v1} ∪ V1 ∪ V2
where v1 is the apex vertex, V1 = {vi | 2 ≤ i ≤ n + 1} is the set of vertices on the

n-cycle and V2 = {vi | n+ 2 ≤ i ≤ 2n+ 1} is the set of pendant vertices incident with

n-cycle such that vn+i is adjacent with vi, 2 ≤ i ≤ n+ 1. The splitting graph of Helm

graph, denoted by S(Hn), is obtained by adding corresponding to each vertex vi in

Hn, a new vertex v
′

i such that v
′

i is adjacent to the neighbours of vi in Hn. Since v1,

vn+i and v
′

n+i, 2 ≤ i ≤ n+ 1, are non-adjacent, assign color 1 to these vertices. The

vertices v
′

i, 2 ≤ i ≤ n + 1, are colored by color 2. The remaining vertices vi, on the

n-cycle are colored by i + 1, 2 ≤ i ≤ n + 1. In S(Hn), each vertex vi, 2 ≤ i ≤ n + 1

power dominates itself. Since v1, vn+i and v′n+i, 2 ≤ i ≤ n+1, are adjacent to vi these

vertices dominate the color class i. The vertex v
′

i, 2 ≤ i ≤ n + 1 is adjacent to the

neighbours of vi and therefore it power dominates at least one class i. So the given

procedure gives a power dominator coloring of S(Hn). Hence χpd(S(Hn)) = n+2.

Theorem 11. For n-sunlet graph SLn, n ≥ 3, χpd(S(SLn)) = n+ 2.

Proof. Let the vertices in cycle Cn of the n-sunlet graph SLn be w1, w2, · · · , wn and

the remaining n pendant vertices be v1, v2, . . . , vn with vi adjacent to wi. In order

to obtain splitting graph of S(SLn) add w′i and v′i corresponding to wi and vi for

1 ≤ i ≤ n. The vertex w′i, 1 ≤ i ≤ n, is adjacent to the neighbours of wi and the

vertex v′i is adjacent to the neighbours of vi in SLn. Note that the vertex v′i is not

adjacent to vi, 1 ≤ i ≤ n. So assign color 1 to all the vertices vi and v′i, 1 ≤ i ≤ n.

In order to have power dominator coloring, assign a new color n + 2 to vertices w′i,

1 ≤ i ≤ n. The vertices vi and v′i power dominate the color class wi, 1 ≤ i ≤ n. Each

vertex wi, 1 ≤ i ≤ n, receiving color i + 1 power dominates itself. The vertex w′i,

1 ≤ i ≤ n, power dominates at least one of the color classes of wj , 1 ≤ j ≤ n. Hence

χpd(SLn) = n+ 1 + 1 = n+ 2.

5. Conclusion

The power dominator chromatic numbers of splitting graphs of certain kinds of graphs

are computed. It will be interesting to find power dominator chromatic numbers of

splitting graphs of other classes of graphs. The concepts of domination and coloring

in Fuzzy graphs have been studied [8, 14]. The applicability of the notion of power

domination and power dominator coloring can be examined for these fuzzy graphs.
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