Research Article

A counterexample on the conjecture and bounds on $\chi_{g d}$-number of Mycielskian of a graph

David A Kalarkop* and R.Rangarajan ${ }^{\dagger}$
Department of Studies in Mathematics, University of Mysore
Manasagangothri, Mysuru - 570 006, India
*david.ak123@gmail.com
${ }^{\dagger}$ rajra63@gmail.com

Received: 3 August 2022; Accepted: 17 January 2023
Published Online: 21 January 2023

Abstract

A coloring $C=\left(V_{1}, \ldots, V_{k}\right)$ of G partitions the vertex set $V(G)$ into independent sets V_{i} which are said to be color classes with respect to the coloring C. A vertex v is said to have a dominator (dom) color class in C if there is color class V_{i} such that v is adjacent to all the vertices of V_{i} and v is said to have an anti-dominator (anti-dom) color class in C if there is color class V_{j} such that v is not adjacent to any vertex of V_{j}. Dominator coloring of G is a coloring C of G such that every vertex has a dom color class. The minimum number of colors required for a dominator coloring of G is called the dominator chromatic number of G, denoted by $\chi_{d}(G)$. Global Dominator coloring of G is a coloring C of G such that every vertex has a dom color class and an anti-dom color class. The minimum number of colors required for a global dominator coloring of G is called the global dominator chromatic number of G, denoted by $\chi_{g d}(G)$. In this paper, we give a counterexample for the conjecture posed in [I. Sahul Hamid, M.Rajeswari, Global dominator coloring of graphs, Discuss. Math. Graph Theory 39 (2019), 325-339] that for a graph G, if $\chi_{g d}(G)=2 \chi_{d}(G)$, then G is a complete multipartite graph. We deduce upper and lower bound for the global dominator chromatic number of Mycielskian of the graph G in terms of dominator chromatic number of G.

Keywords: Global Dominator coloring, global dominator chromatic number, dominator coloring, dominator chromatic number

AMS Subject classification: 05C15, 05C69

1. Introduction

By a graph $G=(V, E)$, we mean a simple graph whose vertex set is V of order n and edge set is E of size m. For all basic graph theoretic terminologies we refer to [5]. Domination and coloring are two interesting and well known areas in graph theory.

[^0]Domination has rich applications in computer science, communication networks and so on. Graph coloring has applications in scheduling, register allocations, pattern matching and so on (for more details refer to [3]).
A subset D of the vertex set V of G is said to be a dominating set if every vertex of V is in D or has a neighbor in D. The minimum cardinality of a dominating set of G is called as domination number of G, denoted by $\gamma(G)$. A vertex is said to dominate subset S of $V(G)$, if v is adjacent to all the vertices of S. For more information on domination, refer to [9]. A coloring of G is an assignment of colors to the vertices of the graph G such that no two adjacent vertices receive the same color. The minimum number of colors required for coloring G is said to be the chromatic number of G, denoted by $\chi(G)$. A vertex $v \in V(G)$ in the coloring $C=\left(V_{1}, \ldots, V_{k}\right)$ is said to have dom color class V_{i} (anti-dom color class V_{j}) if v is adjacent to all (none) of the vertices of $V_{i}\left(V_{j}\right)$.
Dominator coloring of G is the coloring of G such that every vertex of G has a dom color class. The minimum number of colors required for dominator coloring of G is called dominator chromatic number of G, denoted by $\chi_{d}(G)$. The dominator coloring of G with minimum number of colors is said to be χ_{d}-coloring of G. Dominator coloring was studied for the first time by Gera et al. [7]. Global dominator coloring of graphs was introduced by Hamid et al. [11]. Global Dominator coloring of G is the coloring of G such that every vertex of G has a dom color class and an anti-dom color class. The minimum number of colors required for global dominator coloring of G is called global dominator chromatic number of G, denoted by $\chi_{g d}(G)$. The global dominator coloring of G with minimum number of colors is said to be $\chi_{g d}$-coloring of G. For good number of results, conjectures and open problems on dominator coloring as well as global dominator coloring of graphs, refer to $[2,7,8,10,11]$. The following results are crucial to prove the main results of this paper,

Theorem 1. [2] For any graph $G, \chi_{d}(G)+1 \leq \chi_{d}(\mu(G)) \leq \chi_{d}(G)+2$. Further if there exists a χ_{d}-coloring C of G in which every vertex v dominates a color class V_{i} with $v \notin V_{i}$, then $\chi_{d}(\mu(G))=\chi_{d}(G)+1$.
$N(v)=\{u \in V(G): u v \in E(G)\}$ and $N[v]=N(v) \cup\{v\}$ are the open neighborhood and closed neighborhood of the vertex v of G respectively. The vertex v of G with respect to the coloring C is said to be solitary if $\{v\} \in C$ and $N(v)$ does not contain any color class. Let $C=\left(V_{1}, \ldots, V_{k}\right)$ be the coloring of G. The color class V_{i}, ($1 \leq i \leq k$) is said to be the spare color class with respect to C if every vertex $v \in V(G)$ dominates some color class $V_{j}, j \neq i$, of C.

Theorem 2. [1] Given a graph $G, \chi_{d}(\mu(G))=\chi_{d}(G)+1$ if and only if for some $\chi_{d^{-}}$ coloring C of G :
(i) each vertex v dominates some color class V_{i} with $v \notin V_{i}$;
(ii) a vertex v is a solitary vertex and C contains a spare color class V_{i} which does not contain any vertex of $N(v)$.

Theorem 3. [11] The global dominator chromatic number of a complete m-partite graph is $2 m$.

Theorem 4. [11] For any graph G, we have $\chi_{d}(G) \leq \chi_{g d}(G) \leq 2 \chi_{d}(G)$.
Conjecture 1. [11] Let G be a graph with $\Delta(G)<n-1$. Then $\chi_{g d}(G)=2 \chi_{d}(G)$ if and only if G is a complete multipartite graph.

Clearly if G is complete multipartite graph, then $\chi_{g d}(G)=2 \chi_{d}(G)$ (by Theorem 3). In this paper, we give a counterexample to conclude the conjecture is false. i.e if $\chi_{g d}(G)=2 \chi_{d}(G)$, then the graph G need not be a complete multipartite graph. Also motivated by the works of Arumugam et al. [2], we establish the upper and lower bound for global dominator chromatic number of Mycielskian of the graph G in terms of dominator chromatic number of G.

2. Counterexample for the Conjecture 1

In this section we give a counterexample of a graph with $\chi_{g d}(G)=2 \chi_{d}(G)$ which is not complete multipartite.

Lemma 1. Let H be the graph in the Figure 1. Then $\chi_{d}(H)=3$ and $\chi_{g d}(H)=6$.

Figure 1. Graph H

Proof. Since the graph H has K_{3} as the subgraph, minimum three colors are required for coloring of H. Hence $\chi_{d}(H) \geq \chi(H) \geq 3$. The coloring $C=$ $\left(\left\{v_{1}, v_{2}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{5}, v_{6}, v_{7}\right\}\right)$ is a χ_{d}-coloring of H. Hence, $\chi_{d}(H)=3$ and $\chi(H)=3$. Since $v_{1} v_{3} \in E(G), v_{1}, v_{3}$ receive different colors. Now the color of v_{1} cannot be given to v_{2}, otherwise v_{1} will not have anti-dom color class. Similarly color of v_{3} cannot be given to v_{4}. Therefore $v_{1}, v_{2}, v_{3}, v_{4}$ receive different colors in a global dominator coloring of G. Therefore $\chi_{g d}(H) \geq 4$. Now v_{5} cannot be given the color of v_{2}, otherwise v_{5} will not have anti-dom color class. Therfore v_{5} receive distinct color. Hence $\chi_{g d}(H) \geq 5$. If v_{6}, v_{7} receive the color of v_{5}, then v_{6} and v_{7} will not have anti-dom
color class. Therefore either v_{6} or v_{7} has to be given a new color. Hence $\chi_{g d}(H) \geq 6$. From the $\chi_{g d}$ coloring of H in Figure 2, we can conclude that $\chi_{g d}(H)=6$.

Figure 2. $\chi_{g d}$-coloring of H

From the Lemma 1, it is clear that $\chi_{g d}(H)=2 \chi_{d}(H)$ but H is not a complete multipartite graph. Therefore if $\chi_{g d}(G)=2 \chi_{d}(G)$, then G need not be the complete multipartite graph. By the proof technique used in Lemma 1, we define a family of graphs $G \in \Im$ which are not complete multipartite but satisfy $\chi_{g d}(G)=2 \chi_{d}(G)$. The graphs $G \in \Im$ are constructed as follows,
i) V_{1}, V_{2}, V_{3} are independent sets in G such that $\left|V_{i}\right| \geq 2$, for all $1 \leq i \leq 3$.
ii) Let $v_{1} \in V_{1}$ and $v_{3} \in V_{3}$. Join all the edges in G except $v_{1} v_{3}$.

Corollary 1. If $G \in \Im$, then $\chi_{g d}(G)=2 \chi_{d}(G)$.

Now we define a new family of graphs. $G \in \Im_{1}$, if for every χ_{d}-coloring $C=$ $\left(V_{1}, \ldots, V_{k}\right)$ of G, the following conditions are satisfied,
i) $\left|V_{i}\right| \geq 2$, for all $1 \leq i \leq k$ and
ii) there exists atleast one vertex in each V_{i} that has at least one neighbor in each V_{j}, for $j=1,2, \ldots, k$ and $i \neq j$.
i.e in simple words, G is a k-partite graph with at least two vertices in each partite sets such that there exists at least one vertex in each partite set that has at least one neighbor in each of the other partite sets.

Theorem 5. $\chi_{g d}(G)=2 \chi_{d}(G)$ if and only if $G \in \Im_{1}$.

Proof. Let G be a graph with $\chi_{d}(G)=k$. Suppose $G \notin \Im_{1}$.
Case 1. If there is a χ_{d}-coloring $C=\left(V_{1}, \ldots, V_{k}\right)$ of G such that $\left|V_{i}\right|=1$, for some $1 \leq i \leq k$. Let $v_{i} \in V_{i}$. the coloring $C^{\prime}=\left(V_{j}-\left\{v_{j}\right\}, V_{i},\left\{v_{j}\right\}\right)$ for $j=1,2, \ldots, k$ and $i \neq j$ is a global dominator coloring of G with less than $2 \chi_{d}(G)$ number of colors. Note that $v_{i} \in V_{i}$ cannot be adjacent to all the vertices of $V_{j} \in C^{\prime}$, since G cannot have a vertex of degree $n-1$ for a global dominator coloring to exist.

Case 2. There is some χ_{d}-coloring $C=\left(V_{1}, \ldots, V_{k}\right)$ such that every vertex in some V_{i} has no neighbor in some V_{j}. Therefore every vertex in V_{i} has an anti-dominator color class. Let $v_{i} \in V_{i}$, then the coloring $C^{\prime}=\left(V_{j}-\left\{v_{j}\right\}, V_{i},\left\{v_{j}\right\}\right)$ for $j=1,2, \ldots, k$ and $i \neq j$ is a global dominator coloring of G with less than $2 \chi_{d}(G)$ number of colors. Conversely, suppose $G \in \Im_{1}$. Then for every χ_{d}-coloring $C=\left(V_{1}, \ldots, V_{k}\right)$, we have $\left|V_{i}\right| \geq 2$ and there exists atleast one vertex v_{i} in each V_{i} that has atleast one neighbor in each V_{j}, for $j=1, \ldots, k$ and $i \neq j$. Then the coloring $C^{\prime}=\left(V_{i}-\left\{v_{i}\right\},\left\{v_{i}\right\}\right)$ is a global dominator coloring of G with at least $2 \chi_{d}(G)$ number of colors. From Theorem 4 , the proof follows.

3. Bounds on Global dominator chromatic number of Mycielskian of a graph

For a graph $G=(V, E)$, the Mycielskian of G denoted by $\mu(G)$ is the graph with vertex set $V \cup V^{\prime} \cup\{u\}$ where $V^{\prime}=\left\{x^{\prime} \mid x \in V\right\}$ and is disjoint from V, and edge set $E^{\prime}=E \cup\left\{x y^{\prime} \mid x y \in E\right\} \cup\left\{x^{\prime} u \mid x^{\prime} \in V^{\prime}\right\}$. The vertices x and x^{\prime} are called twins of each other and u is called the root of $\mu(G)$. For results on domination parameters in Mycielskian of a graph, refer to [1, 4, 6]. In this section, we establish the upper and lower bound for global dominator chromatic number of Mycielskian of the graph G in terms of dominator chromatic number of G.

Theorem 6. For any graph G, we have $\chi_{d}(G)+1 \leq \chi_{g d}(\mu(G)) \leq \chi_{d}(G)+2$.

Proof. We know that $\chi_{g d}(\mu(G)) \geq \chi_{d}(\mu(G))$ (by the Theorem 4 applied to $\mu(G)$) and $\chi_{d}(\mu(G)) \geq \chi_{d}(G)+1$ (by the Theorem 1). So $\chi_{g d}(\mu(G)) \geq \chi_{d}(G)+1$.
Let $C=\left(V_{1}, V_{2}, \ldots, V_{\chi_{d}}\right)$ be the χ_{d}-coloring of G. Now consider the graph $\mu(G)$ and color the vertices of $\mu(G)$ as follows,
(i) color the vertices of G by the coloring C using χ_{d} number of colors.
(ii) color the vertices of V^{\prime} by a unique new color.
(iii) a new color to $\{u\}$

In this coloring (say C^{\prime}), vertices of G have dom-color class as the coloring C is the χ_{d}-coloring of G and have $\{u\}$ as the anti-dom color class. The vertex u dominates the color class V^{\prime} and anti-dominates all the color classes V_{i}. Now the vertices of V_{i}^{\prime} dominates the color class $\{u\}$ and anti dominates the color class V_{i} since no vertex of V_{i}^{\prime} will be adjacent to any vertex of V_{i} by the construction of Mycielskian of G. So the coloring C^{\prime} is the global dominator coloring of $\mu(G)$ with at most $\chi_{d}(G)+2$ number of colors. Hence $\chi_{g d}(\mu(G)) \leq \chi_{d}(G)+2$.

Lemma 2. Let G_{1} be the graph in the Figure 3. Then $\chi_{g d}\left(\mu\left(G_{1}\right)\right)=\chi_{d}\left(G_{1}\right)+1$.

Proof. Consider the graph G_{1}. The vertices v_{1}, v_{2} and v_{3} have to be colored using three colors. The vertex v_{4} or v_{5} has to be given a new color in order to achieve the

Figure 3. Graph G_{1}
χ_{d} as well as $\chi_{g d}$-coloring of G_{1}. So $\chi_{g d}\left(G_{1}\right)=\chi_{d}\left(G_{1}\right)=4$.
Consider the global dominator coloring of $\mu\left(G_{1}\right)$ as shown in the Figure 4.

Figure 4. Global dominator coloring of $\mu\left(G_{1}\right)$

Therefore $\chi_{g d}\left(\mu\left(G_{1}\right)\right) \leq 5$ and by the Theorem $6, \chi_{g d}\left(\mu\left(G_{1}\right)\right) \geq \chi_{d}\left(G_{1}\right)+1=4+1$. Hence $\chi_{g d}\left(\mu\left(G_{1}\right)\right)=\chi_{d}\left(G_{1}\right)+1$.

The graph G_{1} in Figure 3 with χ_{d}-coloring $C=\left(\left\{v_{1}, v_{4}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{5}\right\}\right)$ satisfies the conditions of Theorem 7 with the vertex v_{5} being solitary and color class $\left\{v_{2}\right\}$ being the spare color class. This example motivates us to state Theorem 7.

Theorem 7. Suppose for some χ_{d}-coloring C of G, the following conditions are satisfied, i) a vertex $v_{1} \in G$ such that v_{1} is solitary.
ii) C contains a spare color class V_{i} which does not contain any vertex of $N\left(v_{1}\right)$.
iii) For all $w \in N\left(v_{1}\right)$, w does not have neighbors in V_{i}.

Then $\chi_{g d}(\mu(G))=\chi_{d}(G)+1$.

Proof. Let $C=\left(V_{1}, V_{2}, \ldots, V_{\chi_{d}}\right)$ be the χ_{d}-coloring of G. Let the vertex v_{1} be solitary and the color class V_{i} (for some $1 \leq i \leq \chi_{d}$) be the spare color class with respect to the coloring C such that V_{i} does not contain any vertex of $N\left(v_{1}\right)$ and w has no neighbors in V_{i}, for all $w \in N\left(v_{1}\right)$. Consider the coloring $C^{\prime}=\left(C-V_{i}\right) \cup\left\{V_{i} \cup\right.$ $\left.\left\{v_{1}^{\prime}\right\},\{u\}\right\}$ of $\mu(G)$, where each vertex $v_{j}^{\prime}\left(2 \leq j \leq \chi_{d}\right)$ is given a color of vertex v_{j}, v_{1}^{\prime} is given the color of spare color class V_{i} and a new color is assigned to the vertex u. By the Theorem 2, coloring C^{\prime} will be the dominator coloring of $\mu(G)$. The vertices of $V(G)$ in $\mu(G)$ anti dominates $\{u\}$, the vertex u anti dominates $\left\{v_{1}\right\}$ and the vertices
of V^{\prime} which are the twin vertices of non-neighbors of v_{1} anti dominates color class $\left\{v_{1}\right\}$. The condition that w does not have neighbors in V_{i}, for all $w \in N\left(v_{1}\right)$ imply that the vertices of V^{\prime} which are twins of neighbors of v_{1} anti dominates the spare color class V_{i}. Thus $\chi_{g d}(\mu(G)) \leq \chi_{d}(G)+1$ and the equality follows by the Theorem 6.

Theorem 8. Let G be the complete m-partite graph $(m \geq 2)$. Then $\chi_{g d}(\mu(G))=$ $\chi_{d}(G)+2$.

Proof. Let G be a complete m-partite graph with vertex set V and partite sets V_{1}, \ldots, V_{m}. Since G is the complete m-partite graph, $\chi_{d}(G)=m$ where each set V_{i} is given a unique color. Every vertex $v_{i} \in V_{i}$ of G is adjacent to every other vertex of $V_{j}(i \neq j)$ and hence adjacent to every vertex of twins of V_{j} in $\mu(G)$.
Case 1. If the vertex u is given any one of color used in coloring G, then the vertices of V has to anti dominate a color class in V^{\prime}. So at least m new colors will be required to color the vertices of V^{\prime} since the vertex of V_{i} has to anti-dominate the color class V_{i}^{\prime}. But $m \geq 2$ imply that $\chi_{g d}(\mu(G))$ is at least $\chi_{d}(G)+2$.
Case 2. If $\{u\}$ is given a new color, then the vertices of G in $\mu(G)$ have $\{u\}$ as the anti dom-color class. Now the only possibility of giving the colors used in coloring G to the vertices of V^{\prime} is by giving the color of $v \in V(G)$ to its twin vertex $v^{\prime} \in V^{\prime}(G)$. In that case the vertices of V^{\prime} will not have anti dom-color class. Therefore a new unique color has to be given to vertices of V^{\prime}. Then the vertex v^{\prime} anti dominates the color class in which v lies.
From the above two cases, it is clear that at least $\chi_{d}(G)+2$ number of colors are required for global dominator coloring of $\mu(G)$. So by the Theorem 6, we have $\chi_{g d}(\mu(G))=\chi_{d}(G)+2$.

4. Open problems

Problem 1. The graph G_{1} in Figure 3 is such that $\chi_{d}\left(\mu\left(G_{1}\right)\right)=\chi_{g d}\left(\mu\left(G_{1}\right)\right)=$ $\chi_{d}(G)+1$. This helps us to pose a question that for which graphs $G, \chi_{d}(\mu(G))=$ $\chi_{g d}(\mu(G))$?

Problem 2. Characterize graphs G such that $\chi_{g d}(\mu(G))=\chi_{d}(G)+1$.
Problem 3. Characterize graphs G such that $\chi_{g d}(\mu(G))=\chi_{d}(G)+2$.
Problem 4. Give a structural characterization for graphs G such that $\chi_{g d}(\mu(G))=$ $2 \chi_{d}(G)$.

Problem 5. The graphs $G \in \Im$ in the Corollary 1 are graphs such that $\chi_{d}(G)=3$ and $\chi_{g d}(G)=6$. One can attempt to construct graphs G such that $\chi_{d}(G)=k$ and $\chi_{g d}(G)=2 k$, for all $k \geq 4$.

Acknowledgements. The authors are thankful to University Grants Commission (UGC), India for financial support under the grant UGC-SAP-DRS-II, NO.F.510/12/DRS-II/2018(SAP-I) dated: $9^{t h}$ April 2018. The first author is thankful to UGC, New Delhi, for UGC-JRF, under which this work has been done. We thank Dr I. Sahul Hamid, The Madura College, Madurai - 11, Tamil Nadu, India for his valuable suggestions.

Conflict of interest. The authors declare that they have no conflict of interest.

Data Availability. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] A.M. Abid and T.R. Ramesh Rao, Dominator coloring of Mycielskian graphs, Australas. J. Combin. 73 (2019), 274-279.
[2] S. Arumugam, J. Bagga, and K.R. Chandrasekar, On dominator colorings in graphs, Proc. Math. Sci. 122 (2012), no. 4, 561-571.
http://doi.org/10.1007/s12044-012-0092-5.
[3] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, second ed., Universitext, Springer, New York, 2012.
[4] S. Brandt, Triangle-free graphs whose independence number equals the degree, Discrete Math. 310 (2010), no. 3, 662-669. https://doi.org/10.1016/j.disc.2009.05.021.
[5] G. Chartrand, L. Lesniak, and P. Zhang, Graphs \mathcal{E} Digraphs, sixth ed., Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2016.
[6] X.G. Chen and H.M. Xing, Domination parameters in Mycielski graphs, Util. Math. 71 (2006), 235-244.
[7] R. Gera, C. Rasmussen, and S. Horton, Dominator colorings and safe clique partitions, Proceedings of the Thirty-Seventh Southeastern International Conference on Combinatorics, Graph Theory and Computing, vol. 181, 2006, pp. 19-32.
[8] R.M. Gera, On dominator colorings in graphs, Graph Theory Notes N.Y. 52 (2007), 25-30.
[9] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[10] R. Rangarajan and D.A. Kalarkop, A note on global dominator coloring of graphs, Discrete Math. Algorithms Appl. 14 (2022), no. 5, Article ID: 2150158. https://doi.org/10.1142/S1793830921501585.
[11] I. Sahul Hamid and M. Rajeswari, Global dominator coloring of graphs, Discuss. Math. Graph Theory 39 (2019), no. 2, 325-339.
http://doi.org/10.7151/dmgt.2089.

[^0]: * Corresponding Author

