[3] F. Blanchet-Sadri and S. Osborne, Constructing words with high distinct square densities, arXiv preprint arXiv:1708.06462 (2017), 1–15.
[4] S. Brlek and S. Li, On the number of squares in a finite word, arXiv preprint arXiv:2204.10204 (2022), 1–13.
[6] M. Crochemore and W. Rytter, Jewels of Stringology: Text Algorithms, World Scientific, 2002.
[7] A. Deza, F. Franek, and M. Jiang, A $d$-step approach for distinct squares in strings, Annual Symposium on Combinatorial Pattern Matching, Springer, 2011, pp. 77–89.
https://doi.org/10.1007/978-3-642-21458-5_9
[8] A. Deza, F. Franek, and M. Jiang, A computational framework for determining square-maximal strings., Stringology, Citeseer, 2012, pp. 111–119.
[10] N.J. Fine and H.S. Wilf, Uniqueness theorems for periodic functions, Proc. Amer. Math. Soc. 16 (1965), no. 1, 109–114.
[12] F. Franek and M. Liut, Computational substantiation of the $d$-step conjecture for distinct squares revisited, Prague Stringology Conference 2021, 2021, pp. 41–51.
[15] M. Lothaire, Applied Combinatorics on Words, vol. 105, Cambridge University Press, Cambridge, 2005.
[16] F. Manea and S. Seki, Square-density increasing mappings, International Conference on Combinatorics on Words, Springer, 2015, pp. 160–169.
[17] M. Patawar and K. Kapoor, Characterization of dense patterns having distinct squares, Conference on Algorithms and Discrete Applied Mathematics, Springer, 2021, pp. 397–409.
[18] A. Thierry, A proof that a word of length $n$ has less than $1.5n$ distinct squares, arXiv preprint arXiv:2001.02996 (2020), 1–30.