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Abstract: In a graph G of minimum degree δ and maximum degree ∆, a subset S
of vertices of G is j-independent, for some positive integer j, if every vertex in S has

at most j − 1 neighbors in S. The j-independence number βj(G) is the maximum

cardinality of a j-independent set of G. We first establish an inequality between βj(G)
and β∆(G) for 1 ≤ j ≤ δ−1. Then we characterize all graphsG with βj(G) = β∆(G) for

j ∈ {1, . . . ,∆−1}, where the particular cases j = 1, 2, δ−1 and δ are well distinguished.
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1. Introduction

We consider simple graphs G = (V,E) = (V (G), E(G)) of order |V (G)| = n(G) and

size |E(G)| = m(G). Two vertices u and v are neighbors in G if they are adjacent;

that is, if uv ∈ E. For any vertex u ∈ V , let NG(u) be the set of neighbors of u and

let NG[u] = NG(u)∪{u}. The degree of a vertex u is dG(u) = |NG(y)|. The minimum

and maximum degree of a graph G are denoted δ(G) and ∆(G), respectively. If S ⊂ V ,

then NG(S) = ∪v∈SNG(v), and we denote by G[S] the subgraph induced by S in G.

Moreover, we write NS(x) = NG(x) ∩ S, dS(x) = |NS(x)|. Clearly, dG(x) = dV (x)

for every x ∈ V (G). When no confusion arises, we simply write V,E, δ and ∆.

The path (cycle, complete graph, star, respectively) of order n is denoted by Pn
(Cn, Kn, K1,n−1, respectively). The star K1,3, is called a claw. If a graph G does not
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2 Further results on the j-independence number of graphs

contain an induced subgraph that is isomorphic to some graph F , then we say that G

is F -free. We say that G is regular if every vertex has the same degree and semiregular

if ∆(G)− δ(G) = 1. If every vertex of G has degree d, we say G is d-regular.

For an integer j ≥ 1 and a graph G = (V,E), a subset S of V is j-independent if

∆(G [S]) < j and j-dominating if every vertex in V −S has at least j neighbors in S.

The j-independence number βj (G) is the maximum cardinality of a j-independent

set of G. A maximum j-independent set of G is also called a βj(G)-set. We denote by

γj (G) and Γj (G) the minimum and maximum orders of a minimal j-dominating set

with respect to inclusion and call γj(G) the j-domination number. The concepts of j-

independence and j-domination were introduced by Fink and Jacobson [3]. For more

details on the j-independence and j-domination, we refer the reader to the survey by

Chellali et al. [1].

Clearly for a graph G of order n and maximum degree ∆, γ1(G) is the domination

number γ(G), β1(G) is the independence number β(G) and β∆(G) < β∆+1(G) = n.

Moreover the sequence (βj(G))1≤j≤n is non-decreasing but few things are known on

the rate of growth of this sequence [2].

In this paper, we establish an inequality between βj(G) and β∆(G) for 1 ≤ j ≤ δ−1.

Then we characterize graphs G of maximum degree ∆ such that βj(G) = β∆(G) for

1 ≤ j ≤ ∆ − 1 and study more particularly the cases j = 1, 2, δ and δ − 1. We will

use the following results.

Theorem 1 (Fink, Jacobson [3]). If G is a graph with ∆ ≥ k ≥ 2, then

γk(G) ≥ γ(G) + k − 2. (1)

Theorem 2 (Jacobson, Peters, Rall [6]). Let G be a graph of order n and minimum
degree δ and let k ≤ δ be a positive integer. Then

γk(G) + βδ−k+1(G) ≤ n.

Theorem 3 (Chellali et al. [1]). Let G be a graph of order n and maximum degree
∆ and let k ≤ ∆ be a positive integer. Then

γk(G) + β∆−k+1(G) ≥ n.

If moreover G is d-regular, then γk(G) + βd−k+1(G) = n.

2. An inequality between βj(G) and β∆(G)

In this section, we strengthen the inequality βj(G) ≤ β∆(G) for j ≤ δ − 1.

Theorem 4. Let j, δ,∆ be three positive integers with j < δ ≤ ∆ and let G be a graph
with minimum degree δ and maximum degree ∆. Then

βj(G) ≤ β∆(G)− δ + j + 1. (2)
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Moreover, βj(G) = β∆(G)−δ+ j+1 if and only if the three following equalities are satisfied:


βj = n− γδ−j+1 (a)
γδ−j+1 = γ + δ − j − 1 (b)
β∆ = n− γ. (c)

Proof. By successively applying Theorems 2, 1 and 3 with j = δ− k+ 1, we get the

following three inequalities.

βj ≤ n− γδ−j+1 ≤ n− γ − δ + j + 1 ≤ β∆ − δ + j + 1.

The equality occurs in (2) if and only if each of the previous inequalities is an equality.

Corollary 1. If G is a graph with minimum degree δ ≥ 3 and maximum degree ∆, then
βj(G) < β∆(G) for all j ≤ δ − 2.

The next proposition gives a property of graphs attaining the bound in Theorem 4

for some value of j.

Proposition 1. Let G = (V,E) be a graph with maximum degree ∆, minimum degree
δ ≥ 2 and j a positive integer with j ≤ δ − 1. If βj(G) = β∆(G) − δ + j + 1, then every
βj(G)-set is a (j + 1)-dominating set of G and thus βj(G) ≥ γj+1(G) ≥ j + 1.

Proof. Let S be a βj(G)-set. If there is a vertex y ∈ V − S such that |NS(y)| ≤ j,

then |NV−S(y)| ≥ δ− j. Let A be a subset of NV−S(y) with |A| = δ− j. Then S ∪A
is a ∆-independent set of G with |S| + δ − j vertices, contradicting the hypothesis

β∆(G) = βj(G) + δ − j − 1. Hence S is a (j + 1)-dominating set of G.

Example 1. For n ≥ 4 even, let Hn be the (n− 2)-regular graph of order n. Equivalently,
Hn is a complete graph Kn minus a perfect matching. Clearly, δ = ∆ = n − 2. Moreover,
we can check that γj(Hn) = βj(Hn) = j if j is even and γj(Hn) = βj(Hn) = j + 1 if j is
odd. Hence βj(Hn) = β∆(Hn)− δ + j if j is even, βj(Hn) = β∆(Hn)− δ + j + 1 if j is odd
and in the second case only, the three equalities (a), (b), (c) of Theorem 4 are satisfied. In
addition, for j odd, every βj(Hn)-set is isomorphic to Hj+1 and is (j + 1)-dominating.

It is worth noting that any additional condition on G allowing to strengthen The-

orems 1, 2 or 3 allows to lower the bound in Theorem 4. For instance, Hansberg [4]

proved that if a graphG with maximum degree ∆ ≤ n−2 has less than (γ(G)−1)(k−1)

induced cycles C4 for an integer k with ∆ ≥ k ≥ 2, then γk(G) ≥ γ(G) + k − 1. This

gives the following corollary by letting again j = δ − k + 1.

Corollary 2. Let G be a graph with maximum degree ∆ ≤ n− 2 and minimum degree δ,
and let j ≤ δ − 1 be a positive integer. If G has less than (γ(G) − 1)(δ − j) induced cycles
C4, then βj(G) ≤ β∆(G)− δ + j.
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3. Some families of graphs

In this section, we define some families of extremal graphs for equalities between the

independence parameters which will be discussed in Section 4.

3.1. Families G(j,∆) and F(δ,∆)

Definition 1. Let j and ∆ be integers with 1 ≤ j ≤ ∆−1. A connected graph G = (V,E)
of maximum degree ∆ belongs to the family G(j,∆) if V admits a partition (X,Y ), called
a good partition, such that dX(y) = ∆ for all y ∈ Y and dX(x) ≤ j − 1, dY (x) ≤ 1 for all
x ∈ X.

We note that the set Y is independent and all its vertices have degree ∆ while the

set X is j-independent and all its vertices have degree at most j < ∆. The good

partition (X,Y ) is unique since Y is the set of all the vertices of degree ∆.

Proposition 2. Let j and ∆ be positive integers with j ≤ ∆ − 1 and let G be a graph
of family G(j,∆). Then the part X of the unique good partition (X,Y ) of G is a maximum
∆-independent set and βj(G) = β∆(G).

Proof. Set X is ∆-independent comes from the fact it is j-independent. Now assume

T is another ∆-independent set of G and let y ∈ T ∩ Y . Then dT∩Y (y) ≤ ∆− 1 and

since dX(y) = ∆, dX−T (y) ≥ 1. Hence, since each vertex of X has at most one

neighbor in Y , |X − T | ≥ |Y ∩T | and thus |T | = |T ∩X|+ |T ∩ Y | ≤ |X|. Whence X

is a maximum ∆-independent set and consequently also a maximum j-independent

set. Therefore βj(G) = β∆(G).

From Definition 1, the minimum degree of a graph G of G(j,∆) is at most j.

Definition 2 describes the subfamily F(δ,∆) of graphs of G(δ,∆) of minimum degree

δ.

Definition 2. Let δ and ∆ be integers with 1 ≤ δ ≤ ∆ − 1. A connected graph
G = (V,E) of maximum degree ∆ and minimum degree δ belongs to family F(δ,∆) if V
admits a partition (X,Y ) such that dX(y) = ∆ for all y ∈ Y , dY (x) = 1 for all x ∈ X and
the induced subgraph G[X] is (δ − 1)-regular.

3.2. Families L(∆), H(∆− 1,∆), H(∆,∆)

Definition 3. Let G = (V,E) be a connected graph of maximum degree ∆ ≥ 2, and let
(X,Y ) be a partition of V such that Y is an independent set, X is a (∆ − 1)-independent
set and dX(y) = ∆ for all y ∈ Y . The partition (X,Y ) has Property P if for every A ⊆ X
and B ⊆ Y such that |A| < |B| and B ⊆ NY (A), there exists a vertex v of X −A such that
d(X−A)∪B(v) = ∆.



A. Bouchou, M. Chellali 5

Definition 4. Let ∆ ≥ 2 be an integer. A connected graph G = (V,E) of maximum
degree ∆ belongs to family L(∆) if V admits a partition (X,Y ), called a good partition,
such that dX(y) = ∆ for all y ∈ Y , dX(x) ≤ ∆ − 2 for all x ∈ X and the partition (X,Y )
satisfies Property P.

Proposition 3. Let G = (V,E) be a connected graph of maximum degree ∆ ≥ 2.
If G belongs to L(∆), then the set X of every good partition (X,Y ) of V is a maximum
∆-independent set and β∆−1(G) = β∆(G).

Proof. Let G ∈ L(∆) and let (X,Y ) be a good partition. Clearly, the (∆ − 1)-

independent set X is also ∆-independent. Now, assume G admits another ∆-

independent set T and let T ∩ X = TX , T ∩ Y = TY . Since every vertex y of

TY has ∆ neighbors in X but less than ∆ neighbors in TX , y has at least one neigh-

bor in X − TX . Hence TY ⊆ NY (X − TX). If |X − TX | < |TY |, then by Property

P, there exists a vertex v in TX such that dTX∪TY
(v) = ∆, in contradiction to the

definition of T . Whence |TY | ≤ |X − TX | and thus |T | ≤ |X|. Therefore X is a

maximum ∆-independent set of G and consequently a maximum (∆−1)-independent

set, and β∆−1(G) = β∆(G).

The following proposition shows that for j = ∆− 1, Proposition 3 is stronger than

Proposition 2.

Proposition 4. For every integer ∆ ≥ 2, G(∆−1,∆) ⊂ L(∆) and the inclusion is strict.

Proof. Let G be a graph of G(∆−1,∆) and let (X,Y ) be its unique good partition.

Since dY (x) ≤ 1 for all x ∈ X, |B| ≤ |A| for every pair of subsets A ⊆ X and

B ⊆ Y such that B ⊆ NY (A). Hence the partition (X,Y ) satisfies Property P and

G ∈ L(∆). The third example Ln given at the end of this subsection shows that the

inclusion is strict.

Property P is not easy to check. The following property Q, simpler but weaker

than P, is sometimes useful.

Definition 5. Let G be a connected graph of maximum degree ∆ ≥ 2, the vertex set
V of which admits a partition (X,Y ) such that Y is an independent set, X is a (∆ − 1)-
independent set and dX(y) = ∆ for all y ∈ Y . The partition (X,Y ) has Property Q if for
every pair y1, y2 of vertices of Y such that NX(y1) ∩ NX(y2) 6= ∅, there exist at least two
non-adjacent vertices x1, x2 in NX(y1) ∩NX(y2) such that dX(x1) = dX(x2) = ∆− 2.

Proposition 5. Let G be a connected graph of maximum degree ∆ ≥ 2, the vertex set
V of which admits a partition (X,Y ) such that Y is an independent set, X is a (∆ − 1)-
independent set and dX(y) = ∆ for all y ∈ Y . If the partition (X,Y ) satisfies Property P,
then it satisfies Property Q.
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Proof. Let y1, y2 be two vertices of Y such that N(y1) ∩N(y2) contains a vertex x

of X and let A = {x}, B = {y1, y2}. By P, there exists a vertex x1 in X − {x} of

degree ∆ in (X − {x}) ∪ {y1, y2}. Since dX(x1) ≤ ∆− 2, necessarily dX(x1) = ∆− 2

and x1 is not adjacent to x but is adjacent to both y1, y2. The same argument applied

to the sets A1 = {x1} and B shows that there exists a vertex x2 in X, possibly equal

to x, of degree ∆ − 2 in X, not adjacent to x1 but adjacent to both y1, y2. Hence

Property Q is satisfied.

If a graph G has a partition satisfying the definition of Q and if some vertex x of

X has more than one neighbor in Y , then x belongs to an induced 4-cycle C4 of G.

This gives the following corollary of Proposition 5.

Corollary 3. Every C4-free graph of L(∆) is in G(∆− 1,∆).

In Section 4, we are specially interested in graphs of L(∆) with minimum degree

∆− 1 or ∆. So we give the following definitions.

Definition 6. H(∆ − 1,∆) is the subset of graphs of L(∆) of minimum degree ∆ − 1,
i.e., the semiregular graphs of minimum degree ∆− 1 of L(∆), and H(∆,∆) is the subset of
graphs of L(∆) of minimum degree ∆, i.e., the regular graphs of L(∆).

Note that for every good partition (X,Y ) of the vertex set of a graph G of L(∆)

and for every x ∈ X, dY (x) ≥ 1 if G ∈ H(∆− 1,∆) and dY (x) ≥ 2 if G ∈ H(∆,∆).

In what precedes, the integers j, δ,∆ are often given as functions of the order n of

G. We give below some examples of families.

1. F(1,∆) = {K1,∆} and F(1, n− 1) is the set of all stars K1,n−1.

2. For n ≥ 4 even, consider again the (n− 2)-regular graph Hn consisting of a clique

of order n minus a perfect matching. The partition (X,Y ) where Y consists of two

non-adjacent vertices satisfies Property P and shows that Hn ∈ H(n− 2, n− 2).

3. For n ≥ 6 even, let Ln be a connected graph obtained from two disjoint cliques

of order n/2 by adding two non-adjacent edges joining two different vertices of the

first clique to two different vertices of the second one. For this graph, ∆ = n/2,

δ = n/2− 1 and the partition (X,Y ), where Y consists of two non-adjacent vertices

of degree n/2, satisfies Property P. Hence Ln ∈ H(n/2 − 1, n/2) ⊆ L(n/2). But Ln
does not belong to F(n/2 − 1, n/2), nor to G(n/2 − 1, n/2), since two vertices of X

have two neighbors in Y .

4. Equalities between independence parameters

In this section, we give characterizations or properties of graphs G such that βi(G) =

βj(G) for some values of i and j. We are particularly interested in the case j = ∆(G),

where by Corollary 1, βi(G) = β∆ can only occur if i ≥ δ(G) − 1. If G has several
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components Gk, then ∆(G) = maxk ∆(Gk), δ(G) = mink δ(Gk) and the problem is

interesting only if all components have the same minimum and maximum degrees.

In this case, the properties of graphs G such that βi(G) = βj(G) hold for each

component. Therefore it is sufficient in what follows to consider connected graphs.

4.1. Graphs G with βj−1(G) = βj(G) for some j ∈ {2, . . . ,∆}

It is known [2] that the j-independence number βj(G) of a graph G may be larger

than its maximum minimal j-domination number Γj(G). The next result shows that

this is no more true when βj−1(G) = βj(G).

Proposition 6. Let G be a connected graph with maximum degree ∆ and j an integer
with 2 ≤ j ≤ ∆. If βj−1(G) = βj(G) and S is a maximum (j − 1)-independent set, then S
is a minimal j-dominating set of G and thus βj(G) ≤ Γj(G).

Proof. Let S be a βj−1(G)-set. If some vertex y of V − S has less than j neighbors

in S, then S ∪ {y} is a j-independent set larger than S in contradiction to |S| =

βj−1(G) = βj(G). Hence S is a j-dominating set. This j-dominating set is minimal

since dS(x) < j for all x ∈ S. Therefore βj(G) ≤ Γj(G).

For the particular case j = ∆, it was shown in [1] that β∆(G) ≥ Γ∆(G), which

gives the following corollary.

Corollary 4. Let G be a connected graph with maximum degree ∆ ≥ 2 such that
β∆−1(G) = β∆(G). Then every maximum (∆ − 1)-independent set is a minimal ∆-
dominating set and β∆(G) = Γ∆(G).

4.2. Graphs G with βj(G) = β∆(G) for some j ∈ {1, . . . ,∆− 1}

We give a necessary and sufficient condition for a connected graphG to satisfy βj(G) =

β∆(G).

Theorem 5. Let j and ∆ be positive integers with j ≤ ∆ − 1 and let G be a connected
graph of maximum degree ∆. Then βj(G) = β∆(G) if and only if G ∈ G(j,∆) when j ≤ ∆−2,
G ∈ L(∆) when j = ∆− 1.

Proof. The part “if” is a consequence of Propositions 2 and 3. To prove the part

“only if”, we consider a maximum j-independent set X of G and Y = V −X. Since

βj(G) = β∆(G) and (βk(G))k is a non-decreasing sequence, X is a maximum k-

independent set of G for j + 1 ≤ k ≤ ∆ and by Proposition 6, X is a ∆-dominating

set of G. Thus dX(y) = ∆ for all y ∈ Y and Y is independent.

In the case j ≤ ∆− 2, suppose that some vertex x of X has at least two neighbors y1

and y2 in Y and consider the set S = (X−{x})∪{y1, y2}. For i = 1, 2, dS(yi) = ∆−1,

and for all v ∈ S ∩X, dS(v) ≤ j + 1 ≤ ∆− 1. Hence S is a ∆-independent set larger
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than X, in contradiction to β∆(G) = |X|. Therefore dY (x) ≤ 1 for all x in X and

thus G ∈ G(j,∆).

Now let j = ∆− 1 and suppose that there exist two subsets A ⊆ X and B ⊆ Y such

that |A| < |B|, B ⊆ NY (A) and d(X−A)∪B(x) < ∆ for every vertex x of X−A. Since

B ⊆ NY (A), every vertex of B has a neighbor in A and thus at most ∆− 1 neighbors

in the set S = (X−A)∪B. Since moreover dS(x) < ∆ for every vertex x of X−A, S

is a ∆-independent set larger than X, a contradiction. Therefore the partition (X,Y )

satisfies Property P and G ∈ L(∆).

When G is C4-free, the following corollary follows from Corollary 3.

Corollary 5. Let j and ∆ be positive integers with j ≤ ∆ − 1 and let G be a C4-free
connected graph of maximum degree ∆. Then βj(G) = β∆(G) if and only if G ∈ G(j,∆).

The application of Theorem 5 to the particular cases j = 1 and j = 2 gives the

following statements.

Theorem 6. Let G be a connected graph with maximum degree ∆. Then β(G) = β∆(G)
if and only if G is the cycle C4 or a star.

Proof. If ∆ = 1, then G is the path P2. If ∆ ≥ 2 then, by Theorem 5, β(G) = β∆(G)

if and only if G ∈ L(2) or G ∈ G(1,∆) with ∆ ≥ 3. Graphs of L(2) are the path

P3 and the cycle C4 while graphs of G(1,∆) for ∆ ≥ 3 are the stars K1,n−1 with

n ≥ 4.

Theorem 7. Let G be a connected graph with maximum degree ∆ ≥ 2. Then β2(G) =
β∆(G) if and only if G is a path Pn or a cycle Cn if ∆ = 2, G ∈ L(3) if ∆ = 3 and
G ∈ G(2,∆) if ∆ ≥ 4.

Example 2. Let T be a tree consisting of p ≥ 1 disjoint stars K1,k with k ≥ 3 and
p − 1 further edges attaching leaves of stars such that T results in a chain of stars. Then
n = p (k + 1), ∆ = k and β2(T ) = β∆(T ) = kp. We see that T ∈ G(2,∆) for ∆ = k ≥ 3.
When ∆ = 3, by Proposition 4, G(2, 3) ⊆ L(3).

Example 3. Let G be the connected graph obtained from p ≥ 3 disjoint paths P2 = xiyi
for i ∈ {1, 2, . . . , p} by joining vertices xi to a new vertex x and by joining vertices yi to
another new vertex y. Then n = 2p + 2, ∆ = p, and β2(G) = β∆(G) = 2p. We see that
G ∈ G(2,∆) for p ≥ 3. When ∆ = 3, G(2, 3) ⊆ L(3) as in Example 2.

By Corollary 1, βj(G) = β∆(G) implies j ≥ δ − 1. In the following subsection, we

consider the particular cases j = δ and j = δ − 1.
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4.3. Graphs G with βδ(G) = β∆(G) or βδ−1(G) = β∆(G)

Replacing j by δ in Theorem 5 and Corollary 5 gives the following characterization.

Theorem 8. A connected graph G of maximum degree ∆ and minimum degree δ ≤ ∆−1
satisfies βδ(G) = β∆(G) if and only if it belongs to F(δ,∆) when δ ≤ ∆−2 and to H(∆−1,∆)
when δ = ∆− 1. If moreover G is C4-free, then βδ(G) = β∆(G) if and only if it belongs to
F(δ,∆) for every value of δ.

Replacing j by δ − 1 in Theorems 5 gives the following characterization.

Theorem 9. Let δ and ∆ be two positive integers with 2 ≤ δ ≤ ∆. A connected graph
G = (V,E) of maximum degree ∆ and minimum degree δ satisfies βδ−1(G) = β∆(G) if and
only if it belongs to H(∆,∆).

Proof. Since the minimum degree of graphs of G(j,∆) is at most j, there is no graph

of minimum degree δ in G(δ − 1,∆). Therefore by Theorem 5, βδ−1(G) = β∆(G) if

and only if δ − 1 = ∆ − 1, i. e., G is regular, and G ∈ L(∆). This is equivalent to

G ∈ H(∆,∆).

For example, the (n − 2)-regular graph Hn considered after Proposition 1 satisfies

βn−3(Hn) = βn−2(Hn) = n− 2. The n/2 partitions (X,Y ) obtained by taking for Y

a set of two non-adjacent vertices are good and show that Hn ∈ H(∆,∆). Note that

γ(Hn) = γ2(Hn) = 2.

Corollary 6. Let G be a connected graph with maximum degree ∆ and minimum degree
δ ≥ 2. Then βδ−1(G) = β∆(G) if and only if G is regular and γ(G) = γ2(G).

Proof. Suppose βδ−1(G) = β∆(G). Then G is regular by Theorem 9 and γ(G) =

γ2(G) to satisfy the property (b) of the equality case in Theorem 4.

Conversely, suppose G is regular and γ(G) = γ2(G). By Theorem 3, n = γ(G) +

β∆(G) = γ2(G) + β∆−1(G) and thus β∆−1(G) = β∆(G).

Recall that the Cartesian product of two graphs G1 and G2 is the graph G1�G2

with vertex set V (G1)× V (G2) and vertices (u1, u2) and (v1, v2) are adjacent if and

only if either u1 = v1 and u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1).

The characterization of graphs G such that γ(G) = γ2(G) is only known in some

particular classes of graphs. For instance it is proved in [5] that the unique regular

claw-free graphs G such that γ(G) = γ2(G) are the graph Hn and the Cartesian

product of two complete graphs of the same order. This gives the following corollary.

Corollary 7. Let G be a connected ∆-regular claw-free graph of order n. Then β∆−1(G) =
β∆(G) if and only if G = Hn or G = Kp�Kp with p ≥ 2 and p2 = n.
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We finish with some properties of graphs G satisfying βδ−1(G) = β∆(G). The first

one is a consequence of Corollary 2.

Corollary 8. Let G is a connected graph of maximum degree ∆ ≤ n − 2 and minimum
degree δ ≥ 2. If βδ−1(G) = β∆(G), then G contains at least γ(G)− 1 induced C4.

Proposition 7. Let G be a connected graph with maximum degree ∆ and minimum degree
δ ≥ 3. If βδ−1(G) = β∆(G), then γ(G) ≥ 2n

∆+2
and ∆ ≥ 4. In particular, β2(G) < β3(G) for

every cubic graph.

Proof. Let S be a βδ−1 (G)-set. By Theorem 9, the number m(S, V − S) of edges

of G between S and V − S satisfies 2 |S| ≤ m(S, V − S) = ∆ |V − S|, and we obtain

βδ−1(G) = |S| ≤ ∆n
∆+2 . From Theorem 3 we get n− γ(G) ≤ β∆(G) = βδ−1(G) ≤ ∆n

∆+2

and thus γ(G) ≥ 2n
∆+2 . By a result of Reed [7], γ(G) ≤ 3n

8 if δ(G) ≥ 3. Hence

∆ ≥ d 10
3 e = 4.

Lemma 1. Let G = (V,E) be a graph with maximum degree ∆. Then G has a maximum
∆-independent set S containing a vertex with exactly ∆− 1 neighbors in S.

Proof. Let S be a β∆(G)-set. If S contains a vertex of degree ∆ − 1 in S, we are

done. Otherwise, dS(x) ≤ ∆−2 for all x in S. Let y ∈ V −S and u a neighbor of y in

S. Since S∪{y} is not ∆-independent, dS(y) = ∆. Hence the set S′ = (S−{u})∪{y}
is a β∆(G)-independent set containing vertex y of degree ∆− 1 in S′.

Proposition 8. Let G be a connected graph with maximum degree ∆ and minimum
degree δ ≥ 2. If βδ−1(G) = β∆(G), then G has at least two maximum ∆-independent sets.

Proof. By Theorem 9, G ∈ H(∆,∆). Let (X,Y ) be a good partition of G. The

set X is a β∆(G)-independent set of G of maximum degree at most ∆ − 2. By the

previous lemma, there exists at least one other β∆(G)-independent set.
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