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Abstract: A total coloring of a graph G is an assignment of colors to all the elements
(vertices and edges) of the graph in such a way that no two adjacent or incident

elements receive the same color. The total chromatic number of G, denoted by χ′′(G),
is the minimum number of colors needed for a total coloring of G. The Total Coloring

Conjecture (TCC) proposed independently by Behzad and Vizing claims that, ∆(G) +

1 ≤ χ′′(G) ≤ ∆(G) + 2, where ∆(G) is the maximum degree of G. The lower bound
is sharp and the upper bound remains to be proved. In this paper, we prove the TCC

for certain classes of lexicographic and deleted lexicographic products of graphs. Also,

we obtained the lower bound for certain classes of these products.
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1. Introduction

All graphs considered in this paper are finite, simple and connected. Let

G = (V (G), E(G)) be a graph and ∆(G) denote the the maximum degree of

the graph G. Graph coloring is a major sub-topic of graph theory with many

useful applications and unsolved problems. Vertex coloring is assigning colors to

the vertices such that no two adjacent vertices are assigned the same color. The

minimum number of colors required for vertex coloring is called the chromatic

number, denoted by χ(G). From Brook’s theorem, it is clear that χ(G) ≤ ∆(G)
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except for odd cycle and complete graph for which it is ∆(G) + 1. Similarly, a

proper edge coloring is the assignment of colors to the edges such that no two

adjacent edges receive the same color. The minimum number of colors required for

edge coloring of G is called the chromatic index of the graph and it is denoted by

χ′(G). Vizing proved that for any graph G, χ′(G) is either ∆(G) or ∆(G) + 1. The

graphs which require ∆(G) colors for its edge coloring are called class I graphs and

the graphs which require ∆(G)+1 colors for its edge coloring are called class II graphs.

A total coloring of G is a mapping f : V (G) ∪ E(G) → C, where C is the set of

colors and f satisfies :

(a) f(u) 6= f(v) for any two adjacent vertices u, v ∈ V (G)

(b) f(e) 6= f(e′) for any two adjacent edges e, e′ ∈ E(G) and

(c) f(v) 6= f(e) for any vertex v ∈ V (G) and any edge e ∈ E(G) incident to v.

The total chromatic number of a graph G, denoted by χ′′(G), is the minimum number

of colors that are used in a total coloring. It is clear that χ′′(G) ≥ ∆(G) + 1. Behzad

[1] and Vizing [12] independently conjectured (Total Coloring Conjecture (TCC))

that for every graph G, χ′′(G) ≤ ∆(G) + 2. The graphs that can be totally colored

with ∆(G)+1 colors are said to be type I graphs and the graphs with total chromatic

number ∆(G)+2 is said to be type II. The total coloring conjecture is a long-standing

conjecture and has defined several attempts in a complete proof. It is also proved that

the decidability algorithm for total coloring is NP-complete even for cubic bipartite

graphs [6, 9]. But still, a lot of progress has been made in attempting TCC. It is easily

seen that TCC is true for complete graphs, bipartite, complete multipartite graphs.

The total coloring conjecture has also been confirmed for several other classes of

graphs. Good surveys of techniques and other results on total coloring can be found

in Yap [13], Borodin [2] and Geetha et al. [3].

2. Lexicographic Product

Let G and H be two graphs. The lexicographic product [4, 5] of graphs G and H is the

graph G◦H whose vertex set is V (G)×V (H) and for which ((g, h), (g′, h′)) is an edge

of G ◦H precisely if (g, g′) ∈ E(G), or g = g′ and (h, h′) ∈ E(H). The lexicographic

product is also known as graph substitution, a name that bears witness to the fact

that G ◦H can be obtained from G by substituting a copy Hg of H for every vertex

g of G and then joining all vertices of Hg with all vertices of Hg′ if (g, g′) ∈ E(G).

The lexicographic product is associative but not commutative. The total coloring of

some classes of lexicographic product graph were discussed in [4, 8, 10]. For example

it is easy to see that Km ◦Kn
∼= Kmn is type I if m and n are odd otherwise type II.

Theorem 1. Let G be any type I graph. If n is odd then G ◦ Kn is type I otherwise
G ◦Kn satisfies TCC.
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Proof. Let G be any type I graph with m vertices. In G ◦Kn, each vertex of G is

replaced by a copy of Kn. The maximum degree of G ◦Kn is ∆(G ◦Kn) = (n− 1) +

n∆(G). Let us consider the color classes C1 = {a1
1, a

2
1, . . . , a

n
1}, C2 = {a1

2, a
2
2, . . . , a

n
2},

. . . , C(∆(G)+1) = {a1
(∆(G)+1), a

2
(∆(G)+1), . . . , a

n
(∆(G)+1)}. We consider two cases.

Case 1. n is odd.

In this case, we color the elements of G ◦ Kn with ∆(G ◦ Kn) + 1 = n(∆(G) + 1)

colors. Let C1, C2, . . . , C(∆(G)+1) be the total color classes of G. Since n is odd, we

need n colors to color the elements of Kn and n colors to color the join edges between

any two copies of Kn. Since G is type I we require (∆(G) + 1) colors to color the

elements of G. Assign the ∆(G) + 1 set of n colors corresponding to ∆(G) + 1 color

classes of G. Hence G ◦Kn is type I.

Case 2. n is even.

In this case, we color the elements of G ◦Kn with ∆(G ◦Kn) + 2 = n(∆(G) + 1) + 1

colors.

Here G is type I and n is even. We need ∆(G) + 1 set of n or n+ 1 colors to color the

elements of G ◦Kn. Let C1, C2, . . . , C(∆(G)+1) be the total color classes of G. Assign

the ∆(G) + 1 set of n colors corresponding to ∆(G) + 1 color classes of G. So there

will be a set of n colors available at each copy of Kn. Since n is even, we need n+ 1

colors to color all elements of Kn. Take the n colors available at each copy along with

a new color to assign total coloring of Kn. In this coloring assignment, use the new

color only to the edges at each copy of Kn.

Figure 1. K5 ◦ P3
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The lexicographic product is not commutative and hence G ◦Kn � Kn ◦ G. In the

next theorem, we prove that Kn ◦G is total colorable.

Lemma 1. [13] Let G be a graph with n vertices. If ∆(G) ≥ 3
4
n then G is total colorable

with ∆(G) + 2 colors.

Theorem 2. For any total colorable graph G, Kn ◦G is total colorable.

Proof. In Kn ◦G, each vertex of Kn is replaced by a copy of G. So each vertex in

Kn ◦G is adjacent to all the vertices in all the copies of G and to the vertices in the

same copy as in G. So the maximum degree of ∆(Kn ◦G),∆(G) +m(n− 1) ≥ 3
4mn.

From Lemma 1, Kn ◦G is total colorable with ∆(Kn ◦G) + 2 colors.

Geetha and Somasundaram [4] proved that if G is a bipartite graph and H is any

graph with χ′′(K2 ◦H) ≤ ∆(K2 ◦H)+2 then G◦H satisfies TCC. Vignesh et al. [11]

proved that if G is a bipartite graph and H is any total colorable graph then G ◦H
is total colorable. Sandhiya et al. [10] proved that if G is type I then Pm ◦G,m ≥ 3

is type I. In the next theorem, we have generalised these results.

Lemma 2. [13] For any integer n ≥ 3 there exists an n edge coloring of Kn,n such that
Kn,n has a perfect matching receiving n distinct colors.

Theorem 3. For any bipartite graph G and any total colorable graph H,

χ′′(G ◦H) =

{
∆(G ◦H) + 1, if G is unbalanced and H is type I

≤ ∆(G ◦H) + 2, otherwise.

Proof. Let G be a bipartite graph with partition {x1, x2, . . . , xm} and

{y1, y2, . . . , yn} where m ≥ n. Let H be any total colorable graph. If H is com-

plete then by Theorem 1, it is easy to see the results. Here we assume H is not

complete. In G ◦ H, there are m + n copies of H. Let us denote these copies by

H ′1, H
′
2, H

′
3, . . . ,H

′
m, H

′′

1 , H
′′

2 , H
′′

3 , . . . ,H
′′

n .

The maximum degree of G ◦H is ∆(H) + k∆(G), where k is the order of the graph

H.

Case 1. Suppose G is unbalanced and H is type I.

We distinguish two situations.

Subcase 1.1. ∆(G) = m.

We divide the ∆(H) + k∆(G) + 1 colors into ∆(G ◦ H) + 1 color sets C1 =

{a1
1, a

2
1, . . . , a

∆(H)+1
1 }, C2 = {a1

2, a
2
2, . . . , a

k
2}, C3 = {a1

3, a
2
3, . . . , a

k
3}, . . . , C∆(G)+1 =

{a1
∆(G)+1, a

2
∆(G)+1, . . . , a

k
∆(G)+1}. Since H is type I, we take ∆(H) + 1 colors from C1

to color all the elements of H
′′

1 , H
′′

2 , H
′′

3 , . . . ,H
′′

n . Take the ∆(H) + 1 edge coloring

from the total coloring of H
′′

i , 1 ≤ i ≤ n, and assign the colors to the edges of H ′i in

the same way as in H
′′

i , 1 ≤ i ≤ n. G is bipartite so it is class I. Hence ∆(G) sets of k
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colors are sufficient to color the join edges between H ′i, 1 ≤ i ≤ m, and H
′′

j , 1 ≤ j ≤ n.

Assign the colors from C2, . . . , C∆(G)+1 to the join edges. Since m ≥ n, there will be

at least one set of k colors missing at each copy of H ′1, H
′
2, H

′
3, . . . ,H

′
m. Assign the

set of missing color corresponding to the vertices in each set of H ′1, H
′
2, H

′
3, . . . ,H

′
m.

Thus we have totally used ∆(H) + k∆(G) + 1 colors and hence G ◦H is type I.

Subcase 1.2. ∆(G) < m.

In this case, we further divide each color class Ci into two sets Xi and Yi, where Xi =

{a1
i , a

2
i , . . . , a

∆(H)+1
i } and Yi = {a∆(H)+2

i , a
∆(G)+3
i , . . . , aki }, where 2 ≤ i ≤ ∆(G) + 1.

Let us assume that the maximum degree attains in the copy H
′

1. First we give the

total coloring for H
′

1 using the colours from C1. Choose the colors from Xi ∪ Yj to

color the joins edges between H
′

1 and copies in H
′′
. Choose the colors from Xi to

color the copies in H
′′

adjacent with H
′

1. Choose the next copy with next highest

degree. If the chosen copy is adjacent with H
′

1, already one set of join edges will be

colored. Choose the colors accordingly to color the other join edges of the chosen

copy. Repeat the same process until all the elements of G ◦ H are assigned colors.

If there is any repetition in colors, swap the ∆(H) + 1 colors between the join edges

and one of its copies.

Case 2. G is unbalanced and H is type II.

We distinguish two situations.

Subcase 2.1. ∆(G) = m.

Let C
′

1 = {a1, a2, . . . , a∆(H)+2}. In this case, we consider the ∆(H) + km + 2 colors

from the ∆(G) + 1 sets C
′

1, C2, C3, . . . , C∆(G)+1. Take the colors from C
′

1 and assign

to the elements of H
′′

1 , H
′′

2 , H
′′

3 , . . . ,H
′′

n . Like in the previous case, take the ∆(H) + 1

edge coloring from the total coloring of H
′′

i and assign the colors to the edges in H ′i
in the same way as in H

′′

i , 1 ≤ i ≤ n. Since G is bipartite, it is class I. Hence ∆(G)

sets of k colors are sufficient to color the join edges between H ′i, 1 ≤ i ≤ m, and

H
′′

j , 1 ≤ j ≤ n. There will be at least one set of k colors missing at each copy of H
′

i

and assign these missing colors to its vertices in H
′

i .

Subcase 2.2. ∆(G) < m.

Let H
′′

be the partite set containing the maximum degree vertex. Similar to the pre-

vious case, Take the colors from C
′

1 and assign to the elements of H
′′

1 , H
′′

2 , H
′′

3 , . . . ,H
′′

n .

Take the ∆(H) + 1 edge coloring from the total coloring of H
′′

i and assign the colors

to the edges in H ′i in the same way as in H
′′

i , 1 ≤ i ≤ n. ∆(G) sets of k colors are

sufficient to color the join edges between H ′i, 1 ≤ i ≤ m, and H
′′

j , 1 ≤ j ≤ n. Using

Lemma 2, Color the join edges between the copies such that the edges joining corre-

sponding vertices are assigned n different colors. Now we need to color the vertices in

all copies of H
′

i . Since H is type II, there will be a missing color at each vertex of H
′′

1

(say). Recolor this missing color to the perfect matching of any one set of join edges

and shift the colors in perfect matching to corresponding vertices of H
′

i adjacent with

H
′′

1 . Repeat this process to color the vertices in each copy of H
′
.

Case 3. G ∼= Km,m

In Km,m ◦ H there will be 2m copies of H. Let H ′1, H
′
2, H

′
3, . . . ,H

′
m and

H
′′

1 , H
′′

2 , H
′′

3 , . . . ,H
′′

m denote the copies of H in the partite sets. Let us take a
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set of ∆(H) + km + 2 colors as C0 = {a1
0,

2
0 , . . . , a

∆(H)+2
0 }, C1 = {a1

1, a
2
1, . . . , a

k
1},

C2 = {a1
2, a

2
2, . . . , a

k
2},. . . , Cm = {a1

m, a
2
m, . . . , a

k
m}.

Color all the elements of H ′1, H
′
2, H

′
3, . . . ,H

′
m with colors from C0. Take the edge

coloring from the total coloring of {H ′i} and assign to the edges of {H ′′

i } in the same

way as in {H ′i}, 1 ≤ i ≤ m. We know that the bipartite graph is a class I graph and we

assign the colors from C1, 1 ≤ i ≤ m to color the join edges between the copies. Take

the colors from C1 and assign to the join edges between H ′1 and H
′′

1 . Using Lemma 2,

assign the colors such that the edge joining the corresponding vertices of H ′1 and H
′′

1

are assigned different colors.Since we used ∆(H) + 2 colors to color the elements of

H ′1, there will be one missing color at each vertex of H ′1. Now assign the color of the

edges in the perfect matching to the corresponding vertices in H
′′

1 . Recolor the edges

of perfect matching by the missing color at the corresponding vertices of H ′1. Take the

colors from Ci and color the join edges between H ′i and H
′′

i for each i, 1 ≤ i ≤ m and

repeat the same process as the above. Assign the colors to the join edges between H ′i
and H

′′

j , i 6= j, 1 ≤ i, j ≤ m with the remaining m− 1 sets of k colors such that each

of the vertex in the copies have all km colors. Hence Km,m ◦H is total colorable.

It is easy to prove that P2 ◦P3 is type II. The above theorem can be modified further

for type I graphs. For example, it is proved in [4] that if G is a bipartite graph then

G ◦ P3 is a type I graph.

3. Deleted Lexicographic Product

The deleted lexicographic product [7] of two graphs G and H, denoted by Dlex (G,H),

is a graph with the vertex set V (G)×V (H) and the edge set {((g, h), (g′, h′)) : (g, g′) ∈
E(G) and h 6= h′, or (h, h′) ∈ E(H) and g = g′. Similar to lexicographic product,

Dlex(G,H) and Dlex(H,G) are not necessarily isomorphic. Note that Dlex(G,H) =

G ◦H \ kG, where kG denotes the graph consisting of k vertex disjoint copies of G

and G ◦H \ kG denotes the deletion of kG from G ◦H. Vignesh et. al [11] discussed

the TCC for certain classes of deleted lexicographic product graphs. They proved

that if G and H are class I graphs then Dlex(G,H) is type I. Also for any graph H,

Dlex(Pm, H),m ≥ 3, is type I.

Sandhiya et al. [10] generalized the above result to class I graph G with any graph

H. The following theorems are due to Sandhiya et al. [10].

Theorem 4. [10] For any class-I graph G and a graph H, Dlex(G,H) is type I.

Theorem 5. [10] Dlex(Cm,Kn) is type I, where n is odd.

We extended the Theorem 5 to any graph G with complete graph Kn.
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Theorem 6. For any graph G,

Dlex(G,Kn) =

{
∆(Dlex(G,Kn) + 1, when n is odd

≤ ∆(Dlex(G,Kn) + 2, when n is even.

Proof. Let G be a graph with m vertices. In Dlex(G,Kn), there will be m copies of

Kn. The maximum degree ∆(Dlex(G,Kn)) = (n − 1)(∆(G) + 1). We consider two

cases.

Case 1. n is odd.

In this case, we choose a set of (n − 1)(∆(G) + 1) + 1 colors. The edges of G

are partitioned into ∆(G) + 1 independent sets. Correspondingly the join edges

between the copies of Kn are partitioned into ∆(G) + 1 independent sets namely

S1, S2, . . . , S∆(G)+1. We take (n− 1)(∆(G) + 1) colors to color the join edges in each

partition S1, S2, . . . , S∆(G)+1. Since we partition the join edges into ∆(G) + 1 sets,

there will be a set of n−1 missing colors at each copy of Kn. Also we have one unused

color c (say). Here n is odd, we need n colors to color the elements of Kn. Using the

set of n− 1 missing colors at each copy and the color c, we color the elements in each

copy of Kn. In this coloring assignment, we make sure that the corresponding vertex

in all the copies of Kn receive the color c.

Case 2. n is even.

Similar to the previous case, the edges of G are partitioned into ∆(G)+1 independent

sets. Correspondingly the join edges between the copies of Kn are partitioned into

∆(G) + 1 independent sets namely S1, S2, . . . , S∆(G)+1. We take (n − 1)(∆(G) + 1)

colors to color the join edges in each partition S1, S2, . . . , S∆(G)+1. Since we partition

the join edges into ∆(G)+1 sets, there will be a set of n−1 missing colors at each copy

of Kn. Take two new colors c1 and c2. Here n is even, we need n+ 1 colors to color

the elements of Kn. Using the set of n− 1 missing colors at each copy and the colors

c1 and c2, we color the elements in each copy of Kn. In this coloring assignment, we

make sure that the corresponding vertex in all the copies of Kn receive the either of

the colors c1 or c2.
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[5] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition, Wiley,

New york, 2000.

[6] C.J.H. McDiarmid and A. Sánchez-Arroyo, Total colouring regular bipartite

graphs is NP-hard, Discrete Math. 124 (1994), no. 1-3, 155–162.

https://doi.org/10.1016/0012-365X(92)00058-Y.

[7] Š. Miklavič and M. Milanič, Equistable graphs, general partition graphs, triangle

graphs, and graph products, Discrete Appl. Math. 159 (2011), no. 11, 1148–1159.

https://doi.org/10.1016/j.dam.2011.03.011.

[8] S. Mohan, J. Geetha, and K. Somasundaram, Total coloring of certain classes of

product graphs, Electro. Notes Discrete Math. 53 (2016), 173–180.

https://doi.org/10.1016/j.endm.2016.05.016.

[9] A. Sánchez-Arroyo, Determining the total colouring number is NP-hard, Discrete

Math. 78 (1989), no. 3, 315–319.

https://doi.org/10.1016/0012-365X(89)90187-8.

[10] T.P. Sandhiya, J. Geetha, and K. Somasundaram, Total colorings of certain

classes of lexicographic product graphs, Discrete Math. Algorithms Appl. 14

(2022), no. 3, Article ID: 2150129.

https://doi.org/10.1142/S1793830921501299.

[11] R. Vignesh, J. Geetha, and K. Somasundaram, Total coloring conjecture for

certain classes of graphs, Algorithms 11 (2018), no. 10, Article ID: 161.

https://doi.org/10.3390/a11100161.

[12] V.G. Vizing, Some unsolved problems in graph theory, Russian Math. Surveys 23

(1968), no. 6, Article ID: 125.

https://doi.org/10.1070/RM1968v023n06ABEH001252.

[13] H.P. Yap, Total Colourings of Graphs, Springer, Berlin, 1996.


	Introduction
	Lexicographic Product
	Deleted Lexicographic Product
	References

