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Abstract: A graphoidal cover of a graph G (not necessarily finite) is a collection ψ

of paths (not necessarily finite, not necessarily open) satisfying the following axioms:
(GC-1) Every vertex of G is an internal vertex of at most one path in ψ, and (GC-2)

every edge of G is in exactly one path in ψ. The pair (G,ψ) is called a graphoidally
covered graph and the paths in ψ are called the ψ-edges of G. In a graphoidally covered

graph (G,ψ), two distinct vertices u and v are ψ-adjacent if they are the ends of an

open ψ-edge. A graphoidally covered graph (G,ψ) in which no two distinct vertices
are ψ-adjacent is called ψ-independent and the graphoidal cover ψ is called a totally

disconnecting graphoidal cover ofG. Further, a graph possessing a totally disconnecting

graphoidal cover is called a graphoidally independent graph. The aim of this paper is
to establish complete characterization of graphoidally independent infinite cactus.

Keywords: Graphoidal cover of a graph, graphoidally covered graphs, graphoidally
independent graphs, cactus
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1. Introduction

Throughout this paper, we shall follow the notation and terminology of West [17] for

graphs, except that a graph could be infinite in which case the reader is referred to

Ore [14].

The concept of graphoidal covers for finite graphs was first introduced by Acharya and

Sampathkumar [4] in 1987. There are several variations of the concept of graphoidal
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414 Graphoidally independent infinite cactus

covers such as acyclic graphoidal cover, geodesic graphoidal cover, induced graphoidal

cover and simple graphoidal cover. For results on these topics one may refer to [7–

9, 11]. Many interesting notions based on graphoidal covers of a graph like graphoidal

covering number [4, 10, 15], graphoidal labeling [16], graphoidal length [6, 12] etc.,

have been introduced and are being studied extensively. A comprehensive review of

graphoidal covers is given in [5]. In [1], Acharya and Gupta extended the notion

of graphoidal covers to infinite graphs and extended the notion of domination to

graphoidally covered graphs [1–3].

Given a graph G = (V,E), by a graphoidal cover of G we mean a collection ψ of

non-trivial paths in G, which are not necessarily open and not necessarily finite,

satisfying the following axioms:

(GC-1) Every vertex of G is an internal vertex of at most one path in ψ, and

(GC-2) Every edge of G belongs to exactly one path in ψ.

For a given graphoidal cover ψ of a graph G, the paths in ψ are called ψ-edges of G,

and the ordered pair (G,ψ) is called a graphoidally covered graph. In this definition,

when G is infinite, a ψ-edge could possibly be infinite; in particular, it may be

a one-way infinite path having one end-vertex or a two-way infinite path having

no end-vertex. Further, a finite open ψ-edge has two distinct end-vertices while a

closed ψ-edge is a cycle and has only one coincident end-vertex, which is specified by ψ.

The set of all graphoidal covers of G is denoted by GG. Clearly, ψ =: E(G), the edge

set of G, is a graphoidal cover of G and is called the trivial graphoidal cover of G; a

graphoidal cover that is not trivial is referred as a non-trivial graphoidal cover.

Definition 1. [1] Two distinct vertices u and v of G are said to be ψ-adjacent if there
exists a finite open path P ∈ ψ with u and v as its end vertices.

Definition 2. [1] A graphoidal cover ψ of a graph G is called a totally disconnecting
graphoidal cover [1] of G if no two distinct vertices in G are ψ-adjacent.

Clearly, for a graphoidally covered graph (G,ψ), the graphoidal cover ψ is a totally

disconnecting graphoidal cover of G if ψ contains no open path of finite length i.e.,

every ψ-edge is either a one-way infinite path, a two-way infinite path or a cycle. A

cycle or an infinite path are trivial examples of graphs G which do admit a totally

disconnecting graphoidal cover.

However, not every graph G (finite or infinite) possesses a totally disconnecting

graphoidal cover ψ ∈ GG. The graphs shown in Figure 1 are examples of graphs

(finite and infinite) which cannot have a totally disconnecting graphoidal cover, since

every graphoidal cover ψ of each of these graphs must necessarily contain an open

finite ψ-edge.

Thus, a given graph G (finite or infinite) may or may not possess a totally discon-

necting graphoidal cover. This gives rise to the following definition:
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Definition 3. [1] A graph G is said to be a graphoidally independent graph if
G admits a totally disconnecting graphoidal cover ψ, and in this case, the corresponding
graphoidally covered graph (G,ψ) (or the graph G) is said to be ψ-independent.

Figure 1. Graphs which are not graphoidally independent.

A complete characterization of graphoidally independent finite graphs is given in [2]

and the problem remains open for infinite graphs. However, graphoidally independent

infinite trees, infinite unicyclic graphs and infinite 2-edge connected graphs are char-

acterised in [13]. In this paper, we explore graphoidally independent infinite cactus.

Here we list some terminology, definitions and theorems from the papers [1, 2, 13]

which we will be using in our further study of graphoidally independent graphs.

Definition 4. [1] Given any subgraph H of G, P ∈ ψ is called H-forming if E(H)∩E(P ) 6=
φ.

Definition 5. [1] A free path in a graph is a maximal path each edge of which is a bridge.

Theorem 1. [13] If an infinite graph is graphoidally independent then the following hold:

(a) The graph has at most one pendant vertex.

(b) The graph has no free path of finite length.

Theorem 2. [13] An infinite tree T is graphoidally independent if and only if T has at
most one pendant vertex.

Theorem 3. [13] An infinite unicyclic graph G is graphoidally independent if and only
if

(a) G has at most one pendant vertex.

(b) G has no free path of finite length.

Definition 6. [1] Given a graph G = (V,E), by a one-way hyperchain in G we mean a
sequence (finite or infinite) (x1, P1, x2, P2, . . . , xk, Pk, xk+1, . . . ), k ≥ 2, where x1, x2, . . . are
distinct vertices in G and each Pi is either a cycle or an infinite path in G such that the
following conditions are satisfied:

(HC1) for each i, xi ∈ V (Pi) and xi is the end-vertex of Pi, if Pi is a one-way infinite path.

(HC2) xi+1 ∈ V (Pi)− {xi} for each i.
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(HC3) V (Pi) ∩ V (Pi+1) = {xi+1} for every i.

(HC4) |i− j| ≥ 2 implies V (Pi) ∩ V (Pj) = φ.

The one-way hyperchain in the above definition could be finite or infinite. The finite hyper-
chain (x1, P1, x2, . . . , xk, Pk) is said to have length k.

Next, we define the term ‘cycle-chain’ which we will be using to prove the main result

of the paper.

Definition 7. In a graph G, a finite hyperchain (x1, P1, x2, P2, . . . , xk, Pk), k ≥ 2 of length
k in which each Pi is a cycle is called a cycle-chain of length k in G.

It is established in [13] that the necessary conditions found in Theorem 1 for a graph to

be graphoidally independent are sufficient as well for an infinite tree and for an infinite

unicyclic graph to be graphoidally independent. A natural question arises: “Are these

two necessary conditions sufficient, in general, for an arbitrary infinite graph to be

graphoidally independent?” The answer to the above question is in negative. The

following example of an infinite graph (Figure 2) which satisfies the two necessary

conditions and is yet not graphoidally independent substantiates this fact. For the

graph in Figure 2, every graphoidal cover ψ certainly contains a finite open ψ-edge

and hence the graph can not be graphoidally independent.

Figure 2. An infinite graph which is not graphoidally independent.

Thus, the necessary conditions in Theorem 1 are not sufficient, in general, for an

infinite graph. A natural curiosity arises that are the conditions sufficient for a graph

having more than one cycle to be graphoidally independent and we proceed to examine

that. Two infinite cacti G and H shown in Figure 3(i) and Figure 3(ii) trivially satisfy

both necessary conditions of Theorem 1 and G is graphoidally independent while H

is not graphoidally independent as every graphoidal cover ψ of H contains an open

ψ-edge of finite length.

From the above discussion we conclude that an infinite cactus satisfying the necessary

conditions of Theorem 1 may or may not be graphoidally independent. The problem

before us is that “What additional conditions are required to ascertain that an infi-

nite cactus is graphoidally independent?” We started with our investigation in this

direction and completely characterized graphoidally independent infinite cactus.
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(i)

G

(ii)

H

Figure 3. Examples of infinite cacti (i) graphoidally independent (ii) not graphoidally independent

2. Main Theorem

Before coming to our main theorem, we study some properties of a totally discon-

necting graphoidal cover of a graphoidally independent graph. We know that a

graphoidally independent graph G has a graphoidal cover ψ such that every ψ-edge is

either a one-way infinite path, a two-way infinite path or a cycle. The following theo-

rem further presents some necessary conditions on a totally disconnecting graphoidal

cover of a graph containing a two-way infinite path.

Theorem 4. If a connected graph G has a totally disconnecting graphoidal cover ψ, then
the following two conditions hold:

(i) ψ can have at most one two-way infinite path.

(ii) In case (G,ψ) has a two-way infinite ψ-edge, then G cannot have any pendant vertex.

Proof. (i) Suppose ψ contains two two-way infinite paths, namely P1 and P2.

Since every vertex of a two-way infinite path in ψ is an internal vertex, P1 and

P2 are vertex disjoint. Let u and v be two arbitrary vertices in V (P1) and

V (P2) respectively. Since G is connected, there exists a u-v path in G. Let

Q be a shortest u-v path in G such that Q has no edge common with P1 and

P2. Since G is ψ-independent, Q /∈ ψ. Let H = {Q1, Q2, . . . , Qs} be the set of

Q-forming ψ-edges. Let Q′i = Qi ∩Q. Let the ordering of Q′is is such that the

last vertex of Q′i is the first vertex of Q′i+1. Therefore |V (Q′i) ∩ V (Q′i+1)| = 1.

Let V (Q′i) ∩ V (Q′i+1) = {qi}. Then qi is end-vertex of at least one of Qi and

Qi+1. Since u is internal vertex of P1, it is end-vertex of Q1 and therefore, q1
is an internal vertex of Q1 and an end-vertex of Q2. Also since no ψ-edge has

two end-vertices, q2 is an internal vertex of Q2. Continuing like this, we see

that qs−1 is an end-vertex of Qs. Since v is an internal vertex of P2, v is an

end-vertex of Qs. Thus, Qs is a ψ-edge with two end-vertices, namely qs−1 and
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v, which is a contradiction. Hence ψ can not contain more than one two-way

infinite path.

(ii) Let ψ contain a two-way infinite path, namely P and let v ∈ V (G) be a pendant

vertex. Since P has no end-vertex, v /∈ V (P ). Let Q be a shortest path from v

to P and let V (P ) ∩ V (Q) = {w}. Then v and w are end-vertices of some Q-

forming ψ-edges. Using similar argument as above, we get a Q-forming ψ-edge

of finite length, a contradiction. Hence the proof.

Now we proceed with the main theme of the paper i.e., characterizing graphoidally

independent infinite cactus.

Theorem 5. An infinite cactus G is graphoidally independent if and only if G satisfies
the following:

1. G has no free path of finite length, and

2. If P and Q are two one-way infinite edge-disjoint free paths and C =
(x1, C1, x2, C2, . . . , xk, Ck) k ≥ 1 is a cycle-chain such that for 1 ≤ i ≤ j ≤ k,

V (P ) ∩ V (Ci) 6= φ

V (Q) ∩ V (Cj) 6= φ,

then the end-vertex of at least one of P and Q in G belongs to V (C).

Proof. Let G be a graphoidally independent graph and ψ ∈ GG be such that G is

ψ-independent. In view of Theorem 1, condition (1) is necessary. Now, assume that

there exist two edge-disjoint one-way infinite free paths P and Q and a cycle-chain C =

(C1, x2, C2, x3, . . . , xk, Ck), k ≥ 1 satisfying V (P )∩V (Ci) 6= φ and V (Q)∩V (Cj) 6= φ

for some 1 ≤ i ≤ j ≤ k. If

V (P ) ∩ V (Ci) = {ui},

V (Q) ∩ V (Cj) = {uj},

then assume that ui and uj are not respective end-vertices of P and Q in G. Let

p ∈ V (P ) and q ∈ V (Q) be end-vertices of P and Q in G respectively. Since G

is a graphoidally independent graph, all edges of P and Q are covered by some

ψ-edges. Let P1, P2, P3, . . . and Q1, Q2, Q3, . . . be P -forming and Q-forming ψ-edges

respectively. Then ui is internal vertex of some P -forming ψ-edge Pr and uj is

internal vertex of some Q-forming ψ-edge Qs. This implies Ci is a ψ-cycle with ui
as its end-vertex. This further implies that for i ≤ l ≤ j, xl is the end-vertex of Cl.

In particular, xj is the end-vertex of ψ-cycle Cj . Therefore, uj is an internal vertex

of Cj . But uj is an internal vertex of Qs as well, which is a contradiction to the

definition of graphoidal cover of G. This proves the necessity of condition (2).



D. Jain, P. Gupta 419

Conversely, let G be an infinite cactus satisfying conditions (1) and (2). We will define

a graphoidal cover ψ such that G is ψ-independent. Conditions (1) and (2) together

imply that G has at most one pendant vertex. This gives rise to two cases.

Case I. G has a pendant vertex, say w0.

Let P0 be a free path in G emanating from w0. Then P0 is a one-way infinite path

with w0 as its end-vertex. Let ψ0 = {P0}. Consider the subgraph G1 = G − E(P0).

If G1 does not have any vertex of degree at least one, then G is ψ-independent, where

ψ = ψ0 and we are done. If not, let

V1 := {v ∈ V (P0) : degG1
(v) > 0}.

For each vertex u ∈ V1, let C1(u) denote the set of all cycles in G1 containing u and

let P1(u) denote a maximal set of edge-disjoint one-way infinite paths in G1, each

emanating from u such that every edge of each of the paths in P1(u) is a bridge. Let

S1 :=
⋃

u∈V1

{{
⋃

C∈C1(u)

C} ∪ {
⋃

P∈P1(u)

P}}.

Let

ψ1(u) := {
⋃

C∈C1(u)

C} ∪ {
⋃

P∈P1(u)

P},

with u as the end-vertex of each cycle and path in ψ1(u). Further, let ψ1 :=⋃
u∈V1

ψ1(u).

Now consider the subgraph G2 = G1−E(S1). Let V2 := {v ∈ V (S1) : degG2
(v) > 0}.

We can iterate the process and obtain a sequence of sets of one-way infinite paths and

cycles S0, S1, S2, S3, . . . in such a way that

1. S0 = {P0}

2. Each edge in Si belongs to a cycle or a one-way infinite path emanating from a

vertex in V (Si−1).

3.
⋃

iE(Si) = E(G).

4. E(Si) ∩ E(Sj) = φ, for i 6= j.

Let ψ = ψ0 ∪ ψ1 ∪ ψ2 ∪ · · · . Then by the construction, ψ is a graphoidal cover of G

and each ψ-edge is either a one-way infinite path or a cycle. Thus, no two distinct

vertices in G are ψ-adjacent and therefore G is ψ-independent.

Case II. G has no pendant vertex.

We divide this case further into two subcases as follows.

Subcase I. For any cycle C in G and for any one-way infinite free path P in G

satisfying V (P ) ∩ V (C) 6= φ, V (P ) ∩ V (C) is an end-vertex of P in G.

We begin with any arbitrary cycle C0 in G. Let u0 ∈ V (C0) and let ψ0 = {C0} with
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u0 as the end-vertex of C0. We can continue as in Case I by replacing P0 by C0 and

obtain a graphoidal cover ψ of G such that G is ψ-independent.

Subcase II. G has a cycle C0 and a one-way infinite free path Q0 such that V (Q0)∩
V (C0) 6= φ and the unique vertex V (Q0) ∩ V (C0) is not the end-vertex of Q0.

Because of condition (2), there can be at most one such one-way infinite free path Q0

having a vertex in common with C0 such that V (Q0)∩V (C0) is not the end-vertex of

Q0. Let z be the end-vertex of Q0 in G. Let ψ0 = {Q0} with z0 as the end-vertex of

Q0. Consider the subgraph G1 = G−E(Q0). Let V1 := {v ∈ V (Q0) : degG1
(v) > 0}.

If V1 = φ, then ψ = ψ0 is the desired graphoidal cover of G. Now suppose V1 6= φ.

Since G does not contain any pendant vertex, z0 ∈ V1. For u ∈ V1, each edge e in

E(G1), incident with u, lies either on a cycle in G1 or on a one-way infinite path

emanating from u in G1 such that each edge of the path is a bridge in G1. For each

u ∈ V1, let C1(u) denote the set of all cycles in G1 containing u and P1(u) denote a

maximal set of edge-disjoint one-way infinite paths in G1, each emanating from u such

that every edge of each path in P1(u) is a bridge. Since Q0 is a free path, maximality of

Q0 implies that P1(z0) is empty. Let S1 :=
⋃

u∈V1−{z}{{
⋃

C∈C1(u) C}∪{
⋃

P∈P1(u)
P}}

and S′1 :=
⋃

C∈C1(z0) C. For u ∈ V1, (u 6= z0) let,

ψ1(u) := {
⋃

C∈C1(u)

C} ∪ {
⋃

P∈P1(u)

P},

with u as the end-vertex of each cycle and each one-way infinite path in ψ1(u).

Consider the subgraph G2 := G1 − (E(S1) ∪ E(S′1)). Let

V2 := {u ∈ V (S1) ∪ V (S′1) : degG2
(u) > 0}.

Due to condition (2), for u ∈ V2 ∩ V (S1), each edge e in E(G2) incident with u lies

either on a cycle in G2 or on a one-way infinite path in G2 emanating from u such

that each edge of the path is a bridge. Also due to condition (2), there can be at

most one vertex u∗ ∈ V2 ∩V (S′1) and at most one one-way infinite free path Q1 in G2

containing u∗ such that u∗ is not the end-vertex of Q1 in G2. Let z1 be the end-vertex

of Q1 in G2 and let C1 be the cycle in C1(z0) in G1 containing u∗. We define

ψ1(z0) :=
⋃

C∈C1(z0)

C,

with u∗ as the end-vertex of C1 and z0 as the end-vertex of all other cycles in C1(z0).

Let ψ1 =
⋃

u∈V1
ψ1(u).

Now, for each u ∈ V2, let C2(u) denote the set of all cycles in G2 containing u and let

P2(u) denote a maximal set of edge-disjoint one-way infinite paths in G2 − E(Q1),

each emanating from u such that every edge of each path in P2(u) is a bridge. Let

S2 := {Q1}
⋃

u∈V2

{{
⋃

C∈C2(u)

C} ∪ {
⋃

P∈P2(u)

P}}.
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Let ψ2(u) := {
⋃

C∈C2(u) C} ∪ {
⋃

P∈P2(u)
P}, u 6= u∗, and

ψ2(u∗) := {Q1}
⋃
{

⋃
P∈P2(u∗)

P}
⋃
{

⋃
C∈C2(u∗)

C}.

For each u ∈ V2(u 6= u∗), u is the end-vertex of each path and cycle in ψ2(u) while

in ψ2(u) the end-vertex of Q1 is z1 and the end-vertex of all other paths and cycles

is u∗. Let ψ2 :=
⋃

u∈V2
ψ2(u). Now, consider the subgraph G3 = G2 − S2. We can

iterate the process and obtain a sequence of sets of paths and cycles S0, S1, . . . such

that

1. S0 = {Q0}

2. Each path and cycle in Si has a vertex in common with some edge or cycle in

Si−1.

3. For each i, S2i has at most one one-way infinite free path not having its end-

vertex in S2i−1.

4.
⋃

iE(Si) = E(G).

5. E(Si) ∩ E(Sj) = φ, for i 6= j.

Let ψ =
⋃

i ψi. Then by construction, ψ is a graphoidal cover of G and each ψ-edge

is either a one-way infinite path or a cycle. Thus, no two distinct vertices in G are

ψ-adjacent and hence G is graphoidally independent.

An example of a cactus which fails condition 2 of the above theorem is exhibited in

Figure 3(ii) and therefore is not a graphoidally independent graph.

Corollary 1. Every 2-edge connected infinite cactus is graphoidally independent.

Proof. All blocks of a 2-edge connected cactus G are cycles. Therefore conditions

(1) and (2) of the Theorem 5 hold trivially and hence G is a graphoidally independent

graph.

Corollary 2. A one-way hyperchain, H = (x1, P1, x2, P2, ...), is graphoidally independent
if and only if for each i, for which Pi is a one-way infinite path, xi is the end-vertex of Pi

in H.

Proof. Since every hyperchain is a cactus, the result follows from Theorem 5.
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3. Concluding Remarks

In this paper we focused on the problem of characterizing graphoidally independent

infinite graphs i.e., the graphs which possess a graphoidal cover ψ such that no two

distinct vertices in V (G) are ψ-adjacent. We observed that the two necessary con-

ditions: (i) G has at most one pendant vertex, and (ii) all free paths in G are of

infinite length, are sufficient as well for infinite trees and infinite unicyclic graphs to

be graphoidally independent. However, we noticed that the conditions are not suf-

ficient in case of infinite cactus and we proceeded to find additional conditions on

infinite cactus to be graphoidally independent and established the complete charac-

terization of graphoidally independent infinite cactus. So, the problem remains open

for arbitrary infinite graphs. This raises the following problem:

Problem 1. Characterize graphoidally independent infinite graphs in general.

Conflict of Interest: The authors declare that they have no conflict of interest.

Data Availability Statement: Data sharing is not applicable to this article as no

datasets were generated or analyzed during the current study.

References

[1] B.D. Acharya and P. Gupta, Domination in graphoidal covers of a graph, Discrete

Math. 206 (1999), no. 1-3, 3–33.

https://doi.org/10.1016/S0012-365X(98)00389-6.

[2] , Further results on domination in graphoidally covered graphs, AKCE Int.

J. Graphs. Combin. 4 (2007), no. 2, 127–138.

[3] B.D. Acharya, P. Gupta, and D. Jain, On graphs whose graphoidal domination

number is one, AKCE Int. J. Graphs. Combin. 12 (2015), no. 2-3, 133–140.

https://doi.org/10.1016/j.akcej.2015.11.007.

[4] B.D. Acharya and E. Sampathkumar, Graphoidal covers and graphoidal covering

number of a graph, Indian J. Pure Appl. Math. 18 (1987), no. 10, 882–890.

[5] S. Arumugam, B.D. Acharya, and E. Sampathkumar, Graphoidal covers of a

graph: a creative review, Proceedings of the National workshop on Graph Theory

and its Applications, Manonmaniam Sundaranar University, Tirunelveli, Eds.

S. Arumugam, B.D. Acharya and E. Sampathkumar, Tata McGraw Hill, 1996,

pp. 1–28.

[6] S. Arumugam, P. Gupta, and R. Singh, Bounds on graphoidal length of a graph,

Electro. Notes Discrete Math. 53 (2016), 113–122.

https://doi.org/10.1016/j.endm.2016.05.010.



D. Jain, P. Gupta 423

[7] S. Arumugam and C. Pakkiam, Graphoidal bipartite graphs, Graphs Combin. 10

(1994), no. 2, 305–310.

https://doi.org/10.1007/BF02986680.

[8] , Graphs with unique minimum graphoidal cover, Indian J. Pure Appl.

Math. 25 (1994), no. 11, 1147–1147.

[9] S. Arumugam, I. Rajasingh, and P.R.L. Pushpam, Graphs whose acyclic

graphoidal covering number is one less than its maximum degree, Discrete Math.

240 (2001), no. 1-3, 231–237.

https://doi.org/10.1016/S0012-365X(00)00350-2.

[10] , A note on the graphoidal covering number of a graph, J. Discrete Math.

Sci. Cryptogr. 5 (2002), no. 2, 145–150.

[11] S. Arumugam and J.S. Suseela, Acyclic graphoidal covers and path partitions in

a graph, Discrete Math. 190 (1998), no. 1-3, 67–77.

https://doi.org/10.1016/S0012-365X(98)00032-6.

[12] P. Gupta, M. Agarwal, and R. Singh, On graphoidal length of a tree in terms of

its diameter, AKCE Int. J. Graphs Comb. 17 (2020), no. 3, 703–707.

https://doi.org/10.1016/j.akcej.2019.12.012.

[13] P. Gupta and D. Jain, Graphoidally independent infinite graphs, AKCE Int. J.

Graphs Comb. 18 (2021), no. 2, 95–100.

https://doi.org/10.1080/09728600.2021.1953946.

[14] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ. ,38, Providence, 1962.

[15] C. Pakkiam and S. Arumugam, On the graphoidal covering number of a graph,

Indian J. Pure Appl. Math. 20 (1989), no. 4, 330–333.

[16] I. Sahul Hamid and A. Anitha, On label graphoidal covering number-I, Trans.

Comb. 1 (2012), no. 4, 25–33.

https://doi.org/10.22108/toc.2012.2271.

[17] D.B. West, Introduction to Graph Theory, Prentice hall Upper Saddle River,

2001.


	Introduction
	Main Theorem
	Concluding Remarks
	References

