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1. Introduction

In this study, all graphs considered are assumed to be finite, simple and connected.

For a graph X, V (X), E(X), A(X) and Aut(X) denote its vertex set, edge set, arc

set, and full automorphism group, respectively. For u, v ∈ V (X), {u, v} denotes the

edge incident to u and v in X, and NX(u) denotes the neighborhood of u in X, that

is, the set of vertices adjacent to u in X.

A graph X̃ is called a covering of a graph X with projection p : X̃ → X if there is

a surjection p : V (X̃)→ V (X) such that p|N
X̃

(ṽ) : N X̃(ṽ)→ NX(v) is a bijection for

any vertex v ∈ V (X) and ṽ ∈ p−1(v). A permutation group G on a set Ω is said to

be semiregular if the stabilizer Gv of v in G is trivial for each v ∈ Ω, and is regular

if G is transitive, and semiregular. Let K be a subgroup of Aut(X) such that K is

intransitive on V (X). The quotient graph X/K induced by K is defined as the graph
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such that the set Ω of K-orbits in V (X) is the vertex set of X/K and B, C ∈ Ω are

adjacent if and only if there exists a u ∈ B and v ∈ C such that {u, v} ∈ E(X). A

covering X̃ of X with a projection p is said to be regular (or K-covering) if there is a

subgroup K of the automorphism group Aut(X̃) such that K is semiregular on both

V (X̃) and E(X̃) and graph X is isomorphic to the quotient graph X̃/K, say by h,

and the quotient map X̃ → X̃/K is the composition ph of p and h. The group of

covering transformations CT(p) of p : X̃ → X is the group of all self equivalences of

p, that is, of all automorphisms α̃ ∈ Aut(X̃) such that p = α̃p. If X̃ is connected, K

becomes the covering transformation group.

For a graph X and a subgroup G of Aut(X), X is said to be G-vertex-transitive,

G-edge-transitive or G-arc-transitive if G is transitive on V (X), E(X) or A(X), re-

spectively, and G-arc-regular if G acts regularly on A(X). A graph X is called

vertex-transitive, edge-transitive, arc-transitive, or arc-regular if X is Aut(X)-vertex-

transitive, Aut(X)-edge-transitive, Aut(X)-arc-transitive, or Aut(X)-arc-regular, re-

spectively. Let X be a tetravalent G-half-arc-transitive graph for a subgroup G of

Aut(X), that is G acts transitively on V (X), E(X), but not A(X). Then under the

natural action of G on V (X)× V (X), G has two orbits on the arc set A(X), say A1

and A2, where A2 = {(v, u)|(u, v) ∈ A1}. Therefore, one may obtain two oriented

graphs with the vertex set V (X) and the arc sets A1 and A2. Assume that DG(X)

be one of the two oriented graphs. Also in the special case, if G = Aut(X) then X is

said to be 1/2-transitive or half-arc-transitive.

By Tutte [29], each connected vertex-transitive and edge-transitive graph of odd

valency is arc-transitive. So half-arc-transitive graphs of odd valency do not exist.

Bouwer [5] answered Tutte’s question about existence of half-arc-transitive graphs of

even valency. A number of authors later studied the construction of these graphs.

See, for example [1, 2, 9, 11, 14, 20–23, 30, 33, 36]. Let p be a prime. There are

no half-arc-transitive graphs of order p, p2 and 2p (see [6, 8]). Feng, Kwak, Wang

and Zhou [12] classified the connected tetravalent half-arc-transitive graphs of order

2pq for distinct odd primes p and q. The tetravalent half-arc-transitive graphs of

order p5, p4, 2p2, p3 and 2p3 are classified in [7, 13, 34, 37, 38] respectively. Wang

et al. [32] studied tetravalent half-arc-transitive graphs of order a product of three

primes. In [24], Liu studied tetravalent half-arc-transitive graphs of order p2q2 with

p, q distinct odd primes. Feng et al. [15] classified the tetravalent half-arc-transitive

graphs of order 4p. In [10] a complete classification of tetravalent half-arc-transitive

metacirculants of order 2-powers was given. In [35], a classification of all tetrava-

lent half-arc-transitive graphs of order 8p was given. In this paper, we will study

tetravalent half-arc-transitive graphs of order 12p.

2. Preliminaries

Let X be a graph and K be a finite group. By a−1 we mean the reverse arc to an arc

a. A voltage assignment (or K-voltage assignment) of X is a function ξ : A(X)→ K

with the property that ξ(a−1) = ξ(a)−1 for each arc a ∈ A(X). The values of ξ are
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called voltages, and K is the voltage group. The graph X×ξK derived from a voltage

assignment ξ : A(X)→ K has vertex set V (X)×K and edge set E(X)×K, so that

an edge (e, g) of X × K joins a vertex (u, g) to (v, ξ(a)g) for a = (u, v) ∈ A(X) and

g ∈ K, where e = {u, v}. Clearly, the derived graph X ×ξ K is a covering of X with

the first coordinate projection p : X×ξK → X, which is called the natural projection.

By defining (u, g′)g = (u, g′g) for any g ∈ K and (u, g′) ∈ V (X ×ξ K), K becomes a

subgroup of Aut(X×ξ K) which acts semiregularly on V (X×ξK). Therefore, X×ξK
can be viewed as a K-covering. For each u ∈ V (X) and {u, v} ∈ E(X), the vertex set

{(u, g)|g ∈ K} is the fibre of u and the edge set {(u, g)(v, ξ(a)g)|g ∈ K} is the fibre

of {u, v}, where a = (u, v). The group K of automorphisms of X fixing every fibre

setwise is called the covering transformation group. Conversely, each regular covering

X̃ of X with a covering transformation group K can be derived from a K-voltage

assignment. Given a spanning tree T of the graph X, a voltage assignment ξ is said

to be T -reduced if the voltages on the tree arcs are the identity. Gross and Tucker

in [18] showed that every regular covering X̃ of a graph X can be derived from a

T -reduced voltage assignment X̃ with respect to an arbitrary fixed spanning tree T

of X.

Let X̃ be a K-covering of X with a projection p. If α ∈ Aut(X) and α̃ ∈ Aut(X̃) sat-

isfy α̃p = pα, we call α̃ a lift of α, and α the projection of α̃. The lifts and projections

of such subgroups are of course subgroups in Aut(X̃) and Aut(X), respectively.

Let G be a group, and let S ⊆ G be a set of group elements such that the identity

element 1 not in S. The Cayley graph associated with (G,S) is defined as the graph

having one vertex associated with each group element, edges (g, h) whenever hg−1 in

S. The Cayley graph X is denoted by Cay(G,S). In graph theory, the lexicographic

product or (graph) composition G[H] of graphs G and H is a graph such that the

vertex set of G[H] is the cartesian product V (G)×V (H); and any two vertices (x, y)

and (v, w) are adjacent in G[H] if and only if either x is adjacent with v in G or v = x

and w is adjacent with y in H. Clearly, if G and H are arc-transitive then G[H] is

arc-transitive.

Let X be a tetravalent G-half-arc-transitive graph for some G ≤ Aut(X). Then no

element of G can interchange a pair of adjacent vertices in X. By [19], there is no

half-arc-transitive graph with less then 27 vertices. Half-arc-transitive graphs have

even valencies. An even length cycle C in X is a G-alternating cycle if every other

vertex of C is the head and every other vertex of C is the tail of its two incident

edges in DG(X). All G-alternating cycles in X have the same length. The radius of

graph is half of the length of an alternating cycle. Any two adjacent G-alternating

cycles in X intersect in the same number of vertices, called the G-attachment number

of X. The intersection of two adjacent G-alternating cycles is called a G-attachment

set. We say that X is tightly attached if the attachment number of X equal with its

radius.

Now we introduce graph X(r;m,n) and a result due to Marušič.

Suppose that m ≥ 3 be an integer, n ≥ 3 an odd integer and let r ∈ Z∗n satisfy

rm = ±1. The graph X(r;m,n) is defined to have vertex set V = {uji | i ∈ Zm, j ∈
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Zn} and edge set E = {{uji , u
j±ri
i+1 } | i ∈ Zm, j ∈ Zn}.

Proposition 1. [25, Theorem 3.4] A connected tetravalent graph X is a tightly attached
half-arc-transitive graph of odd radius n if and only if X ∼= X(r;m,n), where m ≥ 3, and
r ∈ Z∗n satisfying rm = ±1, and moreover none of the following conditions is fulfilled:
(1) r2 = ±1;
(2) (r;m,n) = (2; 3, 7);
(3) (r;m,n) = (r; 6, 7k), where k ≥ 1 is odd, (7, k) = 1, r6 = 1, and there exists a unique
solution q ∈ {r,−r, r−1,−r−1} of the equation x2 + x − 2 = 0 such that 7(q − 1) = 0 and
q ≡ 5 (mod 7).

The following is the main result of the paper tetravalent half-transitive graphs of

order 4p.

Proposition 2. [15, Theorem 3.3] Let p be a prime and X a tetravalent graph of order
4p. Then, X is half-transitive if and only if p ≡ 1 (mod 8) and X ∼= X(r; 4, p)(denote by
X(4, p) the graph X(r; 4, p)).

Now we express an observations about tetravalent half-arc-transitive graphs.

Proposition 3. [26, Lemma 3.5] Let X be a connected tetravalent G-half-arc-transitive
graph for some G ≤ Aut(X), and let ∆ be a G-attachment set of X. If |∆| ≥ 3, then the
vertex-stabilizer of v ∈ V (X) in G is of order 2.

Proposition 4. [17] A non-abelian simple group whose order has at most three prime
divisors is isomorphic to one of the following groups:

A5,A6,PSL(2, 7),PSL(2, 8),PSL(2, 17),PSL(3, 3),PSU(3, 3),PSU(4, 2),

whose orders are 22 × 3× 5, 23 × 32 × 5, 23 × 3× 7, 23 × 32 × 7, 24 × 32 × 17, 24 × 33 × 13,
25 × 33 × 7, 26 × 34 × 5, respectively.

The following result is extracted from [4, Theorem 1].

Proposition 5. Let X be a tetravalent arc-transitive graph of order 2pq where p and q
are odd and distinct primes. Then one of the following holds:
(1) X is arc-regular and appears in [40];
(2) X is isomorphic to the lexicographic product Cpq[2K1] of the cycle Cpq and the edgeless
graph on two vertices 2K1.

In the following, we describe the structure of the graphs required in this paper [[27],

[28], [39]].

The Rose Window graph R6(5, 4) is a tetravalent graph with 12 vertices. Its vertex

set is {Si, Qi|i ∈ Z6}. The graph has four kinds of edges: kind of edges: SiSi+1

(rim edges), SiQi (inspoke edges), Si+5Qi (outspoke edges) and QiQi+4 (hub edges).

|Aut(R6(5, 4))| = 48. Figure 1 shows R6(5, 4).
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A general Wreath graph W (6, 2) has 12 vertices and it is regular of valency 4.

Its vertex set is {Ei, Fi|i ∈ Z6}, where Ei = (i, 0) and Fi = (i, 1). Its edges are

{Ei, Ei+1}, {Ei, Fi+1}, {Fi, Ei+1} and {Fi, Fi+1}. |Aut(W(6, 2))| = 768. See Figure

2.

Figure 1. The Rose Window graph R6(5, 4)

Figure 2. The Wreath graph W (6, 2)

The graph C(2; p, 2) was first defined by Praeger and Xu [28, Definition 2.1 (b)].

Let p be an odd prime. The graph C(2; p, 2) has vertex set Zp×(Z2×Z2) and its edges

are defined by {(i, (x, y)), (i+ 1, (y, z))} ∈ E(C(2; p, 2)) for all i ∈ Zp and x, y, z ∈ Z2.

Aut(C(2; p, 2)) ∼= D2p n Zp
2 .

Let p ≡ 1 (mod 4), where p is a prime and w is an element of order 4 in

Z∗p. The graph CA0
4p is Cay(G, {a, a−1, aw2

b, a−w2

b}) and the graph CA1
4p is

Cay(G, {a, a−1, awb, a−wb}), where G =< a > × < b >∼= Z2p × Z2.

3. Main Results

In this section, we study all tetravalent half-arc-transitive graphs of order 12p where

p is a prime. To do this, we prove the following results.
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Lemma 1. Let X be a graph, G 6 Aut(X), N E G and X be N-regular covering of XN .
Then X is G-half-arc-transitive if and only if XN is G/N-half-arc-transitive.

Proof. Suppose that N E G and X is G-half-arc-transitive. Since X is N -regular

covering of XN , it follows that K = N and G/N 6 Aut(XN), where K is the kernel

of G acting on orbits of N . Let xN , yN be two arbitrary vertices of graph XN . By

our assumption there exits g ∈ G such that xg = y. Now (xN )Ng = (xg)N = yN . It

implies that XN is G/N -vertex-transitive. Now, suppose that {xN , yN} and {uN , vN}
are two arbitrary edges of XN . Without loss of generality, we may suppose that

{x, y} and {u, v} are two edges of X. By our assumption there exits g ∈ G such

that {x, y}g = {u, v}. Then we may assume that xg = u and yg = v. Hence

(xN )Ng = xNg = xgN = uN and (yN )Ng = yNg = ygN = vN . Then XN is G/N -

edge-transitive. Suppose to contrary that XN is G/N -arc-transitive. Let (x, y) and

(u, v) are two arcs of graph X. Now (xN , yN ) and (uN , vN ) are two arcs of graph

XN . By our assumption, there exits Ng ∈ G/N such that (xN , yN )Ng = (uN , vN ).

Therefore (xN )Ng = uN and (yN )Ng = vN . Thus xNg = uN and yNg = vN . Then

xg = un and yg = vn
′

for n, n′ ∈ N and so (x, y)g = (un, vn
′
). There exits n′′ ∈ N

such that (un, vn
′
)n
′′

= (u, v). Then (x, y)gn
′′

= (un, vn
′
)n
′′

= (u, v). Therefore X is

G-arc-transitive, a contradiction. Then XN is G/N -half-arc-transitive.

Now suppose that XN is G/N -half-arc-transitive. Thus G/N acts transitively on

V (XN ). Let u, v ∈ V (X) and uN , vN ∈ V (XN ). Then there is Ng ∈ G/N such that

(uN )Ng = vN and hence, there is n′ ∈ N such that ug = vn
′

and ug(n
′)−1

= v. Then

since g(n′)−1 ∈ G, it implies that X is vertex-transitive. For any {u, v}, {x, y} ∈
E(X), we have {uN , vN}, {xN , yN} ∈ E(XN ). Since XN is G/N -edge-transitive,

we have Ng ∈ G/N such that {uN , vN}Ng = {xN , yN} and {(uN )Ng, (vN )Ng} =

{xN , yN}. Without loss of generality, we may suppose that (uN )Ng = (u)Ng = xN

and (vN )Ng = (v)Ng = yN . There exits n′, n
′′ ∈ N such that {u, v}g = {xn′ , yn

′′

}.
Also there exits n ∈ N such that {xn′ , yn

′′

}n = {x, y}. Thus we may assume that

{u, v}gn = {x, y} and so X is G-edge-transitive. Similar to the previous, it can be

shown that if XN is not G/N -arc-transitive then X is not G-arc-transitive. Therefore

X is G-half-arc-transitive.

The following lemma is basic for the main result.

Lemma 2. Let X be a half-arc-transitive graph, p is a prime and N E Aut(X), where
N ∼= Zp. If the quotient graph XN is a Cayley graph and has the same valency with X then
X is a N-regular covering of XN and X is a Cayley graph.

Proof. Let N be a normal subgroup of A := Aut(X) and XN be the quotient graph

of X with respect to the orbits of N on V (X). Assume that K is the kernel of A acting

on V (XN ). The stabilizer Kv of v ∈ V (X) in K fixes the neighborhood of v in X. The

connectivity of X implies Kv = 1 for any v ∈ V (X) and hence Nv = 1. If N{α,β} 6= 1

then N{α,β} = N , because N ∼= Zp. Since X is connected, there is a {β, γ} ∈ E(X)

where β, γ ∈ V (X). Then we have g ∈ A such that {α, β} = {β, γ}g because X is
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an edge-transitive graph. Hence N{α,β} = N{β,γ}g = g−1N{β,γ}g = N{β,γ}. It is a

contradiction and so N{α,β} = 1. Therefore X is a Zp-regular covering of XN . Now we

prove that X is a Cayley graph. Let XN
∼= Cay(G,S), X ∼= XN×ξZp where ξ is the T -

reduced voltage assignment and G̃ is a lift of G such that α̃p = pα where p : X → XN

is regular covering projection, α ∈ Aut(XN) and α̃ ∈ A. For any (x, k), (y, k′) ∈ V (X)

where k, k′ ∈ Zp and x, y ∈ V (XN ), we have α ∈ Aut(XN) such that xα = y. For

k
′′ ∈ Zp, (x, k)α̃p = (z, k

′′
)p = z where (x, k)α̃ = (z, k

′′
). Also (x, k)pα = xα = y.

Then y = z and hence (y, k), (y, k
′′
) ∈ p−1(y). Therefore G̃ is transitive on V (X).

Now, we prove that G̃ is semiregular. Suppose that (x, k)α̃ = (x, k). Now, since G is

semiregular and α̃p = pα, it implies that x = (x, k)α̃p = (x, k)pα = xα. Then α = 1

and hence α̃p = p. Therefore α̃ ∈ CT(p) = Zp and since CT(p) is semiregular, it

follows that α̃ = 1.

By [27], all tetravalent half-arc-transitive graphs of order 12p where p ≤ 53 is a

prime, are classified. Then in the following, we may assume that p > 53.

Lemma 3. Let X be a tetravalent half-arc-transitive graph of order 12p, where p is a
prime. Then Aut(X) has a normal Sylow p-subgroup or X is Z3-regular cover of C(2; p, 2)
or C2p[2K1].

Proof. Let X be a tetravalent half-arc-transitive graph of order 12p where p is a

prime. Let A := Aut(X). Since the stabilizer Av of v ∈ V (X) is a 2-group, we

have |A| = 2m+2.3.p, for some nonegative integer m. Suppose to the contrary that

A has no normal Sylow p-subgroups. Let N be a minimal normal subgroup of A.

We claim that N is solvable. Otherwise, by Proposition 4 and since p > 53, we get

a contradiction. Then N is solvable and hence it is an elementary abelian 2-,3- or

p-group.

Case I. N is a 2-group.

Let XN be the quotient graph of X corresponding to the orbits of N on V (X). Then

|V (XN )| = 6p or 3p.

Subcase 1. |V (XN )| = 6p.

Since X is edge-transitive, XN has valency 2 or 4. Suppose that XN has valency

2. Then X ∼= C6p[2K1], which is arc-transitive. It is a contradiction. Assume

now that XN has valency 4. If XN is half-arc-transitive then by [12, Theorem 4.1],

|Aut(XN)| = 22.3.p. Let K be the kernel of A acting on V (XN ). Since K fixes each

orbit of N , the stabilizer Kv = 1 for any v ∈ V (X). Then |N | = |K|. On the

other hand A/K 6 Aut(XN). Since A/K acts transitively on V (XN ) and E(XN ),

|A| = 24p. Then 1 + np | 24. Since p > 53 then P E A, a contradiction. Now,

suppose that XN is arc-transitive. Let XN has valency 4. By Proposition 5, if XN

is arc-regular then |Aut(XN)| = 24p. By lemma 1, A/K is half-arc-transitive and

hence |A| = 24p. Then P E A because p > 53 . It is a contradiction. If XN do

not be arc-regular then by Proposition 5, Y = XN
∼= C3p[2K1] and B = Aut(Y).

|B| = 23p+1.3.p. Assume that M is a minimal normal subgroup of B. By the same

argument as in the first paragraph, M is solvable and hence it is an elementary abelian
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2-,3- or p-group. First, assume that M is a 2-group and YM is the quotient graph of

Y corresponding to the orbits of M on V (Y ). The quotient graph YM has order 3p

and valency 2 or 4. If YM has valency 4 then Mv = 1 for v ∈ V (Y ). Assume that K1

be the kernel of B acting on V (YM ). Hence |K1| = |M |. Thus B/K1 6 Aut(YM). It

is a contradiction because |Aut(YM)| = 12p by [31, Theorem 5]. If YM has valency

2 then YM ∼= C3p and Aut(YM) ∼= D6p. Since |K1| ≤ 2, we have |B| ≤ 12p. We

get a contradiction because p > 53. Now, suppose that M be a 3-group. Then

|V (YM )| = 2p. Since Mv = 1 for v ∈ V (Y ) by using [16, Theorem 1.1(4)], YM
has valency 4. By [8, Table 1], YM ∼= G(2, p, r) or G(2p, r). Then |K1| = |M |
and hence B/K1 6 Aut(YM). It is a contradiction because |Aut(YM)| = 2p+1.p or

8p and p > 53. Let M be a p-group. Then |YM | = 6. Since Mv ≤ M we have

|Mv| = 1. By [16, Theorem 1.1(4)], YM has valency 4. By [27], |Aut(YM)| = 48.

Hence B/K1 6 Aut(YM). It is a contradiction.

Subcase 2. |V (XN )| = 3p.

Let |V (XN )| = 3p and XN has valency 2. Then X ∼= C3p[2K1]. This leads to a

contradiction. If XN has valency 4 and it is half-arc-transitive then by [1, Theorem

2.5], |Aut(XN)| = 6p. Since XN is an edge-transitive graph, 6p | |A/K| |6p. Then

|A| = 24p and hence P E A. It is a contradiction. Suppose now that XN is arc-

transitive. By [31, Theorem 5], |Aut(XN)| = 12p. Then with the same arguments as

before, a contradiction can be obtained.

Case II. N is 3-group.

If |V (XN )| = 4p and XN has valency 2, then XN
∼= C4p and hence Aut(XN) ∼= D8p.

Since K = KvN for any v ∈ V (X) and K acts faithfully on V (X), we have K 6 S3

and hence Kv ≤ 2. Then |A| | 48p. Therefore P E A according to assumption

p > 53. This leads to a contradiction. Now let |V (XN )| = 4p and XN has valency 4.

Then XN is arc-transitive or half-arc-transitive. By [39, Table 1] and Proposition 2,

XN
∼= C(2; p, 2), C2p[2K1], CA0

4p, CA
1
4p or X(4, p). Let XN

∼= C(2; p, 2) or C2p[2K1].

Since XN has valency 4, N acts semiregularly on V (X) and so X is a Z3-regular cover

of C(2; p, 2) or C2p[2K1]. Assume that Y = XN
∼= CA0

4p or CA1
4p and B = Aut(Y).

Since |K| = |N |, we have A/K ≤ B and hence |A| ≤ 48p. Then P E A. Suppose

that Y = XN
∼= X(4, p) and B = Aut(Y). Since Y is half-arc-transitive, we have

|B| = 2m+2.p, for some nonegative integer m. Let M be a minimal normal subgroup

of B. Thus M is an elementary abelian 2- or p-group. First, assume that M be a p-

group and YM be the quotient graph of Y corresponding to the orbits of M on V (Y ).

Then |V (YM )| = 4. Since Y is an edge-transitive graph and Mv = 1 for v ∈ V (Y ), YM
has valency 4, a contradiction. Suppose that M is a 2-group. Therefore |V (YM )| = 2p

or p and YM has valency 2 or 4.

Subcase 1. |V (YM )| = 2p.

If YM has valency 2 then Y ∼= C2p[2K1], which is arc-transitive. Since Y is half-

arc-transitive, we get a contradiction. Suppose now that YM has valency 4. By [8,

Table 1], YM ∼= G(2p, 4) or G(2, p, 2). Assume that YM ∼= G(2p, 4). Since (K1)v = 1,

|B/K1| 6 8p and hence |A| ≤ 48p. It is a contradiction because p > 53. Suppose

that YM ∼= G(2, p, 2). Let Z = YM ∼= G(2, p, 2) and C = Aut(Z). Let H be a minimal
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normal subgroup of C and let ZH be the quotient graph of Z with respect to the

orbits of H. Since |C| = 2p+1.p, H is 2- or p-group. Assume that H is a 2-group.

Thus |ZH | = p and ZH has valency 2 or 4. By [6, Theorem 3], |Aut(ZH)| = 2p

or 4p. Assume that K1 be the kernel of C acting on V (ZH). If ZH has valency 4

then |K1| = |H| = 2 because |(K1)v| = 1. Then C/K1 6 16p and hence 2p+1 ≤ 8p.

We get a contradiction because p > 53. If ZH has valency 2 then |K1| ≤ 8 because

|(K1)v| ≤ 2. Thus C/K1 6 16p and hence 2p+1 ≤ 8p, a contradiction can be obtained.

Now, suppose that H is a p-group. Then |ZH | = 2 with valency 2, 4, a contradiction.

Subcase 2: |V (YM )| = p.

If YM has valency 4 then by lemma 2, Y is Z2-regular cover of YM and Y is a Cayley

graph. But by [15], X(4, p) is not a Cayley graph, a contradiction. Suppose that YM
has valency 2 and hence YM ∼= Cp. Assume that K1 is the kernel of B acting on V (YM )

and (K1)v = 1. Then B/K1 6 Aut(YM) and so |B| ≤ 8p. Therefore |A| ≤ 24p and

hence P E A because p > 53. Then (K1)v 6= 1. Let V (YM ) = {Ω0,Ω1,Ω2, ...,Ωp−1}.
The subgraph induced by any two adjacent orbits is either a cycle of length 8 or a

union of two cycles of length 4. Suppose that 〈Ωi ∪Ωi+1〉 is an 8-cycle. Thus K1 acts

faithfully on each Ωi and hence (K1)v ∼= Z2. It implies that |K1| = 8. Since M is

transitive on each Ωi and (K1)v > 1, all edges in the induced subgraph 〈Ωi ∪ Ωi+1〉
have the same direction either from Ωi to Ωi+1 or from Ωi+1 to Ωi in the oriented

graph DB(Y ). It follows that B/K1
∼= Zp and |B| ≤ 8p. Therefore |A| ≤ 24p and

hence P E A because p > 53. Assume that 〈Ωi ∪ Ωi+1〉 is a union of two 4-cycles.

Let Ωi = {u0
i , u

1
i , u

2
i , u

3
i } for any i in Zp. Then B has an automorphism α of order

p such that for any i in Zp, Ωαi = Ωi+1. Let (uji )
α = uji+1 for i in Zp and j in Z4.

Consider a 4-cycle C in the induced subgraph 〈Ω0 ∪ Ω1〉 and let n be the number

of edges of C which are in some orbit of α. Then n = 0, 1, or 2. Consequently, the

induced subgraph 〈Ω0 ∪ Ω1〉 is one of the of the following three cases.

In the Case 1, Y is disconnected, a contradiction. In the Case 2, Y ∼= C2p[2K1].

We get a contradiction because Y ∼= X(4, p). In the Case 3, Y ∼= C(2; p, 2) that

is arc-transitive. It is a contradiction because X(4, p) is a half-arc-transitive graph.

Case III. N is p-group.

Figure 3. The induced subgraph 〈Ω0 ∪ Ω1〉

If |N | = p then N is a normal Sylow p-subgroup of A as claimed.
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Theorem 1. Let X be a connected tetravalent half-arc-transitive graph of order 12p,
where p > 53 is a prime. Then one of the following statements holds:
(1) X is Z3-regular cover of C(2; p, 2).
(2) X is Z3-regular cover of C2p[2K1] and in this case X is a Cayley graph.
(3) X ∼= X(r; 12, p) such that r ∈ Z∗p satisfying r12 = ±1.
(4) X is Zp-regular cover of W (6, 2) or R6(5, 4) and in this case X is a Cayley graph.

Proof. Let X be a tetravalent half-arc-transitive graph of order 12p and hence |A| =
2m+2.3.p for some integer m ≥ 0. By Lemma 3, either P E A or X is a Z3-regular

cover of C(2; p, 2) or C2p[2K1]. If X is Z3-regular cover of C(2; p, 2) then we have Case

1. Also, if X is Z3-regular cover of C2p[2K1] then by Lemma 2, X is a Cayley graph

and we have Case 2. Now, suppose that P E A. Let XP be the quotient graph of X

corresponding to the orbits of P . Assume that K is the kernel of A acting on V (XP ).

Then V (XP ) = 12 and XP has valency 2 or 4. If XP has valency 2 then XP
∼= C12

and hence Aut(XP) ∼= D24. By Proposition 3, Av ∼= Z2 and hence |A| = 24p. The

attachment number of X is equal to its radius. So X is a tetravalent tightly attached

half-arc-transitive graph of odd radius p. By Proposition 1, X ∼= X(r; 12, p) where

r ∈ Z∗p and r12 = ±1, which is Case 3. Assume that XP has valency 4 and XP is

arc-transitive or half-arc-transitive. There is no half-arc-transitive graph of order 12.

Suppose that XP is an arc-transitive graph. By [27], W (6, 2) and R6(5, 4) are the

only two arc-transitive graphs of order 12. These graphs are Cayley graphs by [3].

Since P acts semiregular on V (X) and E(X), by Lemma 2, X is a Zp-regular cover

of XP and X is a Cayley graph, which is Case 4.
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