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Abstract: In [On extremal multiplicative Zagreb indices of trees with given domina-

tion number, Applied Mathematics and Computation 332 (2018), 338–350] Wang et al.

presented bounds on the multiplicative Zagreb indices of trees with given domination
number. We fill in the gaps in their proofs of Theorems 3.1 and 3.3 and we correct

Theorem 3.3.
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1. Introduction

Multiplicative Zagreb indices have many applications and they have been studied

especially in the past decade. Bounds on the multiplicative Zagreb indices of trees

with prescribed order were presented in [8] and [10], chemical graphs were studied in

[1] and [4], and graphs of given order and size in [3], graph operations in [7]. Bounds

on the classical Zagreb indices for trees with prescribed domination number were

studied in [2]. Zagreb indices were studied also in [5] and [6].

We denote the vertex set of a graph G by V (G). The degree dG(v) of v ∈ V (G) is the

number of edges incident with v. A tree is a connected graph containing no cycles.

∗ Corresponding Author
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A dominating set D is a subset of V (G) where each vertex not in D is a neighbour

of a vertex in D. The domination number γ(G) of G is the cardinality of a minimum

dominating set.
The first multiplicative Zagreb index of G is defined as

∏
1
(G) =

∏
v∈V (G)

(dG(v))2

and the second multiplicative Zagreb index is

∏
2
(G) =

∏
v∈V (G)

(dG(v))dG(v).

Wang, Wang and Liu [9] presented bounds on Π1(G) and Π2(G) for trees G having
domination number γ and n vertices in their Section 3. In Case 1 (proofs of Theorems
3.1 and 3.3),

f
(
γ
⌊
n−1
γ

⌋
+ γ − n+ 1

)
f(0)

and
g
(
γ
⌊
n−1
γ

⌋
+ γ − n+ 1

)
g(0)

for the functions f and g (defined in the next sections) were studied. In Case 2,

f
(
γ
⌊
n−1
γ

⌋
− n+ 1

)
f(−γ + 1)

and
g
(
γ
⌊
n−1
γ

⌋
− n+ 1

)
g(−γ + 1)

were investigated. We correct these values. Those terms play very important roles in

the proofs. Then it is necessary to compare f(−γ+1) and f(0). Similarly, we compare

g(−γ + 1) and g(0). Note that we cannot assume that f and g are monotonous on

the interval [−γ + 1, γ − 1].
We also correct Theorem 3.3 of [9] and show that

Π2(G) ≥ 24(γ−1)

(⌊
n

γ

⌋
− 1

)(⌊n
γ

⌋
−1
)(
γ−n+γ

⌊
n
γ

⌋) ⌊
n

γ

⌋⌊n
γ

⌋(
n−γ

⌊
n
γ

⌋)
.

2. First multiplicative Zagreb index

Theorem 3.1 presented in [9] says that for 1 ≤ γ ≤ n
3 , if G is a tree having domination

number γ and n vertices, then

Π1(G) ≤ 42γ−2

⌊
n− γ

γ

⌋2(2γ−n+γ⌊n−γ
γ

⌋) (⌊
n− γ

γ

⌋
+ 1

)2
(
n−γ−γ

⌊
n−γ
γ

⌋)

with the equality if and only if G is Dn,γ (which is a set of trees given in their paper).
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Let us study the proof of Theorem 3.1. The smallest dominating set in a tree G having

domination number γ and n vertices is denoted by D. We define D = V (G) \D. We

use l for the number of edges uv where u ∈ D and v ∈ D, k is the number of edges

between vertices in D and p is the number of edges between vertices in D. Every tree

has n− 1 edges, so we obtain k + l + p = n− 1. Since |D| = n− γ and every vertex

of D is joined to at least one vertex of D, we get l ≥ n− γ. Since k + l + p = n− 1,

we have k + p ≤ γ − 1 and consequently,

−γ + 1 ≤ k − p ≤ γ − 1.

In [9] it was shown that

Π1(G) ≤ f(k − p) = (q + 1)2(n−1+(k−p)−γq)q2(1−n+γ−(k−p)+γq)22(γ−1+p−k)

= (q + 1)2(k−p)q−2(k−p)2−2(k−p)

(q + 1)2(n−1−γq)q2(1−n+γ+γq)22(γ−1),

where q =
⌊
n−1+k−p

γ

⌋
≥ 2.

We need to obtain the largest value of f(k − p). One cannot assume that

f(k − p) =

(
1/2

q/(q + 1)

)2(k−p)
(q + 1)2(n−1−γq)q2(1−n+γ+γq)22(γ−1)

is a decreasing function for −γ + 1 ≤ k − p ≤ γ − 1, because f(k − p) contains

(q + 1)2(n−1−γq)q2(1−n+γ+γq) and we have q =
⌊
n−1+k−p

γ

⌋
. So q contains k − p.

Since γ ≤ n
3 and n ≥ 3,

c =

⌊
n− 1

γ

⌋
≥
⌊
n− 1
n
3

⌋
=

⌊
3 −

3

n

⌋
= 2.

We often use c instead of
⌊
n−1
γ

⌋
in computations below. Let us consider two cases.

Case 1. 0 ≤ k − p ≤ γ − 1.

If k − p = γ
⌊
n−1
γ

⌋
+ γ − n+ 1, then n−1+k−p

γ =
⌊
n−1
γ

⌋
+ 1 which gives

q =

⌊
n− 1 + k − p

γ

⌋
=

⌊
n− 1

γ

⌋
for 0 ≤ k − p < γ

⌊
n− 1

γ

⌋
+ γ − n+ 1 (1)

and

q =

⌊
n− 1 + k − p

γ

⌋
=

⌊
n− 1

γ

⌋
+ 1

for

γ

⌊
n− 1

γ

⌋
+ γ − n+ 1 ≤ k − p ≤ γ − 1. (2)
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Since 0 < q+1
2q = 1/2

q/(q+1) < 1, we have
(

1/2
q/(q+1)

)2t1
>
(

1/2
q/(q+1)

)2t2
, where t1 < t2.

So, we have decreasing f(k− p) on the interval presented in (1), so f(k− p) is largest

for k−p = 0. Similarly, if k−p belongs to the interval presented in (2), then f(k−p)
is largest for k − p = γ

⌊
n−1
γ

⌋
+ γ − n+ 1 = γc+ γ − n+ 1 = z.

Let us compare f(z) and f(0) to get the largest value of f(k−p) for 0 ≤ k−p ≤ γ−1.
We have

f(z) = (c+ 2)2z(c+ 1)−2z2−2z

(c+ 2)2(n−1−γ(c+1))(c+ 1)2(1−n+γ+γ(c+1))22(γ−1)

= (c+ 2)0(c+ 1)2γ2−2z22(γ−1)

and
f(0) = (c+ 1)2(n−1−γc)c2(1−n+γ+γc)22(γ−1).

Then
f(z)

f(0)
=

(c+ 1)2γ2−2z22(γ−1)

(c+ 1)2(n−1−γc)c2(1−n+γ+γc)22(γ−1)
=

(c+ 1)2z

c2z22z
=

(
c+ 1

2c

)2z

< 1

for every c ≥ 2 since 0 < c+1
2c < 1 and 2z > 0. Thus f(z) < f(0).

Case 2. −γ + 1 ≤ k − p ≤ 0.

If k − p = γ
⌊
n−1
γ

⌋
− n+ 1, then n−1+k−p

γ =
⌊
n−1
γ

⌋
which gives

q =

⌊
n− 1 + k − p

γ

⌋
=

⌊
n− 1

γ

⌋
for γ

⌊
n− 1

γ

⌋
− n+ 1 ≤ k − p ≤ 0 (3)

and

q =

⌊
n− 1 + k − p

γ

⌋
=

⌊
n− 1

γ

⌋
− 1

for

− γ + 1 ≤ k − p < γ

⌊
n− 1

γ

⌋
− n+ 1. (4)

Again, f(k − p) is decreasing on the interval presented in (3), so f(k − p) is largest

for k − p = γ
⌊
n−1
γ

⌋
− n+ 1 = γc− n+ 1. Similarly, if k − p belongs to the interval

presented in (4), then f(k − p) is largest for k − p = −γ + 1.
Let us compare f(γc− n+ 1) and f(−γ + 1) to obtain the maximum of f(k − p) for
−γ + 1 ≤ k − p ≤ 0. Note that if n = tγ (n is a multiple of γ), then the interval

presented in (4) is an empty set; since γ
⌊
n−1
γ

⌋
− n+ 1 = γ(t− 1)− tγ + 1 = −γ + 1.

Thus in that case f(γc − n + 1) = f(−γ + 1) is the unique maximum. So we can
assume that n is not a multiple of γ. We have

f(γc− n+ 1) = (c+ 1)2(n−1+(γc−n+1)−γc)c2(1−n+γ−(γc−n+1)+γc)

22(γ−1−(γc−n+1))

= (c+ 1)0c2γ22(n−γ(c−1)−2)
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and

f(−γ + 1) = c2(n−1−γ+1−γ(c−1))(c− 1)2(1−n+γ+(γ−1)+γ(c−1))22(γ−1+γ−1)

= c2(n−γc)(c− 1)2(γ(c+1)−n)22(2γ−2). (5)

Then

f(γc− n+ 1)

f(−γ + 1)
=

c2γ22(n−γ(c−1)−2)

c2(n−γc)(c− 1)2(γ(c+1)−n)22(2γ−2)

=
c2(γc+γ−n)

(c− 1)2(γc+γ−n)22(γc+γ−n)
=

(
c

2(c− 1)

)2(γc+γ−n)
< 1

for each c ≥ 3 since 0 < c
2(c−1) < 1 and γc+ γ − n = γ

⌊
n−1
γ

⌋
+ γ − n > γ

(
n−γ
γ

)
+

γ − n = 0 (note that
⌊
n−1
γ

⌋
> n−γ

γ if n is not a multiple of γ). Thus f(γc− n+ 1) <

f(−γ + 1).

If c = 2, then the interval presented in (4) is an empty set, therefore the solution is

trivial.

So f(−γ + 1) is the largest value of f(k − p) if −γ + 1 ≤ k − p ≤ 0, and f(0) is the
maximum value if 0 ≤ k− p ≤ γ − 1. It remains to compare f(−γ + 1) and f(0). We
have

f(0)

f(−γ + 1)
=

(c+ 1)2(n−1−γc)c2(1−n+γ+γc)22(γ−1)

c2(n−γc)(c− 1)2(γ(c+1)−n)22(2γ−2)

=
(c+ 1)2(n−1−γc)c2(γc+γ−n)

c2(n−1−γc)(c− 1)2(γc+γ−n)22(γ−1)

=

(
c+ 1

c

)2(n−1−γc) ( c

c− 1

)2(γc+γ−n) 1

22(n−1−γc)22(γc+γ−n)

=

(
c+ 1

2c

)2(n−1−γc) ( c

2(c− 1)

)2(γc+γ−n)
.

If n−1 is not divisible by γ, then c =
⌊
n−1
γ

⌋
< n−1

γ , which implies that 2(n−1−γc) >

2
(
n− 1− γ

(
n−1
γ

))
= 0. Since 0 < c+1

2c < 1, we obtain

0 <

(
c+ 1

2c

)2(n−1−γc)
< 1.

We have 0 < c
2(c−1) ≤ 1 and γc+ γ − n = γ

⌊
n−1
γ

⌋
+ γ − n ≥ γ

(
n−γ
γ

)
+ γ − n = 0,

therefore

0 <

(
c

2(c− 1)

)2(γc+γ−n)
≤ 1.

Thus
f(0)

f(−γ + 1)
=

(
c+ 1

2c

)2(n−1−γc) ( c

2(c− 1)

)2(γc+γ−n)
< 1
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and f(0) < f(−γ + 1).

If n− 1 is divisible by γ, then c =
⌊
n−1
γ

⌋
= n−1

γ , which implies that 2(n− 1−γc) = 0

and (
c+ 1

2c

)2(n−1−γc)
= 1.

We obtain γc+ γ − n = γ
(
n−1
γ

)
+ γ − n = γ − 1 > 0 for γ > 1 (note that if γ = 1,

then obviously f(−γ + 1) = f(0) is the unique maximum). We have c = n−1
γ ≥ 3

(otherwise if n−1
γ = 2, then n = 2γ+ 1 which in combination with γ ≤ n

3 implies that

n = 3 and γ = 1, a trivial case). Therefore 0 < c
2(c−1) < 1 and

0 <

(
c

2(c− 1)

)2(γc+γ−n)
< 1.

Thus
f(0)

f(−γ + 1)
=

(
c+ 1

2c

)2(n−1−γc) ( c

2(c− 1)

)2(γc+γ−n)
< 1

and f(0) < f(−γ+1) which implies that f(−γ+1) is the maximum value of f(k−p)
for −γ + 1 ≤ k − p ≤ γ − 1. So, from (5) we have

Π1(G) ≤ f(−γ + 1)

=

⌊
n− 1

γ

⌋2(n−γ⌊n−1
γ

⌋) (⌊
n− 1

γ

⌋
− 1

)2
(
γ
⌊
n−1
γ

⌋
+γ−n

)
24(γ−1). (6)

In [9] the set of extremal trees was presented and it was shown that

f(−γ + 1) = 42γ−2

⌊
n− γ

γ

⌋2(2γ−n+γ⌊n−γ
γ

⌋)(⌊
n− γ

γ

⌋
+ 1

)2
(
n−γ−γ

⌊
n−γ
γ

⌋)

which can be simplified as

24(γ−1)

(⌊
n

γ

⌋
− 1

)2
(
γ−n+γ

⌊
n
γ

⌋) ⌊
n

γ

⌋2(n−γ⌊n
γ

⌋)
(7)

since
⌊
n−γ
γ

⌋
=
⌊
n
γ

⌋
− 1. It is easy to check that (6) is equal to (7), hence the proof

is complete now.

3. Second multiplicative Zagreb index

Theorem 3.3 stated in [9] says that for 1 ≤ γ ≤ n
3 , if G is a tree having domination

number γ and n vertices, then

Π2(G) ≥ 42γ−2

⌊
n− γ

γ

⌋⌊n−γ
γ

⌋(
2γ−n+γ

⌊
n−γ
γ

⌋)

(⌊
n− γ

γ

⌋
+ 1

)⌊n−γ
γ

⌋(
n−γ−γ

⌊
n−γ
γ

⌋)
,
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with the equality if and only if G is Dn,γ . Let us note that the correct sharp bound
is

Π2(G) ≥ 42γ−2

⌊
n− γ

γ

⌋⌊n−γ
γ

⌋(
2γ−n+γ

⌊
n−γ
γ

⌋)

(⌊
n− γ

γ

⌋
+ 1

)(⌊n−γ
γ

⌋
+1
)(
n−γ−γ

⌊
n−γ
γ

⌋)

which can be simplified as

24(γ−1)

(⌊
n

γ

⌋
− 1

)(⌊n
γ

⌋
−1
)(
γ−n+γ

⌊
n
γ

⌋) ⌊
n

γ

⌋⌊n
γ

⌋(
n−γ

⌊
n
γ

⌋)
(8)

since
⌊
n−γ
γ

⌋
=
⌊
n
γ

⌋
− 1.

We study the proof of Theorem 3.3. Again, D is a minimum dominating set in a tree
G having domination number γ and n vertices. D = V (G) \ D and the number of
edges uv with u ∈ D and v ∈ D is l. Let k and p be the number of edges between
vertices in D and between vertices in D, respectively. We have

−γ + 1 ≤ k − p ≤ γ − 1.

In [9] it was shown that

Π2(G) ≥ g(k − p) = (q + 1)(q+1)(n−1+(k−p)−γq)

qq(1−n+γ−(k−p)+γq)22(γ−1+p−k)

= (q + 1)(q+1)(k−p)q−q(k−p)2−2(k−p)

(q + 1)(q+1)(n−1−γq)qq(1−n+γ+γq)22(γ−1),

where q =
⌊
n−1+k−p

γ

⌋
≥ 2.

We need to obtain the minimum value of g(k − p). One cannot assume that

g(k − p) =

(
11/22

qq/(q + 1)q+1

)k−p
(q + 1)(q+1)(n−1−γq)qq(1−n+γ+γq)22(γ−1)

is increasing for −γ + 1 ≤ k − p ≤ γ − 1, because g(k − p) contains (q +

1)(q+1)(n−1−γq)qq(1−n+γ+γq) and we have q =
⌊
n−1+k−p

γ

⌋
. So q contains k − p. Let

c =
⌊
n−1
γ

⌋
.

Case 1. 0 ≤ k − p ≤ γ − 1.

Since 1/22

qq/(q+1)q+1 = (q+1)q+1

22qq > 1, we get
(

1/22

qq/(q+1)q+1

)t1
<
(

1/22

qq/(q+1)q+1

)t2
, where

t1 < t2. So, we have increasing g(k − p) on the interval presented in (1), so g(k − p)
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is minimum if k − p = 0. Similarly, if k − p belongs to the interval presented in (2),

then g(k − p) is minimum for k − p = γ
⌊
n−1
γ

⌋
+ γ − n+ 1 = γc+ γ − n+ 1 = z.

Let us compare g(z) and g(0) to get the minimum for g(k− p) for 0 ≤ k− p ≤ γ − 1.
We have

g(z) = (c+ 2)(c+2)z(c+ 1)−(c+1)z2−2z

(c+ 2)(c+2)(n−1−γ(c+1))(c+ 1)(c+1)(1−n+γ+γ(c+1))22(γ−1)

= (c+ 2)0(c+ 1)(c+1)γ2−2z22(γ−1)

and
g(0) = (c+ 1)(c+1)(n−1−γc)cc(1−n+γ+γc)22(γ−1).

Then

g(z)

g(0)
=

(c+ 1)(c+1)γ2−2z22(γ−1)

(c+ 1)(c+1)(n−1−γc)cc(1−n+γ+γc)22(γ−1)

=
(c+ 1)(c+1)z

ccz22z
=

(
(c+ 1)c+1

22cc

)z
> 1

for every c ≥ 2 since (c+1)c+1

22cc > 1. Thus g(z) > g(0).

Case 2. −γ + 1 ≤ k − p ≤ 0.

We have increasing g(k−p) on the interval presented in (3), so g(k−p) is the smallest

for k − p = γ
⌊
n−1
γ

⌋
− n+ 1 = γc− n+ 1. Similarly, if k − p belongs to the interval

presented in (4), then g(k − p) is the smallest for k − p = −γ + 1.
Let us compare g(γc − n + 1) and g(−γ + 1) to get the minimum for g(k − p) for
−γ + 1 ≤ k − p ≤ 0. Note that if n = tγ (n is a multiple of γ), then the interval
presented in (4) is an empty set. In that case g(γc−n+ 1) = g(−γ+ 1) is the unique
minimum. So we can assume that n is not a multiple of γ. We have

g(γc− n+ 1) = (c+ 1)(c+1)(n−1+(γc−n+1)−γc)cc(1−n+γ−(γc−n+1)+γc)

22(γ−1−(γc−n+1))

= (c+ 1)0ccγ22(n−γ(c−1)−2)

and

g(−γ + 1) = cc(n−1−γ+1−γ(c−1))(c− 1)(c−1)(1−n+γ+(γ−1)+γ(c−1))

22(γ−1+γ−1)

= cc(n−γc)(c− 1)(c−1)(γ(c+1)−n)22(2γ−2). (9)

Then

g(γc− n+ 1)

g(−γ + 1)
=

ccγ22(n−γ(c−1)−2)

cc(n−γc)(c− 1)(c−1)(γ(c+1)−n)22(2γ−2)

=
cc(γc+γ−n)

(c− 1)(c−1)(γc+γ−n)22(γc+γ−n)

=

(
cc

22(c− 1)c−1

)γc+γ−n
> 1
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for every c ≥ 3 since cc

22(c−1)c−1 > 1 and γc+ γ − n = γ
⌊
n−1
γ

⌋
+ γ − n > γ

(
n−γ
γ

)
+

γ − n = 0. Thus g(γc− n+ 1) > g(−γ + 1).

If c = 2, then the interval presented in (4) is an empty set, therefore the solution is

trivial.

So g(−γ + 1) is the minimum for g(k − p) if −γ + 1 ≤ k − p ≤ 0, and g(0) is the
minimum value if 0 ≤ k − p ≤ γ − 1. It remains to compare g(−γ + 1) and g(0). We
have

g(0)

g(−γ + 1)
=

(c+ 1)(c+1)(n−1−γc)cc(1−n+γ+γc)22(γ−1)

cc(n−γc)(c− 1)(c−1)(γ(c+1)−n)22(2γ−2)

=
(c+ 1)(c+1)(n−1−γc)cc(γc+γ−n)

cc(n−1−γc)(c− 1)(c−1)(γc+γ−n)22(γ−1)

=

(
(c+ 1)c+1

cc

)n−1−γc (
cc

(c− 1)c−1

)γc+γ−n
1

22(n−1−γc)22(γc+γ−n)

=

(
(c+ 1)c+1

22cc

)n−1−γc (
cc

22(c− 1)c−1

)γc+γ−n
.

If n − 1 is divisible by γ, then c =
⌊
n−1
γ

⌋
< n−1

γ , which gives n − 1 − γc > n − 1 −

γ
(
n−1
γ

)
= 0. Since (c+1)c+1

22cc > 1, we obtain

(
(c+ 1)c+1

22cc

)n−1−γc
> 1.

We get cc

22(c−1)c−1 ≥ 1 and γc + γ − n = γ
⌊
n−1
γ

⌋
+ γ − n ≥ γ

(
n−γ
γ

)
+ γ − n = 0,

therefore (
cc

22(c− 1)c−1

)γc+γ−n
≥ 1.

Then
g(0)

g(−γ + 1)
=

(
(c+ 1)c+1

22cc

)n−1−γc (
cc

22(c− 1)c−1

)γc+γ−n
> 1

and g(0) > g(−γ + 1).

If n − 1 is divisible by γ, then c =
⌊
n−1
γ

⌋
= n−1

γ , which implies that n − 1 − γc = 0

and (
(c+ 1)c+1

22cc

)n−1−γc
= 1.

We obtain γc+ γ − n = γ
(
n−1
γ

)
+ γ − n = γ − 1 > 0 for γ > 1 (note that if γ = 1,

then obviously g(−γ + 1) = g(0) is the unique minimum). We have c = n−1
γ ≥ 3
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(otherwise if n−1
γ = 2, then n = 2γ+ 1 which in combination with γ ≤ n

3 implies that

n = 3 and γ = 1, a trivial case). Therefore cc

22(c−1)c−1 > 1 and

(
cc

22(c− 1)c−1

)γc+γ−n
> 1.

Thus
g(0)

g(−γ + 1)
=

(
(c+ 1)c+1

22cc

)2(n−1−γc) (
cc

22(c− 1)c−1

)γc+γ−n
> 1

and g(0) > g(−γ + 1) which implies that g(−γ + 1) is the minimum of g(k − p) for
−γ + 1 ≤ k − p ≤ γ − 1. So, from (9) we have

Π2(G) ≥ g(−γ + 1)

=

⌊
n− 1

γ

⌋⌊n−1
γ

⌋(
n−γ

⌊
n−1
γ

⌋)

(⌊
n− 1

γ

⌋
− 1

)(⌊n−1
γ

⌋
−1
)(
γ
⌊
n−1
γ

⌋
+γ−n

)
24(γ−1),

which is equal to (8), hence the proof is complete now.
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