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Abstract: We extend the notion of balance from the realm of signed and gain graphs

to conjugate skew gain graphs which are skew gain graphs where the labels on the

oriented edges get conjugated when we reverse the orientation. We characterize the
balance in a conjugate skew gain graph in several ways especially by dealing with

its adjacency matrix and the g-Laplacian matrix. We also deal with the concept of
anti-balance in conjugate skew gain graphs.
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1. Introduction

In this paper, we extend the theory of balance in signed graphs and complex unit gain

graphs to conjugate skew gain graphs, a particular class of skew gain graphs and deal

with the properties of the adjacency and the g-Laplacian matrices (the terminology

as in [8] which differs a bit from the usual Laplacian matrix) of the conjugate skew

gain graphs. We denote by C×, the set of non-zero complex numbers. The real part of

a complex number z is denoted by <(z) and imaginary part by =(z). Regarding the

basic definitions and other details of graphs, signed graphs, gain graphs and skew gain

graphs, the reader may refer, respectively, to [1, 3, 9, 10]. Note that all the underlying

graphs in this article are simple and finite. From now onwards, the notation
−→
E stands

for the collection of oriented edges such that for an edge uv ∈ E of a graph G = (V,E),

we have two oriented counterparts −→uv and −→vu in
−→
E . Let us begin with the definition

of a conjugate skew gain graph.
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Definition 1. Let G = (V,E) be a graph with some prescribed orientation for the
edges. A conjugate skew-gain graph Φ = (G,C×, ϕ) (or for brevity, a csg-graph, which we

also denote by Gϕ) is such that the conjugate skew gain function ϕ :
−→
E → C× satisfies

ϕ(−→vu) = ϕ(−→uv).

The conjugate skew gain, ϕ(C), of a cycle C : v0v1 . . . vnv0 in a csg-graph, is the

product ϕ(v0v1)ϕ(v1v2) . . . ϕ(vnv0) of the conjugate skew gains of its edges. Also,

when the underlying graph is a path Pn or a cycle Cn, we call the corresponding

structures to be conjugate skew gain path or conjugate skew gain cycle, respectively.

When a vertex v is adjacent with a vertex u, we write v ∼ u and v ∼ e denotes that

the edge e is incident with the vertex v. Also if not explicitly mentioned, the order

of the underlying graph G of a csg-graph Gϕ will be taken as n.

1.1. Adjacency matrix of conjugate skew gain graphs

The adjacency matrix A(Φ) = (aij)n of a csg-graph Φ = Gϕ is defined as the square

matrix of order n = |V (G)| where

aij =

{
ϕ(−−→vivj) if vi ∼ vj
0 otherwise

such that whenever aij 6= 0, aji = ϕ(−−→vjvi) = aij . Note that by definition, the adja-

cency matrix of a csg-graph is hermitian and hence its eigenvalues are all real numbers.

Hence by ordering these eigenvalues of A(Φ) as λ1 ≥ λ2 ≥ · · · ≥ λn. The spectral

radius ρ(A(Φ)) of A(Φ) is the maximum of the absolute value of the eigenvalues. We

denote the charactersitic polynomial of a csg-graph Φ by Ψ(Φ, x) = det(xI − A(Φ)).

We define, as usual, a subgraph of a graph as an elementary subgraph [2], if its com-

ponents consist only of K2 or cycles. In the following formulae, we take the sum over

all elementary subgraphs L ∈ Li where Li denotes the collection of all elementary

subgraphs L of order i. For i = 0, 1, we take ai(Φ) = 1, 0 respectively in order to

avoid confusion. Also the notation K(L) is used to denote the number of components

in L and C(L) denotes the number of cycles in L. Adapting similar techniques as

in [5], a Sach’s type formula for a csg-graph Φ = Gϕ can be derived as follows.

Theorem 1. If Φ = Gϕ is a conjugate skew gain graph where G = (V, E) is a graph of

order n, and if Ψ(Φ, x) =
n∑
i=0

ai(Φ)xn−i then

ai(Φ) =
∑
L∈Li

(−1)K(L)2C(L)
( ∏
K2∈L

∏
e∈K2

|ϕ(e)|2
)( ∏

C∈L

<(ϕ(C))
)
. (1)

For a vector x ∈ Cn, as usual, x ∗ denotes the conjugate transpose of the column

matrix x . Then an easy calculation proves the expression in the following lemma.
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Lemma 1. If Gϕ is a csg-graph, then

x∗A(Gϕ)x = 2
∑

e=uv∈E

<
(
ϕ(−→uv)xuxv

)
(2)

for all x ∈ Cn.

1.2. The g-Laplacian matrix of conjugate skew gain graphs

For an oriented edge ~ej = −−→vivk we take vi as the tail of that edge and vk as its head and

we write t(~ej) = vi and h(~ej) = vk. We define the absolute-degree da(v) of a vertex

v in a csg-graph Φ = Gϕ as da(v) =
∑
~e:v∼~e

|ϕ(~e)|. The definition of the g-Laplacian

matrix (adapated by making suitable changes in [8]) of a csg-graph is as follows:

Definition 2. Given a csg-graph Φ = Gϕ its g-Laplacian matrix is defined as Lg(Φ) =
Da(Φ) − A(Φ) where the diagonal matrix Da(Φ), called the abolute-degree matrix of Φ, is
diag

(
da(v)

)
.

Theorem 2. Lg(Φ) is positive semi-definite.

Proof. For any x ∈ Cn, a simple computation shows that Lg(Φ) satisfies

x ∗Lg(Φ)x =
∑
uv∈E

[
|ϕ(−→uv)|

(
|xu| − |xv|

)2

+ 2
(
|ϕ(−→uv)xuxv| − <

(
ϕ(−→uv)xuxv

))]
. (3)

Since for any complex number z, |z| − <(z) ≥ 0, we conclude from Equation (3) that

Lg(Φ) is positive semi-definite.

The incidence matrix for a csg-graph Φ (by adapting the one in [8]) can be defined

as follows:

Definition 3 ([8]). Given a csg-graph Φ = Gϕ its (oriented) incidence matrix is defined
as H(Φ) = (bij) where

bij =


|ϕ(~ej)|2 if t(~ej) = vi,

−ϕ(~ej)|ϕ(~ej)| if h(~ej) = vi,

0 otherwise.

Now we give the definition of a matrix operation for the incidence matrix H(Φ) as

follows:

H# is the transpose of the matrix obtained by replacing each column element of H as

under:

(i) |ϕ(~ej)|2 replaced by (|ϕ(~ej)|)−1 and

(ii) −ϕ(~ej)|ϕ(~ej)| replaced by −(ϕ(~ej))
−1 = − ϕ(~ej)

|ϕ(~ej)|2
.
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The following theorem suitably adapted for a csg-graph has been proved generally for

a skew gain graph in [8] and it will be used in our discussions later.

Theorem 3 ([8]). For a csg-graph Φ = Gϕ, Lg(Φ) = H(Φ)H#(Φ).

A 1-tree is a connected unicyclic graph and a 1-forest is a disjoint union of 1-trees. A

spanning subgraph of G which is a 1-forest is called as an essential spanning subgraph

of G. We denote the collection of all essential spanning subgraphs of Φ by E(Φ).The

following is the matrix tree theorem for csg-graphs which is a special case of a general

theorem in [8].

Theorem 4 ([8]). If Φ = Gϕ is a csg-graph on n vertices, then

det(Lg(Φ)) =
∑

Ψ∈E(Φ)

2N(CΨ)
∏
ψ∈Ψ

[(
|ϕ(Cψ)| − <(ϕ(Cψ))

)( ∏
~e∈E(ψ)\E(Cψ)

|ϕ(~e)|
)]

where the summation runs over all essential spanning subgraphs Ψ of Φ and ψ ∈ Ψ denotes
the component 1-trees ψ in the spanning 1-forest Ψ.

As a passing reference, note that as corollaries to the above theorem, in the case of a

csg-graph Φ = Gϕ where G is a 1-forest, then detLg(Φ) = 2N(CΦ)
∏

Ψ∈E(Φ)

(
|ϕ(CΨ)| −

<(ϕ(CΨ))
)( ∏

~e∈E(Ψ)\E(CΨ)

|ϕ(~e)|
)

where the product runs over all component 1-trees

Ψ having unique cycle CΨ and N(CΦ) is the total number of unicycles in the 1-forest

and in the case of a csg-graph with the underlying graph as a cycle C, it simply means

detLg(Φ) = 2
(
|ϕ(C)| − <(ϕ(C))

)
.

2. Notion of balance in conjugate skew gain graphs

The concept of balance in social networks, which are till now modelled only in terms

of signed or gain graphs, is discussed at length in the literature and the details about

various ways of characterizing balance in such discrete structures can be found in

various articles; for instance see [4, 9]. Many people worked on the balancing aspects

of complex unit graphs (See for example [6, 7]). Recall that a complex unit gain graph

is only a particular case of csg-graphs where they deal with the gains from the group

T = {z ∈ C : |z| = 1}. Infact, it is so as |z| = 1 implies z =
1

z
. So our attempt is to

extend balance theory by having the conjugate skew gains to the entire complex plane

sans zero, though generally, the balance theory as such cannot be easily extended to

the realm of skew gain graphs with a general involutive automorphism.

Definition 4. A csg-graph Φ = Gϕ is said to be balanced, if the conjugate skew gain
ϕ(C) =

∏
e∈E(C) ϕ(e) of every cycle C in Φ satisfies ϕ(C) = |ϕ(C)|.
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The usual balance theory in signed and complex unit gain graphs coincides with the

above one when we take ϕ(C) = 1 for every cycle C. Spectral characterization of

balance in gain graphs can be found in [4] and spectral properties of complex unit

gain graphs can be found in [6, 7].

Remark 1. Note that ϕ(C) = |ϕ(C)| ⇔ |ϕ(C)| = <(ϕ(C)) > 0⇔ ϕ(C) = |ϕ(C)|.

In the following lines, we provide basics of balance theory in csg-graphs and the

highlight is that a balanced csg-graph behaves like a positively weighted graph. We

require the definition of an important operation, called a switching in conjugate skew

gain graphs to move ahead. A function ζ : V → T ⊂ C× is called a switching function

for a csg-graph Φ = Gϕ, if it results in a csg-graph Φζ = Gϕ
ζ

where ϕζ satisfies

ϕζ(−→uv) = ζ(u)ϕ(−→uv)ζ(v).

Whether the switched graph is indeed a csg-graph or not is established in the following

result.

Lemma 2. If ζ : V → T is a switching function which switches a csg-graph Φ to Φζ ,
then ϕζ(−→vu) = ϕζ(−→uv).

Proof. We have ϕζ(−→uv) = ζ(u)ϕ(−→uv)ζ(v). Therefore,

ϕζ(−→uv) = ζ(u)ϕ(−→uv)ζ(v) = ζ(v)ϕ(−→vu)ζ(u) = ζ(v)ϕ(−→vu)ζ(u) = ϕζ(−→vu).

We call two csg-graphs Φ = Gϕ and Ψ = Gψ to be switching equivalent, if there

exists a switching function ζ : V → T such that Φ = Ψζ . Switching preserves many

features of the two csg-graphs including their eigenvalues. Corresponding to a csg-

graph Φ = Gϕ, we have a weighted graph denoted by G|ϕ| with each edge conjugate

skew gains replaced by its modulus value (Note that G|ϕ| is also a conjugate skew

gain graph). Indeed, the following is a very important result.

Lemma 3. The csg-graph Φ = Gϕ switches to G|ϕ| if and only if there exists a switching
function ζ : V → T satisfying arg(ϕ(−→uv)) = arg(ζ(u))− arg(ζ(v))± 2 kπ for every oriented
edge −→uv.

Proof. Let ζ : V → T switch the csg-graph Gϕ to G|ϕ|. By the definition this means

ϕζ(−→uv) = ζ(u)ϕ(−→uv)ζ(v)

= e−i arg(ζ(u))|ϕ(−→uv)|ei arg(ϕ(−→uv))ei arg(ζ(v))

= |ϕ(−→uv)|ei[arg(ϕ(−→uv))−arg(ζ(u))+arg(ζ(v))].
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Therefore, ϕζ(−→uv) = |ϕ(−→uv)| if and only if, arg(ϕ(−→uv)) = arg(ζ(u)) − arg(ζ(v)) ±
2 kπ.

We define such a switching function ζ in the above lemma to be a potential function

for the conjugate skew gain function ϕ.

Theorem 5. A csg-graph Gϕ is balanced if, and only if, it can be switched to G|ϕ|.

Proof. Suppose that Gϕ gets switched to G|ϕ|. By Lemma 3, there is a po-

tential function ζ for ϕ satisfying arg(ϕ(−→uv)) = arg(ζ(u)) − arg(ζ(v)) ± 2 nπ.

Note that for each edge uv in Gϕ, ϕ(−→uv) = |ϕ(−→uv)|e−i(arg(ζ(u))−arg(ζ(v))). Thus, if

Cϕk : v1
−→e1v2
−→e2v3 · · · vk−→ekv1 is a cycle in Gϕ, then

ϕ(Cϕk ) =
∏

−→e ∈
−→
E (Ck)

ϕ(−→e )

=
∏

−→e ∈
−→
E (Ck)

|ϕ(−→e )|ei arg(ϕ(−→e ))

=
[ ∏
−→uv∈
−→
E (Ck)

|ϕ(−→e )|
]
e−i

∑
(arg(ζ(u))−arg(ζ(v)))

= |ϕ(Cϕk )|

establishing the balance of Gϕ.

Conversely assume that Gϕ is balanced. Without loss of generality, we assume that

G is connected. Let T be a spanning tree and u be considered as its root vertex. If

v, w ∈ V (G), denoting Tvw to be the unique path in T from v to w, define ζ : V (G)→
T by ζ(v) = ϕ(Tvu)/|ϕ(Tvu)| and ζ(u) = 1, it can be verified that ϕζ(−→e ) = |ϕ(−→e )|
for e /∈ E(T ) and for e /∈ E(T ) lying on a cycle C, ϕζ(−→e ) = |ϕ(−→e )| if C is balanced.

Thus this is the required switching function ζ which switches Gϕ to G|ϕ|.

In the following theorem and other results that follow, the matrix D(ζ) corresponding

to a switching function ζ is the diagonal matrix diag(ζ(vi)) where vi : i = 1, 2 . . . , n

are the vertices in the graph. We omit the proof of the following theorem as the two

equations therein can be verified easily with the help of the definitoin of the switching

function.

Theorem 6. If two conjugate skew gain graphs Φ1 and Φ2, having the same underlying
graph G, are switching equivalent and the corresponding switching function is ζ, then

(i) A(Φ2) = D∗(ζ)A(Φ1)D(ζ) (4)

(ii) Lg(Φ2) = D∗(ζ)Lg(Φ1)D(ζ). (5)

Now we provide a characterization of balance in a csg-graph using the eigenvalues of

its adjacency matrix.
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Theorem 7. A csg-graph Gϕ is balanced if and only if, the eigenvalues of Gϕ and G|ϕ|

conicide.

Proof. Let Gϕ be balanced. Then for every cycle C in Gϕ, ϕ(C) = |ϕ(C)| or equiva-

lently, <(ϕ(C)) = |ϕ(C)|, then from the Equation (1) in Theorem 1, the corresponding

coefficients of the characteristic polynomials of Gϕ and G|ϕ| will be identical, since

ai(G
ϕ) =

∑
L∈Li

(−1)K(L)2C(L)
( ∏
K2∈L

∏
e∈K2

|ϕ(e)|2
)( ∏

C∈L
<(ϕ(C))

)
=
∑
L∈Li

(−1)K(L)2C(L)
( ∏
K2∈L

∏
e∈K2

|ϕ(e)|2
)( ∏

C∈L
|ϕ(C)|

)
= ai(G

|ϕ|).

Thus the eigenvalues of Gϕ and G|ϕ| conicide. Conversely, assume that Gϕ is unbal-

anced. Therefore, there are unbalanced cycles in it. Let k be the smallest order of such

an unbalanced cycle C with |ϕ(C)| 6= <(ϕ(C)) or equivalently |ϕ(C)| − <(ϕ(C)) > 0

and all such elementary subgraphs of order k are cycles. Hence, comparing the coef-

ficients, we see that

ak(Gϕ)− ak(G|ϕ|) =
∑
L∈Lk

(−1)K(L)2C(L)
( ∏
C∈L

(
|ϕ(C)| − <(ϕ(C))

))
6= 0.

This in turn shows that the characteristic polynomials differ and hence they have

different eigenvalues. This completes the proof.

Lemma 4. If G is a connected graph, rank(H(Gϕ)) = n − 1 or n according as Gϕ is
balanced or not.

Proof. Suppose Gϕ is not balanced. This means there is a cycle C for which ϕ(C) 6=
|ϕ(C)|. Then concidering the square submatrix, say H1(Gϕ) of H(Gϕ), corresponding

the 1-tree containing this cycle C, it is a simple calculation to see that (by relabelling

the vertices, if required) det(H1(Gϕ)) = |ϕ(C)|
[
|ϕ(C)| −ϕ(C)

][ ∏
e/∈E(C)

|ϕ(e)|ϕ(e)
]
6=

0. Hence rank
(
H(Gϕ)

)
= n. A similar computation will provide the result in the

case of balanced Gϕ.

Theorem 8. If G is a connected graph, rank
(
Lg(G

ϕ)
)

= n− 1 or n according as Gϕ is
balanced or not.

Proof. Proof follows from Theorem 3 and Lemma 4.

Now we characterize the balance using g-Laplacian matrix.



260 Balance theory: An extension to conjugate skew gain graphs

Theorem 9. A connected csg-graph Gϕ is balanced if and only if det
(
Lg(G

ϕ)
)

= 0.

Proof. Let Gϕ be balanced. Then, as ϕ(C) = |ϕ(C)| for every cycle C in Gϕ, the

matrix tree theorem for conjugate skew graphs in Theorem 4 proves the one way impli-

cation. Conversely assume that det(Lg(G
ϕ) = 0, but Gϕ is not balanced. This gives

the existence of atleast one cycle C in Gϕ that is not balanced. i.e., ϕ(C) 6= |ϕ(C)|
for this cycle. The rank(Lg(G

ϕ)) is indeed the order of the largest square submatrix

of Lg(G
ϕ) which is non-singular. Taking the incidence matrix corresponding to the

cycle C above, using Lemma 4 and Theorem 8, we see that rank(Lg(G
ϕ)) = n and

hence a contradiction. This proves the result.

3. On some spectral aspects of conjugate skew gain graphs

Though we wish to work on various spectral bounds with respect to the adjacency

and g-Laplacian matrices of a csg-graph somewhere else in great detail, we discuss a

few aspects in this regard in the following. Recall that abolute-degree of a vertex v

is da(v) =
∑
~e:v∼~e

|ϕ(~e)| and we define ∆a as the maximum of all the absolute-degrees

of the vertices. Similarly δa is the minimum of all absolute-degrees. Also a csg-graph

is said to be absolute-degree k-regular if da(v) of each vertex v is a constant k.

Theorem 10. ρ(A(Φ)) ≤ ∆a.

Proof. Let x = (x1, x2, · · · , xn)T ∈ Cn \ {0} be the eigenvector corresponding to

λmax where |λmax| = ρ(A(Φ)) and let |xk| = max
i∈{1,2,··· ,n}

|xi|. Then Ax = λmaxx

implies |λmax||xk| ≤
( ∑
e:k∼e

|ϕ(e)|
)
|xk| = da(vk)|xk| ≤ ∆a|xk|. Therefore, |λmax| ≤

∆a as |xk| 6= 0.

Theorem 11. If Gϕ is an absolute-degree k-regular csg-graph, then λ
Lg
i = k− λi, where

λ
Lg
i are the g-Laplacian eigenvalues and λi are the adjacency eigenvalues of Gϕ.

Proof. As Gϕ is an absolute-degree k-regular, Lg(Φ) = kI − A(Φ). This gives the

required relation λ
Lg
i = k − λi between the eigenvalues of Lg(Φ) and A(Φ).

The above Theorem 11 has the following Corollary 1 which extends the result about

a cycle in a complex unit gain graph given in [7] to a conjugate skew gain cycle.
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Lemma 5 ([7]). If Ψ = (Cn,T, ϕ) is a complex unit gain cycle with ϕ(Cn) = eiθ, then
the adjacency eigenvalues and Laplacian eigenvalues of Ψ, respectively, are given by

λj(A(Ψ)) = 2 cos
(θ + 2πj

n

)
, j = 1, 2, . . . , n (6)

λj(L(Ψ)) = 2− 2 cos
(θ + 2πj

n

)
, j = 1, 2, . . . , n. (7)

Corollary 1. If Cϕn is a absolute-degree k-regular csg-gain graph with the underlying
graph as the cycle Cn and arg

(
ϕ(Cn)

)
= θ, then its adjacency and g-Laplacian spectrum,

respectively, are given by

λj(A(Cϕn )) = k cos
(θ + 2πj

n

)
, j = 1, 2, · · · , n (8)

λ
Lg
j (Cϕn ) = k − k cos

(θ + 2πj

n

)
, j = 1, 2, · · · , n. (9)

Proof. If ei for i = 1, 2, · · · n are the edges of the cycle Cn, then Cϕn is absolute-

degree k-regular only when |ϕ(ei)| = k for all the edgesei. Then, A(Cϕn ) will be

k times the adjacency matrix of the corresponding complex unit gain graphs with

unit gains earg(ϕ(ei)) as the elements in the corresponding positions. This proves the

corollary.

4. Anti-balance and its impacts

We define the negative −Φ = G−ϕ of a csg-graph Φ = Gϕ as that csg-graph, where

each conjugate skew gain in −Φ is the negative of those in Φ. Indeed, it can be easily

checked that −Φ is also a conjugate skew gain graph. A csg-graph Φ is said to be

anti-balanced if its negative −Φ is balanced.

Theorem 12. A conjugate skew gain graph Gϕ is both balanced and anti-balanced if and
only if G is bipartite.

Proof. Let Φ = Gϕ be the given csg-graph and letting ϕ1 = −ϕ, its negation is

−Φ = Gϕ1 . Let C be a cycle in G. Then ϕ1(C) = (−1)l(C)ϕ(C) where l(C) is the

length of the cylce. Now assume first that G is bipartite. As there are no odd cycles,

this implies that ϕ1(C) = ϕ(C) for every cycle C in Φ and −Φ, proving the first part.

Conversely assume that Φ is both balanced and anitblanced or in other words Φ and

−Φ are balanced. Suppose on the contrary that G is not bipartite. then there is an

odd cycle C in G. For any cylces or in particular for this cycle, ϕ1(C) = (−1)l(C)ϕ(C).

Using the condition of balance this means |ϕ1(C)| = ϕ1(C) = (−1)ϕ(C) implying that

ϕ(C) = −ϕ(C). So, ϕ(C) = 0, a contradiction.
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