On chromatic number and clique number in k-step Hamiltonian graphs

Noor A'lawiah Abd Aziz ${ }^{1, *}$, Nader Jafari Rad ${ }^{2}$, Hailiza Kamarulhaili ${ }^{3}$ and Roslan Hasni ${ }^{4}$
${ }^{1}$ School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
nooralawiah@usm.my
${ }^{2}$ Department of Mathematics, Shahed University, Tehran, Iran
n.jafarirad@gmail.com
${ }^{3}$ School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
hailiza@usm.my
${ }^{4}$ Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
hroslan@umt.edu.my

Received: 22 August 2022; Accepted: 3 November 2022
Published Online: 6 November 2022

Abstract

A graph G of order n is called k-step Hamiltonian for $k \geq 1$ if we can label the vertices of G as $v_{1}, v_{2}, \ldots, v_{n}$ such that $d\left(v_{n}, v_{1}\right)=d\left(v_{i}, v_{i+1}\right)=k$ for $i=$ $1,2, \ldots, n-1$. The (vertex) chromatic number of a graph G is the minimum number of colors needed to color the vertices of G so that no pair of adjacent vertices receive the same color. The clique number of G is the maximum cardinality of a set of pairwise adjacent vertices in G. In this paper, we study the chromatic number and the clique number in k-step Hamiltonian graphs for $k \geq 2$. We present upper bounds for the chromatic number in k-step Hamiltonian graphs and give characterizations of graphs achieving the equality of the bounds. We also present an upper bound for the clique number in k-step Hamiltonian graphs and characterize graphs achieving equality of the bound.

Keywords: Hamiltonian graph, k-step Hamiltonian graph, chromatic number, clique number

AMS Subject classification: 05C69, 05C78

[^0]
1. Introduction

Throughout this paper, $G=(V(G), E(G))$ is a simple graph with $V(G)$ as its vertex set and $E(G)$ as its edge set. The open neighborhood of a vertex $v \in V(G)$, denoted by $N_{G}(v)$ (or just $N(v)$) is the set $\{u: u v \in E(G)\}$. The degree of a vertex $v, \operatorname{deg}_{G}(v)$ (or just $\operatorname{deg}(v)$) is the number of neighbors of v in G, that is, $\operatorname{deg}(v)=\left|N_{G}(v)\right|$. We refer to $\delta(G)$ and $\Delta(G)$ as the minimum and maximum degree among all vertices of G, respectively. Also, a vertex $v \in V(G)$ is called a pendant vertex if $\operatorname{deg}(v)=1$. Let K_{n}, C_{n} and P_{n} be a complete graph, a path and a cycle with n vertices, respectively. The distance between two vertices u and v in $G, d(u, v)$, is the minimum length among all paths between u and v and the maximum distance $d(u, v)$ among two vertices u, v of G is the diameter of G and is denoted by diam (G). For a set $A \subseteq V(G), G[A]$ is the subgraph of G induced by A. A circulant graph $C_{m}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ with $0<a_{1}<a_{2}<\ldots<a_{k}<\frac{m+1}{2}$ is a graph of order m with vertices $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ such that v_{i} is adjacent to $v_{i+a_{j}}$ for all $a_{j} \in\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, where the summation $i+a_{j}$ is taken modulo m. For a graph G, the corona graph of G, $\operatorname{cor}(G)$, is the graph obtained by adding a pendant vertex to every vertex of G. For other notation and terminology not defined here, we refer to [15].

A proper vertex coloring of a graph G is an assignment of colors to the vertices of G such that every pair of adjacent vertices receives different colors. The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number of colors required in a proper vertex coloring of G. If G has a proper vertex coloring of k colors, then $\chi(G) \leq k$. The study of chromatic number of graph is an active area of research, see for example [6, 11-14]. A clique in a graph G is a set S of pairwise adjacent vertices and the number of vertices in the maximum clique is referred to as the clique number of G, denoted by $\omega(G)$.

A graph G is said to be Hamiltonian if G has a spanning cycle referred as a Hamiltonian cycle. Although the Hamiltonicity problem is a widely studied subject in graph theory, no exact characterization for the existence of the Hamiltonian cycle has been found. A good survey on the developments of Hamiltonicity problem can be found in [4]. The concept of Hamiltonicity has been extended by Lau et al. [9] to k-step Hamiltonicity as follows: For a graph G of order n, if we can arrange the vertices as $v_{1}, v_{2}, \ldots, v_{n}$ such that $d\left(v_{n}, v_{1}\right)=d\left(v_{i}, v_{i+1}\right)=k$ for $i=1,2, \ldots, n-1$ and $k \geq 1$, then we call G a k-step Hamiltonian (or just $k-\mathrm{SH}$) graph with $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ as the k-step Hamiltonian (or just $k-\mathrm{SH}$) walk of G. The k-step Hamiltonicity of some family of graphs including trees, tripartite graphs, cycles, grid graphs, torus graphs, cubic graphs and subdivision of cycles, have been studied, see [1, 2, 5, 7-10].

In this paper, we continue the study of $k-\mathrm{SH}$ graphs by proving bounds for the chromatic number and the clique number in $k-$ SH graphs, where $k \geq 2$. In Section 2 we give a proof for the fact that a $k-\mathrm{SH}$ graph has at least $2 k+1$ vertices. In

Section 3, we present upper bounds for the chromatic number in $k-\mathrm{SH}$ graphs and give characterizations of graphs achieving the equality of the bounds. In Section 4, we present an upper bound for the clique number in $k-\mathrm{SH}$ graphs and characterize graphs achieving equality of the bound. We make use of the following known results.

Theorem 1 (Brooks' Theorem). For every connected graph G other than an odd cycle or a complete graph, $\chi(G) \leq \Delta(G)$.

Theorem 2 (Chartrand et al. [3]). If G is a connected graph of order n and diameter d, then $\chi(G) \leq n-d+1$.

2. Preliminary

The following theorem has played an important role in several works on the subject of k-step Hamiltonian graphs, while the proof given in [8] does not have any argument for the bound $n \geq 2 k+1$.

Theorem 3 (Lau et al. [8]). The cycle C_{n} for $n \geq 3$ is $k-S H$ for $k \geq 2$ if and only if $n \geq 2 k+1$ and $\operatorname{gcd}(n, k)=1$.

We provide in the following a proof for the above bound.
Theorem 4. If G is a $k-S H$ graph of order n for $k \geq 1$, then $n \geq 2 k+1$.

Proof. The result is obvious if $k=1$. Thus assume that $k \geq 2$. Let G be a k-SH graph of order n, and let $W: v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ be a $k-$ SH walk in G. Thus $d\left(v_{n}, v_{1}\right)=$ $d\left(v_{i}, v_{i+1}\right)=k$ for each $i=1,2, \ldots, n-1$. Since $d\left(v_{1}, v_{2}\right)=k$, let $x_{0}, x_{1}, \ldots, x_{k}$ be a shortest path between v_{1} and v_{2}, where $x_{0}=v_{1}$ and $x_{k}=v_{2}$. Clearly each of x_{i}, $(i=1,2, \ldots, k-1)$ lies on W. We follow the walk W starting from v_{1}. We relabel the vertices x_{1}, \ldots, x_{k-1} according to their place in W. Let the relabeled vertices be $x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{k-1}}$, where $x_{j_{r}}$ is before $x_{j_{s}}$ if $r<s$. For each $r \in\{1,2, \ldots, k-1\}, x_{j_{r}}$ has two consecutive vertices on W namely $x_{j_{r}}^{\prime}$ and $x_{j_{r}}^{\prime \prime}$, and without loss of generality, assume that $x_{j_{r}}^{\prime}$ is on the left side of $x_{j_{r}}$ and $x_{j_{r}}^{\prime \prime}$ is on the right side of $x_{j_{r}}$ in W. Clearly $\left\{x_{j_{1}}^{\prime}, x_{j_{1}}^{\prime \prime}\right\} \cap\left\{v_{1}, v_{2}\right\}=\emptyset$. For each $r=2, \ldots, k-1,\left\{x_{j_{r}}^{\prime}, x_{j_{r}}^{\prime \prime}\right\} \nsubseteq\left\{v_{1}, v_{2}, x_{j_{s}}, x_{j_{s}}^{\prime}, x_{j_{s}}^{\prime \prime}\right\}$ for $s<r$. So for each $r=2, \ldots, k-1,\left\{x_{j_{r}}^{\prime}, x_{j_{r}}^{\prime \prime}\right\}-\left\{v_{1}, v_{2}, x_{j_{s}}, x_{j_{s}}^{\prime}, x_{j_{s}}^{\prime \prime}: s<r\right\} \neq \emptyset$. So $n \geq k+1+2+k-2=2 k+1$.

For the sharpness of the bound in Theorem 4, consider the graph $G=C_{2 k+1}$ for $k \geq 1$. By Theorem 3, G is $k-\mathrm{SH}$.

3. Chromatic number

We begin with the following bound.

Theorem 5. If G is a $k-S H$ graph of order n for $k \geq 2$, then $\chi(G) \leq\left\lceil\frac{n}{2}\right\rceil$. If equality holds, then $k=2$.

Proof. Let G be a $k-\mathrm{SH}$ graph of order n for $k \geq 2$. Without loss of generality, assume that $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ is a $k-$ SH walk of G. Clearly, $d\left(v_{i}, v_{i+1}\right)=d\left(v_{n}, v_{1}\right)=k$ for $i=1,2, \ldots, n-1$. We define a vertex coloring c of G as follows: If n is even, then for $i=0,1, \ldots, \frac{n}{2}-1$, we let $c\left(v_{2 i+1}\right)=c\left(v_{2 i+2}\right)=i+1$. If n is odd, then for $i=0,1, \ldots, \frac{n-1}{2}-1$, we let $c\left(v_{2 i+1}\right)=c\left(v_{2 i+2}\right)=i+1$ and $c\left(v_{n}\right)=\frac{n-1}{2}+1$. Clearly no pair of adjacent vertices receive the same color. The number of colors used in this proper vertex coloring c is $\left\lceil\frac{n}{2}\right\rceil$. Therefore, $\chi(G) \leq\left\lceil\frac{n}{2}\right\rceil$, as required.

Assume now that $\chi(G)=\left\lceil\frac{n}{2}\right\rceil$. Since G is $k-$ SH for $k \geq 2$, clearly G is connected and G is not a complete graph. If G is an odd cycle, then $\chi(G)=3$, that is, $\frac{n+1}{2}=3$. This means $G=C_{5}$. By Theorem 3, C_{5} is $2-\mathrm{SH}$. Thus assume that G is not an odd cycle. Since G is not a complete graph or an odd cycle, by Brooks' Theorem, $\chi(G) \leq \Delta(G)$. Therefore we have $\left\lceil\frac{n}{2}\right\rceil \leq \Delta(G)$. Let v be a vertex of maximum degree, that is $\operatorname{deg}(v)=\Delta(G)$ and let $A=V(G)-N[v]$.

Assume that n is even. Then, $n \leq 2 \Delta(G)$ and $|A|=n-\Delta(G)-1 \leq \Delta(G)-1$. Since G is $k-\mathrm{SH}$, there exist two vertices $y, z \in A$ such that y, v, z are consecutive vertices in a $k-$ SH walk of G. Let W be such $k-$ SH walk and $W^{\prime}=W-\{y, v, z\}$. Then it remains $\Delta(G)$ vertices from $N(v)$ in W^{\prime} and some vertices of A. Thus, clearly there exist two consecutive vertices α, β in W with $\alpha, \beta \in N(v)$. Therefore, $k=2$. The case n odd is similarly verified.

We next show that for each $n \geq 5$, there exists a graph achieving equality of the bound in Theorem 5.

Proposition 1. For each $n \geq 5$, there exists a $2-$ SH graph G of order n with $\chi(G)=\left\lceil\frac{n}{2}\right\rceil$.
Proof. If G is a graph of order $n \leq 4$, then by Theorem 4, G is not 2-SH. Thus, we consider $n \geq 5$. Let $G=G_{n}$ be a graph obtained from the complete graph K_{n}, $(n \geq 5)$ with $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ by removing the edges of the Hamiltonian cycle $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$. The graph G is connected since $K_{n}, n \geq 5$ has $\left\lfloor\frac{n-1}{2}\right\rfloor$ edgedisjoint Hamiltonian cycles. Note that for each $i=1,2, \ldots, n, v_{i}$ is adjacent to every v_{j} for $j \notin\{i+1, i-1\}$ with the summations $i+1$ and $i-1$ are taken in modulo n and so $d\left(v_{i}, v_{i+1}\right)=2$. Therefore, $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ is a $2-\mathrm{SH}$ walk of G and thus G is $2-\mathrm{SH}$. By Theorem $5, \chi(G) \leq\left\lceil\frac{n}{2}\right\rceil$.

We next prove that $\chi(G) \geq\left\lceil\frac{n}{2}\right\rceil$. For even n, clearly $\left\{v_{2 i}: 1 \leq i \leq \frac{n}{2}\right\}$ is a clique. Therefore, $\chi(G) \geq \omega(G) \geq \frac{n}{2}$. Now, we prove by induction on n that for each odd $n \geq 5, \chi(G) \geq\left\lceil\frac{n}{2}\right\rceil=\frac{n+1}{2}$. For the base step assume that $n=5$. Then $G=G_{5}=C_{5}$. Clearly, $\chi(G)=3 \geq \frac{n+1}{2}$. Assume the result holds for all odd n^{\prime} with $5 \leq n^{\prime}<n$.

Now, consider the graph $G=G_{n}$ for odd n. Let c be a proper vertex coloring of G. Since G is not a complete graph, there exist i, j such that $c\left(v_{i}\right)=c\left(v_{j}\right)$. Clearly, $j=i-1$ or $j=i+1$. Without loss of generality, we assume that $j=i+1$. Now, remove v_{i} and v_{i+1} and also the edge $v_{i-1} v_{i+2}$ to obtain G_{n-2}. Clearly, the restriction of c on G_{n-2} is a proper vertex coloring of G_{n-2}. By the induction hypothesis, we have $\left|\left\{c(v): v \in V\left(G_{n-2}\right)\right\}\right| \geq\left\lceil\frac{n-2}{2}\right\rceil=\frac{n-1}{2}$. Therefore, for the graph $G=G_{n}$, we have $|\{c(v): v \in V(G)\}| \geq 1+\left\lceil\frac{n-2}{2}\right\rceil=\frac{n+1}{2}$, as desired.

As another example of families of graphs achieving the equality in the bound in Theorem 5, consider the complete graph $K_{\frac{n}{2}}$ for even $n \geq 6$ with vertices $v_{1}, v_{2}, \ldots, v_{\frac{n}{2}}$. Let $G=\operatorname{cor}\left(K_{\frac{n}{2}}\right)$ with $V(G)=V\left(K_{\frac{n}{2}}\right) \cup\left\{u_{1}, u_{2}, \ldots, u_{\frac{n}{2}}\right\}$ such that u_{i} is adjacent to v_{i} in G for $i=1,2, \ldots, \frac{n}{2}$. Clearly, $d\left(v_{i}, u_{j}\right)=2$ for $i \neq j$. Also, it is clear that $\chi(G)=\chi\left(K_{\frac{n}{2}}\right)=\frac{n}{2}$ because we can color each vertex u_{i} for $i=1,2, \ldots, \frac{n}{2}$ with one of the color in the set $\left\{1,2, \ldots, \frac{n}{2}\right\}$ that is different from the color of v_{i}. The $2-\mathrm{SH}$ walk is then given by the sequence of vertices $v_{1}, u_{2}, v_{3}, u_{4}, \ldots, u_{\frac{n}{2}-1}, v_{\frac{n}{2}}, u_{1}, v_{2}, \ldots, v_{\frac{n}{2}-1}, u_{\frac{n}{2}}, v_{1}$ when $\frac{n}{2}$ is odd and $u_{1}, v_{2}, u_{3}, v_{4}, \ldots, u_{\frac{n}{2}-1}, v_{\frac{n}{2}}, u_{2}, v_{1}, u_{\frac{n}{2}}, v_{\frac{n}{2}-1}, \ldots, u_{4}, v_{3}, u_{1}$ when $\frac{n}{2}$ is even.

Now, we propose the following problem.
Problem 1. Characterize all 2-SH graphs G of order n with $\chi(G)=\left\lceil\frac{n}{2}\right\rceil$.
Theorem 6. There is no forbidden induced subgraph characterization for $2-$ SH graphs of order n with chromatic number $\left\lceil\frac{n}{2}\right\rceil$.

Proof. Let G be a graph of order a. The result is obvious if $a \leq 2$. Thus, assume that $a \geq 3$. Let $b=2\left\lceil\frac{a}{2}\right\rceil$. Then we form the graph $\operatorname{cor}\left(K_{b}\right)$. Identify each vertex of G with a pendant vertex of $\operatorname{cor}\left(K_{b}\right)$ to obtain a graph H of order $2 b$. Since the adding edges are between pendant vertices of $\operatorname{cor}\left(K_{b}\right)$, clearly $\chi(H)=\chi\left(\operatorname{cor}\left(K_{b}\right)\right)=b$. As before, one can easily see that the graph $\operatorname{cor}\left(K_{b}\right)$ is $2-\mathrm{SH}$ and no two pendant vertices of $\operatorname{cor}\left(K_{b}\right)$ are consecutive in the $2-\mathrm{SH}$ walk. Therefore, a $2-\mathrm{SH}$ walk in $\operatorname{cor}\left(K_{b}\right)$ is also a $2-\mathrm{SH}$ walk in H and thus H is $2-\mathrm{SH}$. Thus G is an induced subgraph of H, where H is a $2-\mathrm{SH}$ graph with $\chi(H)=\left\lceil\frac{|V(H)|}{2}\right\rceil$.

Proposition 2. The difference $\left\lceil\frac{|V(G)|}{2}\right\rceil-\chi(G)$ can be arbitrarily large in a 2-SH graph G.

Proof. Let $n \geq 7$ be an odd integer, and $r=\frac{n+1}{2}-3$. Consider the graph $G=$ $C_{2(r+3)-1}$. By Theorem 3, G is $2-\mathrm{SH}$. Then, $\left\lceil\frac{|V(G)|}{2}\right\rceil-\chi(G)=\left\lceil\frac{2(r+3)-1}{2}\right\rceil-3=$ $r=\frac{n-5}{2}$.

Theorem 7. For each $k \geq 3$, there exists a $k-S H$ graph G of order n with $\chi(G)=\left\lceil\frac{n}{k}\right\rceil$.

Proof. Let $k \geq 3$ and consider the graph $G=C_{2 k+1}$. By Theorem 3, G is $k-\mathrm{SH}$. Since G is an odd cycle of order $2 k+1$, then $\chi(G)=3=\left\lceil\frac{2 k+1}{k}\right\rceil$.
We propose the following conjecture.
Conjecture 1. If G is a $k-$ SH graph of order n for $k \geq 1$, then $\chi(G) \leq\left\lceil\frac{n}{k}\right\rceil$.

We next present another upper bound for the chromatic number in a $k-\mathrm{SH}$ graph.

Theorem 8. If G is a $k-S H$ graph of order n for $k \geq 2$, then $\chi(G) \leq n-k$, with equality if and only if $k=2$ and $G=C_{5}$.

Proof. Let G be a $k-\mathrm{SH}$ graph of order n for $k \geq 2$. Clearly, G is connected. Since G is $k-\mathrm{SH}$, we have $\operatorname{diam}(G) \geq k$ and thus, by Theorem 2 , we have $\chi(G) \leq n-k+1$. If $\chi(G)=n-k+1$, then we obtain the contradiction $2 k+1 \leq n \leq 2 k-1$ from Theorems 4 and 5. Thus $\chi(G) \leq n-k$.

We next prove the equality part. Assume that $\chi(G)=n-k$. Since G is $k-\mathrm{SH}$, it follows by Theorem 4 that $n \geq 2 k+1$. If $k \geq 3$, then by Theorem $5, \chi(G)<\left\lceil\frac{n}{2}\right\rceil$ and so $n<2 k+1$, a contradiction. Therefore, $k=2$ and thus $n \geq 5$. Now, we have $\chi(G)=n-2 \leq\left\lceil\frac{n}{2}\right\rceil$. If n is even, then $n \leq 4$, a contradiction. If n is odd, then $n \leq 5$ and thus $n=5$. Therefore, G is a $2-\mathrm{SH}$ graph of order 5 . We can easily check that $G=C_{5}$.

The converse is clear.
Let $C_{m}(1,2)$ be the circulant graph of order m. Abd Aziz et al. [1] obtained the following sufficient condition for the graph $C_{m}(1,2)$ to be $k-\mathrm{SH}$.

Theorem 9 (Abd Aziz et al. [1]). If $\operatorname{gcd}(m, 2 j-1)=1$ for $m \geq 6$ and $2 \leq j \leq$ $\left\lceil\frac{m-1}{4}\right\rceil$, then $C_{m}(1,2)$ is $j-S H$.

They then gave a construction namely B-construction that produces a $(k+1)-\mathrm{SH}$ graph from any given $k-\mathrm{SH}$ graph G. The construction is as follows:
B-Construction. Let G be a $k-\mathrm{SH}$ graph of order n for $k \geq 1$ with a given $k-$ SH walk $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$. Consider the graph $\operatorname{cor}(G)$ with the new n vertices $u_{1}, u_{2}, \ldots, u_{n}$ such that u_{i} is adjacent to v_{i} for $i=1,2, \ldots, n$. Then, the B construction produces a graph $B(G)$ from G as follows:
(i) For odd $n, B(G)=\operatorname{cor}(G)$.
(ii) For even $n, B(G)$ is obtained from $\operatorname{cor}(G)$ by the following scheme:

Step 1. For an integer $m, m \geq 6$ and $k \leq\left\lceil\frac{m-1}{4}\right\rceil-1$ with $\operatorname{gcd}(m, 2 k+1)=1$, the circulant graph $C_{m}(1,2)$ is $(k+1)-\mathrm{SH}$ by Theorem 9 . Let $C_{m}^{1}(1,2)$ and $C_{m}^{2}(1,2)$ be two copies of $C_{m}(1,2)$. Without loss of generality, assume that
$u_{1,1}, u_{1,2}, \ldots, u_{1, m}, u_{1,1}$ (respectively $\left.u_{2,1}, u_{2,2}, \ldots, u_{2, m}, u_{2,1}\right)$ is a $(k+1)-\mathrm{SH}$ walk of $C_{m}^{1}(1,2)$ (respectively $\left.C_{m}^{2}(1,2)\right)$. Note that $d\left(u_{i, j}, u_{i, j+1}\right)=k+1$ for $i=1,2$ and for $j=1,2, \ldots, m$, where the summation $j+1$ is taken in modulo m.

Step 2. Identify the vertices $u_{1,1}, u_{1, m}, u_{2,1}$ and $u_{2, m}$ to the vertices u_{n}, u_{1}, v_{n} and v_{1}, respectively.

The i-th iterated construction B of $G, B^{i}(G)$ for any $i \geq 1$ is defined recursively by $B^{1}(G)=B(G), B^{2}(G)=B(B(G))$ and $B^{i}(G)=B\left(B^{i-1}(G)\right)$ for $i \geq 2$.

Theorem 10 (Abd Aziz et al. [1]). If G is $k-S H$ for $k \geq 1$, then $B(G)$ is $(k+1)-S H$.

From the B-construction above, we can obtain the following two results.
Lemma 1. If G is a $k-S H$ graph of order n with $\chi(G) \geq 5$ and H is a graph obtained from G by B-construction, then $\chi(H)=\chi(G)$.

Proof. Let G be a k-SH graph of order n with $\chi(G) \geq 5$ and H be a graph obtained from G by applying the B-construction. If n is odd, then by the above construction, $H=B(G)=\operatorname{cor}(G)$. Clearly, $\chi(H)=\chi(G)$ because in H, we can color every vertex u_{i} for $i=1,2, \ldots, n$ with one of the color in the set $\{1,2, \ldots, \chi(G)\}$ that is not the color of v_{i}.

If n is even, then $H=B(G)$ is obtained from $\operatorname{cor}(G)$ as described above. Since the circulant graph $C_{m}(1,2)$ contains a triangle, $\chi\left(C_{m}(1,2)\right) \geq 3$ and it is not difficult to see that for $m \geq 6, \chi\left(C_{m}(1,2)\right)=3$ when $m \equiv 0(\bmod 3)$ and $\chi\left(C_{m}(1,2)\right)=4$ when $m \not \equiv 0(\bmod 3)$. Note that in $B(G)$, we have $v_{n}=u_{2,1}, u_{n}=u_{1,1}, v_{1}=u_{2, m}$ and $u_{1}=u_{1, m}$. As before, we can color $\operatorname{cor}(G)$ with $\chi(G)$ colors. Let c be this coloring. Now, we can color $C_{m}^{1}(1,2)$ and $C_{m}^{2}(1,2)$ in such a way that the vertices $u_{1,1}$ and $u_{1, m}$ receive $c\left(u_{n}\right)$ and $c\left(u_{1}\right)$, respectively, and the vertices $u_{2,1}$ and $u_{2, m}$ receive $c\left(v_{n}\right)$ and $c\left(v_{1}\right)$, respectively. Therefore, we have $\chi(H)=\chi(G)$.

Theorem 11. For each $l \geq 5$, there exists a chain of graphs $H_{2} \subseteq H_{3} \subseteq H_{4} \subseteq \ldots$ such that $\chi\left(H_{i}\right)=l$ for each $i \geq 2, H_{i}$ is $i-S H$, and $\frac{n\left(H_{i+1}\right)}{n\left(H_{i}\right)}>2$.

Proof. Let $l \geq 5$ and $H_{2}=G_{2 l}$ be the graph defined in the proof of Proposition 1. Then, we know that H_{2} is $2-\mathrm{SH}$ with $\chi\left(H_{2}\right)=l$. Now, for each $i>2$, let $H_{i}=B^{i-2}\left(H_{2}\right)$. By Theorem 10 and Lemma 1, for each $i>2, H_{i}$ is an $i-\mathrm{SH}$ graph with $\chi\left(H_{i}\right)=l$. Clearly, from the construction of H_{i} for $i \geq 2$, we have $\frac{n\left(H_{i+1}\right)}{n\left(H_{i}\right)}>2$.

Corollary 1. For each $k \geq 3$, there exists a $k-S H$ graph G such that $\chi(G)<\frac{n(G)}{2^{k-1}}$.

Figure 1. The graphs in \mathcal{F}.

4. Clique number

In this section, we present an upper bound for the clique number in a $k-\mathrm{SH}$ graph and characterize the graphs achieving the equality of the bound. Let \mathcal{F} be the family of graphs shown in Figure 1.

Theorem 12. If G is a $k-S H$ graph of order n for $k \geq 2$, then $\omega(G) \leq n-k-1$, with equality if and only if $k=2$ and $G \in \mathcal{F}$.

Proof. Let G be a $k-$ SH graph of order n for $k \geq 2$ and S be a maximum clique in G. Let v_{1} and v_{2} be two consecutive vertices on a $k-\mathrm{SH}$ walk of G and assume that $P: x_{0}, x_{1}, \ldots, x_{k-1}, x_{k}$ is a shortest path in G from v_{1} to v_{2}, where $v_{1}=x_{0}$ and $v_{2}=x_{k}$. Clearly, $\left|S \cap\left\{x_{0}, \ldots, x_{k}\right\}\right| \leq 2$, otherwise we will have a shorter v_{1}, v_{2}-path. Therefore, $\omega(G) \leq n-k+1$. Suppose that $\omega(G)=n-k+1$. Then, $\left|S \cap\left\{x_{0}, \ldots, x_{k}\right\}\right|=2$. Let $x_{i}, x_{i+1} \in S \cap\left\{x_{0}, \ldots, x_{k}\right\}$. Without loss of generality, we can assume that $x_{i} \neq v_{1}$. Then, there is no vertex at distance k from x_{i}, a contradiction. Thus, $\omega(G) \leq n-k$.

Suppose that $\omega(G)=n-k$. Clearly $1 \leq\left|S \cap\left\{x_{0}, \ldots, x_{k}\right\}\right| \leq 2$. Suppose that $\left|S \cap\left\{x_{0}, \ldots, x_{k}\right\}\right|=1$. Let $x_{i} \in S \cap\left\{x_{0}, \ldots, x_{k}\right\}$. If $x_{i}=v_{1}$, then v_{2} is the only vertex at distance k from x_{i} in G, a contradiction. Thus $x_{i} \neq v_{1}$. Similarly, $x_{i} \neq v_{2}$. But then there is no vertex at distance k from x_{i} in G, a contradiction. Next suppose that $\left|S \cap\left\{x_{0}, \ldots, x_{k}\right\}\right|=2$. Let $x_{i}, x_{i+1} \in S \cap\left\{x_{0}, \ldots, x_{k}\right\}$. Since $|S|=n-k$, clearly there exists a vertex $y \notin S \cup V(P)$. Without loss of generality, assume that $x_{i} \neq v_{1}$.

Then there exists at most one vertex at distance k from x_{i} (possibly $d\left(x_{i}, y\right)=k$), a contradiction.

We conclude that, $\omega(G) \leq n-k-1$, as desired. We next prove the equality part. Assume that $\omega(G)=n-k-1$. Let $v_{1}, v_{2}, x_{0}, x_{1}, \ldots, x_{k}$ and S be as described above.

Claim 1. $k=2$.
Proof of Claim 1. Suppose $k \geq 3$. Clearly $|S| \geq 2$. According to $\left|S \cap\left\{x_{0}, \ldots, x_{k}\right\}\right| \leq 2$, we have three possibilities.
Suppose that $\left|S \cap\left\{x_{0}, \ldots, x_{k}\right\}\right|=0$. If there exists a vertex x_{i} for $i=1,2, \ldots, k-1$ such that x_{i} is adjacent to some vertex $y \in S$, then there is no vertex at distance k from x_{i} in G, a contradiction. Therefore, every vertex x_{i} for $i=1,2, \ldots, k-1$ has no neighbor in S. But then, v_{2} is the only vertex at distance k from v_{1} in G, a contradiction.
Next suppose that $\left|S \cap\left\{x_{0}, \ldots, x_{k}\right\}\right|=1$. Let $x_{i} \in S \cap\left\{x_{0}, \ldots, x_{k}\right\}$. Since $|S|=$ $n-k-1$, there exists a vertex $y \notin S \cup V(P)$. Suppose $x_{i}=v_{1}$. If $d\left(v_{1}, y\right) \neq k$, then v_{2} is the only vertex at distance two from v_{1} in G, a contradiction. Therefore, $d\left(v_{1}, y\right)=k$ and thus y is adjacent to x_{k-1}. Clearly, y is not adjacent to $x_{0}, x_{1}, \ldots, x_{k-2}$. But now, x_{1} is at distance at most $k-1$ to other vertices of G, a contradiction. Therefore, $x_{i} \neq v_{1}$ and similarly $x_{i} \neq v_{2}$. But then, x_{i} is at distance k to at most one vertex of G (possibly $\left.d\left(x_{i}, y\right)=k\right)$, a contradiction.
Next, suppose that $\left|S \cap\left\{x_{0}, \ldots, x_{k}\right\}\right|=2$. Let $x_{i}, x_{i+1} \in S \cap\left\{x_{0}, \ldots, x_{k}\right\}$. Since $|S|=n-k-1$, there exist two vertices $y, z \notin S \cup V(P)$. Assume that $x_{i}=v_{1}$. Since G is $k-\mathrm{SH}$, there is another vertex at distance k from v_{1} different from v_{2}. Clearly, that vertex is either y or z. Without loss of generality, assume that $d\left(v_{1}, y\right)=k$. Since $k \geq 3, y$ has no neighbor in S. Also, it is clear that y is not adjacent to $x_{1}, x_{2}, \ldots, x_{k-2}$. Thus, y is adjacent to x_{k-1}. But now, x_{i+1} is at distance k to at most one vertex of G (possibly $d\left(x_{i+1}, z\right)=k$), a contradiction. Therefore, $x_{i} \neq v_{1}$. Similarly, $x_{i} \neq x_{k-1}$. Now, assume that $x_{i}=x_{1}$. Clearly $d\left(x_{i}, y\right)=d\left(x_{i}, z\right)=k$ since G is $k-\mathrm{SH}$. Again, since $k \geq 3, y$ and z have no neighbor in S. Also, y and z are not adjacent to $v_{1}, x_{1}, \ldots, x_{k-1}$. Thus, both y and z are adjacent to v_{2}. But now, v_{2} is the only vertex at distance k from v_{1}, a contradiction. Therefore, $x_{i} \neq x_{1}$. Similarly, $x_{i} \neq x_{k-2}(k \geq 4)$. Next, consider $x_{i} \neq x_{1}$ or $x_{i} \neq x_{k-2}$ $(k \geq 5)$. Again $d\left(x_{i}, y\right)=d\left(x_{i}, z\right)=k$. Clearly, y and z are adjacent to some vertex in $\left\{v_{1}, x_{1}, \ldots, x_{k-1}, v_{2}\right\}-\left\{x_{i}\right\}$. But, every $x_{i}, y-$ path and every x_{i}, z-path created by joining y and z to any of those vertices has length at most $k-1$, a contradiction. So the proof of Claim 1 is complete. \diamond

We now prove that $G \in \mathcal{F}=\left\{C_{5}, G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{6}, G_{7}\right\}$. Note that $|S|=$ $\omega(G)=n-3$. Let v_{1} and v_{2} be two consecutive vertices on a $2-$ SH walk of G and assume that $P: x_{0}, x_{1}, x_{2}$ is a shortest path in G from v_{1} to v_{2}, where $v_{1}=x_{0}$ and $v_{2}=x_{2}$. Since $k=2$, clearly $|S| \geq 2$. According to $\left|S \cap\left\{x_{0}, x_{1}, x_{2}\right\}\right| \leq 2$, we have three cases.

Case 1. $\left|S \cap\left\{x_{0}, x_{1}, x_{2}\right\}\right|=0$.

Since G is $2-\mathrm{SH}$, there exist two vertices y_{1}, y_{2} at distance two from x_{1} and clearly, $y_{1}, y_{2} \in S$. Therefore, x_{1} is not adjacent to y_{1} and also not adjacent to y_{2}. Assume that $|S| \geq 3$ and consider $y_{3} \in S$. Since v_{1}, v_{2} are consecutive vertices in the $2-\mathrm{SH}$ walk, we have at least four other vertices $x_{1}, y_{1}, y_{2}, y_{3}$ in the $2-$ SH walk of G. Clearly, two vertices in S will be consecutive in the $2-\mathrm{SH}$ walk, a contradiction. Thus, we assume that $|S|=2$. Since G is $2-\mathrm{SH}$, there exists a vertex at distance two from v_{1} different from v_{2} and clearly, that vertex is from S. Without loss of generality, let $d\left(v_{1}, y_{2}\right)=2$. Thus v_{1} is adjacent to y_{1}. Since $d\left(x_{1}, y_{2}\right)=2$ and y_{2} is not adjacent to v_{1}, clearly y_{2} is adjacent to v_{2}. If y_{1} is adjacent to v_{2}, then x_{1} is the only vertex at distance two from y_{1}, a contradiction. Therefore, y_{1} is not adjacent to v_{2}. Thus, we have $G=C_{5}$.
Case 2. $\left|S \cap\left\{x_{0}, x_{1}, x_{2}\right\}\right|=1$.
Let $x_{i} \in S \cap\left\{x_{0}, x_{1}, x_{2}\right\}$. Since $|S|=n-3$, there exists a vertex $y \notin S \cup V(P)$. If $x_{1} \in S$, then there exists at most one vertex at distance two from x_{1} in G (possibly $d\left(x_{1}, y\right)=2$), a contradiction. Therefore, $x_{1} \notin S$. Without loss of generality, assume that $x_{0} \in S$. Clearly, $d\left(x_{0}, y\right)=2$ since G is $2-\mathrm{SH}$. Now, follow the $2-\mathrm{SH}$ walk starting from x_{2}, x_{0}, y. Assume that $|S| \geq 4$ and consider $y_{1}, y_{2}, y_{3} \in S \backslash\left\{x_{0}\right\}$. The next vertex after y in the $2-$ SH walk is either x_{1} or some vertex in $S \backslash\left\{x_{0}\right\}$. Suppose the next vertex after y is x_{1}. Then the next vertex after x_{1} should be in $S \backslash\left\{x_{0}\right\}$, say y_{1}. But then the next vertex after y_{1} in the $2-$ SH walk does not exist, a contradiction. Therefore, the next vertex after y in the $2-$ SH walk is from $S \backslash\left\{x_{0}\right\}$, say y_{1}. Then the next vertex after y_{1} should be x_{1} and the next vertex after x_{1} is from $S \backslash\left\{x_{0}, y_{1}\right\}$, say y_{2}. But again there is no next vertex after y_{2} in the $2-\mathrm{SH}$ walk, a contradiction. Therefore $2 \leq|S| \leq 3$.

Assume that $|S|=2$. Let $S=\left\{x_{0}, y_{1}\right\}$. Since G is $2-$ SH, the two vertices at distance two from x_{1} are y_{1} and y. Therefore, x_{1} is not adjacent to y_{1} and also not adjacent to y. Since $d\left(x_{0}, y\right)=2, y$ is adjacent to both y_{1} and x_{2}. And since $\omega(G)=2, x_{2}$ is not adjacent to y_{1}. Thus we have $G=C_{5}$.

Next assume that $|S|=3$. Let $S=\left\{x_{0}, y_{1}, y_{2}\right\}$.
Assume that y is adjacent to x_{1}. Then, the next vertex after y in the $2-\mathrm{SH}$ walk is either y_{1} or y_{2}. Without loss of generality, assume that the next vertex after y is y_{1}. The next vertex after y_{1} should be x_{1}. Thus y_{1} is not adjacent to x_{1}. Then, the next vertex after x_{1} should be y_{2} and thus x_{1} is not adjacent to y_{2}. Now, the vertices $x_{2}, x_{0}, y, y_{1}, x_{1}, y_{2}$ are consecutive in the $2-\mathrm{SH}$ walk. Assume that y is adjacent to x_{2}. Suppose y is not adjacent to y_{2}. Since $d\left(y, y_{1}\right)=2, y_{1}$ is adjacent to x_{2}. If y_{2} is adjacent to x_{2}, then x_{0} is the only vertex at distance two from x_{2} in G, a contradiction. Therefore y_{2} is not adjacent to x_{2} and thus we have $G=G_{5}$. Suppose next y is adjacent to y_{2}. If y_{2} is adjacent to x_{2}, then x_{1} is the only vertex at distance two from y_{2} in G, a contradiction. Therefore y_{2} is not adjacent to x_{2}. If y_{1} is adjacent to x_{2}, then we have $G=G_{4}$, otherwise we have $G=G_{5}$. Assume next y is not adjacent to x_{2}. Since $d\left(y, y_{1}\right)=2, y$ is adjacent to y_{2}. If y_{2} is adjacent to x_{2}, then x_{1} is the only vertex at distance two from y_{2} in G, a contradiction. Therefore y_{2} is not adjacent to x_{2}. If y_{1} is not adjacent to x_{2}, again x_{1} is the only vertex at
distance two from y_{2} in G, a contradiction. Therefore y_{1} is adjacent to x_{2}. Thus we have $G=G_{3}$.

Next, assume that y is not adjacent to x_{1}. Then y is adjacent to at least one of y_{1} or y_{2} since $d\left(x_{0}, y\right)=2$. Without loss of generality, assume that y is adjacent to y_{2}. If x_{1} is adjacent to y_{2}, then y_{2} is at distance two to at most one vertex of G, a contradiction. Therefore, x_{1} is not adjacent to y_{2}. If y_{2} is adjacent to x_{2}, then x_{1} is the only vertex at distance two from y_{2} in G, a contradiction. Thus, y_{2} is not adjacent to x_{2}. Suppose y is adjacent to y_{1}. Then clearly y is adjacent to x_{2}, for otherwise there is no next vertex after y in the $2-\mathrm{SH}$ walk. Then, x_{1} is the next vertex after y in the $2-$ SH walk. Then, the next vertex after x_{1} is either y_{1} or y_{2}. But then the next vertex in the $2-\mathrm{SH}$ walk does not exist, a contradiction. Therefore, y is not adjacent to y_{1}. Assume that y is not adjacent to x_{2}. Then the next vertex after y in the $2-\mathrm{SH}$ walk is y_{1}. Then the next vertex after y_{1} is x_{1}. Thus y_{1} is not adjacent to x_{1}. Then the next vertex after x_{1} is y_{2}. If y_{1} is not adjacent to x_{2}, then, x_{1} is the only vertex at distance two from y_{2} in G, a contradiction. Therefore, y_{1} is adjacent to x_{2}. Thus we have $G=G_{6}$. Now, assume that y is adjacent to x_{2}. Then, the next vertex after y in the $2-\mathrm{SH}$ walk is either x_{1} or y_{1}. Suppose the next vertex after y is x_{1}. Then, the next vertex after x_{1} is either y_{1} or y_{2}. But in either case, there exists no next vertex in the $2-\mathrm{SH}$ walk, a contradiction. Therefore, the next vertex after y is y_{1}. Then, the next vertex after y_{1} must be x_{1} and so y_{1} is not adjacent to x_{1}. Then clearly the next vertex after x_{1} is y_{2}. If y_{1} is adjacent to x_{2}, then $G=G_{2}$, otherwise $G=G_{1}$.
Case 3. $\left|S \cap\left\{x_{0}, x_{1}, x_{2}\right\}\right|=2$.
Without loss of generality, assume that $x_{0}, x_{1} \in S$. Since $|S|=n-3$, there exist two vertices $y_{1}, y_{2} \notin S \cup V(P)$. Clearly, the vertices y_{1}, x_{1}, y_{2} are consecutive in the $2-\mathrm{SH}$ walk. Also, x_{0} is consecutive with one of y_{1} or y_{2} in the $2-\mathrm{SH}$ walk. Without loss of generality, assume that x_{0} is consecutive with y_{1}. Now, follow the $2-\mathrm{SH}$ walk starting from $x_{2}, x_{0}, y_{1}, x_{1}, y_{2}$. Assume that $|S| \geq 4$ and consider $z_{1}, z_{2} \in S \backslash\left\{x_{0}, x_{1}\right\}$. Then the next vertex after y_{2} must be in $S \backslash\left\{x_{0}, x_{1}\right\}$. Without loss of generality, assume that the next vertex after y_{2} in the $2-\mathrm{SH}$ walk is z_{1}. But then the next vertex after z_{1} in the $2-\mathrm{SH}$ walk does not exist, a contradiction. Therefore $2 \leq|S| \leq 3$.

Assume that $|S|=2$. Since $d\left(x_{0}, y_{1}\right)=d\left(x_{1}, y_{1}\right)=d\left(x_{1}, y_{2}\right)=2$, it follows that x_{0} is adjacent to y_{2}, x_{2} is adjacent to y_{1} and y_{1} is adjacent to y_{2}. If x_{2} is adjacent to y_{2}, then x_{1} is the only vertex at distance two from y_{2} in G, a contradiction. Therefore, x_{2} is not adjacent to y_{2}. Thus we have $G=C_{5}$.

Next assume that $|S|=3$. Let $S=\left\{x_{0}, x_{1}, z\right\}$. Then, clearly the next vertex after y_{2} in the $2-$ SH walk is z and so y_{2} is not adjacent to z. If z is adjacent to x_{2}, then y_{2} is the only vertex at distance two from z in G, a contradiction. Therefore, z is not adjacent to x_{2}.

Assume that y_{1} is not adjacent to y_{2}. Since $d\left(x_{0}, y_{1}\right)=d\left(z, y_{2}\right)=2$, clearly y_{1} is adjacent to z and y_{2} is adjacent to x_{0}. Suppose now y_{2} is adjacent to x_{2}. If y_{1} is adjacent to x_{2}, then $G=G_{3}$, otherwise $G=G_{6}$. Suppose next y_{2} is not adjacent to x_{2}. If y_{1} is adjacent to x_{2}, then $G=G_{6}$, otherwise $G=G_{7}$.

Assume next y_{1} is adjacent to y_{2}. Now, look at the adjacency between x_{0} and y_{2}. First, assume that x_{0} is adjacent to y_{2}. Consider the adjacency between y_{1} and z. Suppose y_{1} is not adjacent to z. Since $d\left(x_{1}, y_{1}\right)=2, y_{1}$ is adjacent to x_{2}. If x_{2} is adjacent to y_{2}, then $G=G_{5}$, otherwise $G=G_{1}$. Suppose next y_{1} is adjacent to z. Now, assume that y_{1} is not adjacent to x_{2}. If x_{2} is adjacent to y_{2}, then $G=G_{2}$, otherwise $G=G_{6}$. Next, assume that y_{1} is adjacent to x_{2}. If x_{2} is adjacent to y_{2}, then $G=G_{4}$, otherwise $G=G_{3}$. Now, assume that x_{0} is not adjacent to y_{2}. Since $d\left(x_{0}, y_{1}\right)=d\left(x_{1}, y_{2}\right)=2$, it follows that y_{1} is adjacent to z and y_{2} is adjacent to x_{2}. If y_{1} is adjacent to x_{2}, then $G=G_{5}$, otherwise $G=G_{1}$.

For the converse, it is not difficult to show that any graph $G \in \mathcal{F}$ is $2-\mathrm{SH}$ with $\omega(G)=n-3$.

Conflict of interest. The authors declare that they have no conflict of interest.

Data Availability. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] N. A. Abd Aziz, N. Jafari Rad, H. Kamarulhaili, and R. Hasni, A note on $k-$ step Hamiltonian graphs, Malaysian J. Math. Sci. 13 (2019), no. 1, 87-93.
[2] N.A. Abd Aziz, N. Jafari Rad, H. Kamarulhaili, and R. Hasni, Bounds for the independence number in k-step Hamiltonian graphs, Comput. Sci. J. Moldova 26 (2018), no. 1, 15-28.
[3] G. Chartrand, L. Lesniak, and P. Zhang, Graphs \& Digraphs, 5th ed., CRC Press, Boca Raton, Florida, USA, 2011.
[4] R.J. Gould, Advances on the Hamiltonian problem: A survey, Graphs Combin. 19 (2003), no. 1, 7-52 https://doi.org/10.1007/s00373-002-0492-x.
[5] Y.S. Ho, S.M. Lee, and B. Lo, On 2-steps Hamiltonian cubic graphs, J. Combin. Math. Combin. Comput. 98 (2016), 185-199.
[6] A.V. Kostochka, L. Rabern, and M. Stiebitz, Graphs with chromatic number close to maximum degree, Discrete Math. 312 (2012), no. 6, 1273-1281 https://doi.org/10.1016/j.disc.2011.12.014.
[7] G.C. Lau, Y.S. Ho, S.M. Lee, and K. Schaffer, On 3-step Hamiltonian trees, J. Graph Labeling 1 (2015), 41-53.
[8] G.C. Lau, S.M. Lee, K. Schaffer, and S.M. Tong, On k-step Hamiltonian bipartite and tripartite graphs, Malaya J. Mat. 2 (2014), no. 3, 180-187.
[9] G.C. Lau, S.M. Lee, K. Schaffer, S.M. Tong, and S. Lui, On $k-$ step hamiltonian graphs, J. Combin. Math. Combin. Comput. 90 (2014), 145-158.
[10] S.M. Lee and H.H. Su, On 2-steps Hamiltonian subdivision graphs of cycles with a chord, J. Combin. Math. Combin. Comput. 98 (2016), 109-123.
[11] P.K. Niranjan and R.K. Srinivasa, The k-distance chromatic number of trees and cycles, AKCE Int. J. Graphs Comb. 16 (2019), no. 2, 230-235 https://doi.org/10.1016/j.akcej.2017.11.007.
[12] B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs- A survey, Graphs Combin. 20 (2004), no. 1, 1-40
https://doi.org/10.1007/s00373-003-0540-1.
[13] M. Soto, A. Rossi, and M. Sevaux, Three new upper bounds on the chromatic number, Discrete Appl. Math. 159 (2011), no. 18, 2281-2289
https://doi.org/10.1016/j.dam.2011.08.005.
[14] L. Stacho, New upper bounds for the chromatic number of a graph, J. Graph Theory 36 (2001), no. 2, 117-120.
[15] D.B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, New Jersey, USA, 2001.

[^0]: * Corresponding Author

