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Abstract: For a graph G with chromatic number k, a dominating set S of G is called
a chromatic-transversal dominating set (ctd-set) if S intersects every color class of any

k-coloring of G. The minimum cardinality of a ctd-set of G is called the chromatic

transversal domination number of G and is denoted by γct(G). A Roman dominating
function (RDF) in a graph G is a function f : V (G)→ {0, 1, 2} satisfying the condition

that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which

f(v) = 2. The weight of a Roman dominating function is the value w(f) =
∑

u∈V f(u).
The minimum weight of a Roman dominating function of a graph G is called the

Roman domination number of G and is denoted by γR(G). The concept of chromatic

transversal domination is extended to Roman domination as follows: For a graph
G with chromatic number k, a Roman dominating function f is called a chromatic-

transversal Roman dominating function (CTRDF) if the set of all vertices v with

f(v) > 0 intersects every color class of any k-coloring of G. The minimum weight of a
chromatic-transversal Roman dominating function of a graph G is called the chromatic-

transversal Roman domination number of G and is denoted by γctR(G). In this paper
a study of this parameter is initiated.
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1. Introduction

By a graph G = (V,E) we mean a finite, connected, undirected and simple graph.

The order of G is denoted by n. For graph theoretic terminology we in general follow

[3].

One of the fastest growing areas within graph theory is the study of domination and

related problems. A comprehensive treatment of fundamentals of domination is given

in the book of Haynes et al. [12]. Surveys of several advanced topics in domination can

be seen in the book edited by Haynes et al. [11]. Another area of research which has

received much attention within graph theory is graph colorings which deals with the
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fundamental problem of partitioning a set of objects into classes according to certain

conditions. Benedict Michael et al. [20] combined these two concepts to obtain a new

variant of domination called the chromatic transversal domination. One more variant

which combines domination and graph colorings known as dominator coloring is also

well studied in literature [1, 7, 10, 18, 19].

A set S ⊆ V is called a dominating set of G if every vertex in V − S is adjacent

to a vertex in S. The minimum cardinality of a dominating set in G is called the

domination number of G and is dentoed by γ(G). The chromatic number of a graph

G is the minimum number of colors needed to color the vertices of G so that no

two adjacent vertices share the same color and is denoted by χ(G). As defined by

Benedict Michael et al. [20], for a graph G with chromatic number k, a dominating

set S of G is called a chromatic-transversal dominating set (ctd-set) if S intersects

every color class of any k-coloring of G. The minimum cardinality of a ctd-set of

G is called the chromatic transversal domination number of G and is denoted by

γct(G). E.J. Cockayne et al. [8] intoduced the concept of Roman domination. A

Roman dominating function (RDF) in a graph G is a function f : V (G) → {0, 1, 2}
satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least

one vertex v for which f(v) = 2. The weight of a Roman dominating function is the

value w(f) =
∑
u∈V f(u). The minimum weight of a Roman dominating function of

a graph G is called the Roman domination number of G and is denoted by γR(G).

An RDF of weight γR(G) is called a γR-function of G or γR(G)-function. If V0, V1, V2
are the sets of vertices assigned the values 0, 1 and 2 respectively under f , then

there is a 1-1 correspondence between the function f : V (G)→ {0, 1, 2} and the sets

V0, V1, V2 of V (G). Thus f can be written as f = (V0, V1, V2). For a detailed study

in Roman domination, one can refer to [2, 4–6, 8, 9, 13–17, 21–27]. The concept of

chromatic-transversal domination is extended to Roman domination as follows: For

a graph G with chromatic number k, a Roman dominating function f is called a

chromatic-transversal Roman dominating function (CTRDF) if the set of all vertices

v with f(v) > 0 intersects every color class of any k-coloring of G. The minimum

weight of a chromatic-transversal Roman dominating function of a graph G is called

the chromatic-transversal Roman domination number of G and is denoted by γctR(G).

A CTRDF of weight γctR(G) is called a γctR-function of G or a γctR(G)-function. In

this paper a study of this parameter is initiated.

2. Notation

Let G be a graph with vertex set V = V (G) and edge set E = E(G). The order |V |
of G is denoted by n. A subgraph of G is a graph having all its vertices and edges

in G. For any set S ⊆ V , the induced subgraph G[S] is the maximal subgraph of G

with respect to S. For every vertex v ∈ V , the open neighborhood N(v) is the set

{u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v is the set N [v] = N(v)∪{v}.
The diameter of a graph G is the maximum distance between the pair of vertices in

G. The degree of a vertex v in a graph G is the number of edges that are incident



P. Roushini Leely Pushpam 53

to the vertex v and is denoted by deg(v). The minimum and maximum degree of a

graph G are denoted by δ(G) and ∆(G). A vertex of degree zero is called an isolated

vertex, while a vertex of degree one is called a leaf vertex or a pendant vertex of G.

An edge incident to a leaf is called a pendant edge. A strong support is a vertex that

is adjacent to at least two leaf vertices. A set S of vertices is called independent if no

two vertices in S are adjacent. A simple graph in which every pair of distinct vertices

are adjacent is called a complete graph. A clique of a simple graph G is a subset S of

V such that G[S] is complete. The clique number of a graph G, denoted by ω(G) is

the number of vertices in a maximum clique of G. For n ≥ 4, the wheel Wn is defined

to be the graph obtained by connecting a single vertex to all the vertices of Cn−1,

where Cn−1 is a cycle on n − 1 vertices and is called the rim of the wheel. For two

positive integers r, s, the complete bipartite graph Kr,s is the graph with partition

V (G) = X ∪ Y such that |X| = r, |Y | = s, X and Y are independent and every two

vertices belonging to different partite sets are adjacent to each other. A complete

bipartite graph of the form K1,n is called a star graph. A connected graph without

any cycle is called a tree and if G has exactly one cycle, then G is called a unicyclic

graph. The corona of two graphs G1 and G2 is the graph G = G1 ◦ G2 formed from

one copy of G1 and |V (G1)| copies of G2 where the ith vertex of G1 is adjacent to

every vertex in the ith copy of G2.

3. Some Standard Graphs

In this section γctR values for paths, cycles and complete bipartite graphs are deter-

mined. To begin with we state the following theorem proved in [8].

Theorem 1. [8] For the classes of paths Pn and cycles Cn, γr(Pn) = γr(Cn) =
⌈
2n
3

⌉
.

Theorem 2. For paths Pn,

γctR(Pn) =

{
n if n ≤ 4⌈
2n
3

⌉
if n ≥ 5.

Proof. Let V (Pn) = {v1, v2, . . . , vn}. It is clear that χ(Pn) = 2 and γctR(Pn) ≥
γR(Pn). When n = 2, choose a γR-function of P2 which assigns 1 to both the vertices

of P2. Then clearly γctR(P2) = 2. When n = 3, there is a unique γR-function of P3

which assigns 2 to the central vertex and 0 to the end vertices. Thus γctR(P3) = 3.

When n = 4, any γR-function of P4 will assign either 2 to v2, 1 to v4 and 0 elsewhere

or 2 to v3, 1 to v1 and 0 elsewhere. In both the cases either {v1, v3} or {v2, v4} form

a color class of any χ-coloring of P4. Hence γctR(P4) = 4. For n ≥ 5, let f be a
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γR-function of Pn defined as

f(vi) =


2, i = 3j − 1, 1 ≤ j ≤

⌊
n+1
3

⌋
1, i = n and n ≡ 1 (mod 3)

0, otherwise.

It is clear that {v2, v5} intersects both the color classes of any χ-coloring of Pn. Hence

γctR(Pn) ≤
⌈
2n
3

⌉
. Thus γctR(Pn) =

⌈
2n
3

⌉
.

Corollary 1. For paths Pn, γctR(Pn) = γR(Pn) if and only if n 6= 3, 4.

A similar proof can be given for cycles Cn. Hence the following theorem is stated

without proof.

Theorem 3. For cycles Cn,

γctR(Cn) =

{
n if n = 4 and n is odd⌈
2n
3

⌉
otherwise.

Corollary 2. For cycles Cn, γctR(Cn) = γR(Cn) if and only if n 6= 3, 4, 5.

Theorem 4. For wheels G =Wn,

γctR(Wn) =

{
n if n is even

4 if n is odd.

Proof. When n is even, χ(G) = 4. Hence for every v ∈ V (G). {v} is a color

class of a χ-partition of G. Thus γctR(G) = n. When n is odd, χ(G) = 3. Let

f : V (G) → {0, 1, 2} be a function defined by f(w) = 2, f(x) = f(y) = 1, f(z) = 0

for every z ∈ V (G)\{x, y, w}, where w is the central vertex and x, y are two adjacent

vertices on the rim of the wheel. Clearly {w, x, y} intersects every color class of any

χ-coloring of G. Hence γctR(G) ≤ 4. Further since χ(G) = 3, |V2 ∪ V1| ≥ 3. But

|V1| = 3 is not possible. Thus |V2| = 1 and |V1| = 2 which implies that γctR(G) ≥ 4.

Hence γctR(G) = 4. (Refer Figure 1).

4. Bipartite Graphs

In the following theorem we prove that for any bipartite graph G, γctR(G) lies between

γR(G) and γR(G) + 1.

Theorem 5. For bipartite graphs G,

γR(G) ≤ γctR(G) ≤ γR(G) + 1.
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Figure 1. The wheel W13 with γctR(W13) = 4

Proof. Let (X,Y ) be the bipartition of V (G). Clearly χ(G) = 2. If for every

γR-function f = (V0, V1, V2) of G, the distance between any 2 vertices of V1 ∪ V2
is even, then V1 ∪ V2 is either X or Y . Thus, either X or Y is a color class of a

χ-partition which does not intersect V1 ∪ V2 in which case γctR(G) > γR(G). Now

define g : V (G) → {0, 1, 2} by g(x) = 1 for some x ∈ V0 and g(x) = f(x) otherwise.

Then g is a γctR-function of G. Thus γctR(G) = γR(G) + 1.

If for some γR-function ofG say f = (V0, V1, V2), there is a pair of vertices x, y ∈ V1∪V2
such that d(x, y) is odd, then V1∪V2 intersects both the color classes X and Y . Hence

γctR(G) = γR(G). Thus γR(G) ≤ γctR(G) ≤ γR(G) + 1.

Corollary 3. For a bipartite graph G, γctR(G) = γR(G) if and only if there exists a
γR-function f = (V0, V1, V2) of G such that there are at least 2 vertices u, v in V1 ∪ V2 with
d(u, v) as an odd number.

Theorem 6. For complete bipartite graphs G = Kr,s, r ≤ s, s ≥ 2

γctR(G) =

{
3 if r = 1

4 otherwise.

Proof. Let (X,Y ) be the bipartition of G with |X| = r, |Y | = s. If r = 1, then

G = K1,s and clearly γctR(G) = 3. If r = 2, γR(G) = 3 and V2 ∪ V1 = X, where

f = (V0, V1, V2) is a γR-function of G. Such an assignment is unique. But V2∪V1 does

not intersect Y which forms a color class of any χ-coloring of G. Thus γctR(G) ≥ 4.

Now by assigining 2 to a vertex in X and a vertex in Y , it is evident that γctR(G) ≤ 4.

Thus γctR(G) = 4. When r ≥ 3, it is clear that γctR(G) = γR(G) = 4.

Corollary 4. For complete bipartite graphs G = Kr,s, r ≤ s, s ≥ 2, γctR(G) = γR(G) if
and only if r 6= 1, 2.
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5. Split Graphs

A graph G is said to be a split graph if V (G) can be partitioned into two sets X and

Y such that X induces a complete graph and Y is independent. In this section we

determine γctR(G), where G is a split graph. For this purpose we consider k ≤ |X|
vertices in X as follows: Let G = G1 and v1 ∈ X such that degG1

(v1) = ∆(G1).

Remove all the neighbors of v1 in Y . Let G2 be the resulting graph and v2 ∈ X

such that degG2
(v2) = ∆(G2). Remove the neighbors of v2 in Y . Repeat the process

until all the vertices in Y are removed. Let v1, v2, . . . , vk be the vertices in X whose

neighbors in Y were removed successively. Then k is called the split number of G.

In all the results that follow in this section, a split graph G means a graph G with

partition (X,Y ) where X induces a complete graph and Y is independent.

Theorem 7. For a split graph G, γctR(G) = |X|+ k, where k is the split number of G.

Proof. Since every vertex in Y is not adjacent to at least one vertex inX; χ(G) = |X|
and γctR(G) > |X|. Let k be the split number of G and let v1, v2, . . . , vk be the

corresponding vertices inX as described above. Now any γctR-function ofG will assign

a total weight of 2 to each N [vi], 1 ≤ i ≤ k and 1 to the vertices in X−{v1, v2, . . . , vk}.
Hence γctR(G) ≥ |X| − k + 2k ≥ |X|+ k.

Now define f : V (G)→ {0, 1, 2} by

f(v) =


2 if v = vi, 1 ≤ i ≤ k
1 if v ∈ X \ {v1, v2, . . . , vk}
0 if v ∈ Y.

Then clearly f is a CTRDF of G as X intersects every color class of any χ-coloring

of G. Hence γctR(G) ≤ |X|+ k. Thus, γctR(G) = |X|+ k.

Corollary 5. For a split graph G, γctR(G) = γR(G) if and only if every vertex in X is
a strong support.

Corollary 6. For a split graph G, γctR(G) = n if and only if every vertex in X is of
degree at most |X|.

6. Realization

Theorem 8. Given two positive integers a, b with 2 ≤ a ≤ b, there exists a graph G such
that γctR(G) = b and γR(G) = a.

Proof. If a = b = 2, then for the graph K2, γctR(K2) = γR(K2) = 2. Hence,

we assume that 3 ≤ a ≤ b. Consider the graph H ◦ 2K1 where H is a tree and
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take a copy of Kb−a+2. If a < b, a is even, then join a vertex of Kb−a+2 to a

vertex of H in H ◦ 2K1, where |V (H)| = a−2
2 . For the resulting graph G, clearly

γctR(G) = b− a+ 2 + 2
(
a−2
2

)
= b and γR(G) = 2 + 2

(
a−2
2

)
= a.

If a ≤ b, a is odd, then join a vertex of Kb−a+2 to a vertex of H in H ◦ 2K1, where

|V (H)| = a−3
2 and in turn join a K2 to one of the vertices of H. For the resulting

graph G, γctR(G) = b− a+ 2 + 2
(
a−3
2

)
+ 1 = b and γR(G) = 2 + 2

(
a−3
2

)
+ 1 = a.

If a = b and a is even, then consider G to be the graph H ◦ 2K1 where |V (H)| = a
2 .

Then γctR(G) = 2× a
2 = a and γR(G) = a. Hence, the theorem holds.

7. Bounds

For K2, γctR(K2) = 2 and γctR(K1) = 1. Thus one can easily observe that for n ≥ 3,

3 ≤ γctR(G) ≤ n.

Theorem 9. For any graph G, γctR(G) = 3 if and only if G is either a K3 or a star.

Proof. Suppose γctR(G) = 3. Then there exists a γctR-function f = (V0, V1, V2) of G

such that either |V1| = 3, |V2| = 0 or, |V1| = 1 and |V2| = 1. In the first case, clearly

G = K3. In the latter case, χ(G) ≤ 2. Since G is connected, G is bipartite. Thus the

vertex in V2 say w is adjacent to every vertex in V (G). Hence G is a star.

Next we prove that, for any tree T , γctR(T ) is bounded above by 4n
5 and characterize

those trees which attain this bound. For this purpose we state the following theorems

proved in [2].

Theorem 10. [2] If T is an n-vertex tree with n ≥ 3, then γR(T ) ≤ 4n
5
.

Theorem 11. [2] If T is an n-vertex tree, then γR(T ) = 4n
5

if and only if V (T ) can
be partitioned into sets inducing P5 such that the subgraph induced by the central vertices of
these paths are connected.

Theorem 12. For any tree T with n ≥ 5, γctR(T ) ≤ 4n
5

and equality holds if and only if
either T = T1 (as given in Figure 2) or V (T ) can be partitioned into sets inducing P5 such
that the subgraph induced by the central vertices of these paths are connected.

Proof. Since T is a tree, γR(T ) ≤ γctR(T ) ≤ γR(T ) + 1. If γR(T ) < 4n
5 , then

γctR(T ) < 4n
5 + 1. Thus γctR(T ) ≤ 4n

5 . If γR(T ) = 4n
5 , then by Theorem 11, T is as

described in the statement of the theorem. If T = P5, then γctR(T ) = 4. Otherwise,

define f : {0, 1, 2} → γ(T ) by

f(v) =


0, if v is a support vertex

1, if v is a leaf

2, otherwise.
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It is clear that f is γctR(T )-function with weight 4n
5 . Thus, γctR(T ) = 4n

5 . Thus, in

all the cases γctR(T ) ≤ 4n
5 .

Now suppose that γctR(T ) = 4n
5 . If γctR(T ) = γR(T ) = 4n

5 , then by Theorem 11, T

is of the required type as mentioned in the statement. If γctR(T ) = γR(T ) + 1, then

γR(T ) = 4n
5 − 1. Hence, V (T ) will be partitioned into sets W1,W2, . . . ,Wn/5 such

that |Wi| = 5, 1 ≤ i ≤ n/5 and any γR-function of T will assign a total weight of 4

to each of the sets Wi except one say W1 and W1 will be assigned a total weight of 3.

Clearly each Wi, 2 ≤ i ≤ n/5, will induce a P5. Let v1, v2, v3, v4, v5 be vertices in W2

which form a P5 in that order. Let f be a γR-function of T which assigns 2 to v2, zero

to v1, v3, 1 to v4, v5, a total weight of 4 to the vertices in Wi, 3 ≤ i ≤ n
5 and a total

weight of 3 to the vertices in W1. Clearly, v4 and v5 belong to different color classes

of any χ-coloring of T . Hence, f(v4) = f(v5) = 1 implies that γctr(T ) = γR(T ),

which is not the case. Hence,

n/5⋃
i=2

Wi = ∅ and V (T ) = W1 and |W1| = 5. Hence T is

either P5 or K1,4 or T1 as given in Figure 2. Further γctR(T ) = 4. If T = K1,4, then

γctR(T ) = 3 which is not the case. Hence, T is either P5 or T1 as given in Figure 2

(Refer Figure 3).

Converse part is straightforward.

Theorem 13. For any graph G, γctR(G) ≥ ω(G) and equality holds if and only if
G = Kn.

Proof. Let f = (V0, V1, V2) be a γctR-function of G and H be a maximum complete

subgraph in G. Then, |V (H)| = ω(G). Further, χ(G) ≥ ω(G) and |V2 ∪ V1| ≥ χ(G)

which implies that |V2 ∪ V1| ≥ ω(G). That is, γctR(G) ≥ ω(G).

Suppose that γctR(G) = ω(G). Then |V2∪V1| ≥ ω(G) implies that |V2∪V1| ≥ γctR(G).

That is |V2∪V1| ≥ 2|V2|+|V1|. But |V2∪V1| ≤ 2|V2|+|V1|. Hence |V2∪V1| = 2|V2|+|V1|.
Thus |V2| = 0 and |V1| = n = γctR(G) = ω(G). Hence, G is a complete graph.

Conversely if G = Kn, then clearly γctR(G) = ω(G).

0 0

1

1

2

T1:

Figure 2. The tree T1 with γctR(T1) = 4
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Figure 3. A tree T with γctR(T ) = 4n
5

8. Graphs with γctR(G) = n

In this section, graphs with γctR(G) = n are investigated.

Theorem 14. If G is a bipartite graph with γctR(G) = n, then diam(G) ≤ 3.

Proof. Since G is a bipartite graph, χ(G) = 2. Suppose that diam(G) ≥ 4. Let

Q = (v1, v2, v3, . . . , vdiam(G)+1) be a diametral path in G. Define f : V (G)→ {0, 1, 2}
by f(v2) = 2, f(v1) = f(v3) = 0, f(v) = 1 for every v ∈ V (G)\{v1, v2, v3}. Since

v4, v5 are in different color classes, f is a CTRDF with f(V ) < n, a contradiction.

Thus diam(G) ≤ 3.

Theorem 15. Let G be a bipartite graph. Then γctR(G) = n, if and only if G = P2, P3, P4

or C4.

Proof. Suppose that G is a tree. If diam(G) = 3 and G 6= P4, then G is a bistar.

Now by assigning 2 to the support vertices and zero to the leaf vertices, a CTRDF

is obtained of weight lesser than n, a contradiction. Hence, G = P4. If diam(G) = 2

and G 6= P3, then G is a star. Clearly γctR(G) = 3 < n, a contradiction. Hence,

G = P3. If diam(G) = 1, then G = P2.

Suppose that G is not a tree. Then G has only even cycles. If G has a cycle Ck =

(v1, v2, . . . , vk), k ≥ 6, then by assigning 2 to v1, zero to v2 and vk and 1 elsewhere,

a CTRDF is obtained of weight lesser than n, a contradiction. Hence any cycle in G

is C4.

Next we claim that G = C4. Suppose there exists a vertex w ∈ V (G)\V (C4) which

is adjacent to a vertex in C4. Without loss of generality let w be adjacent to v1, then

by assigning 2 to v1, zero to v2, w and 1 elsewhere, a CTRDF is obtained of weight

lesser than n, a contradiction. Thus, G = C4.

Converse is obvious.

Theorem 16. Let G be a unicyclic graph with cycle Ck. Then γctR(G) = n, if and only
if either G = C4 or the following holds
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(i) k is odd.

(ii) Every vertex not in Ck is at a distance at most 2 from Ck.

(iii) Every vertex not in Ck is of degree at most 2.

(iv) Every vertex in Ck is of degree at most 3.

Proof. If G is bipartite, then by Theorem 15, G = C4. Suppose that G is not

bipartite. Then G contains an odd cycle which proves (i). Further χ(G) = 3 and all

the three colors are used to color the vertices of the odd cycle in G by any χ-coloring

of G. Suppose that there is a vertex not in Ck at a distance at least 3 from Ck. Then

there exists at least 3 vertices say a1, a2, a3 not in Ck and form a P3 in that order.

Now by assigning 2 to a2, zero to a1, a3 and 1 elsewhere, a CTRDF is obtained of

weight lesser than n, a contradiction. Hence, (ii) is proved.

To prove (iii), suppose that there is a vertex w not in Ck of degree more than 2. Let

w1, w2 be 2 neighbors of w not in Ck. Then by assigning 2 to w, zero to w1, w2 and 1

elsewhere, a CTRDF is obtained of weight lesser than n, a contradiction. Hence, (iii)

is proved. A similar contradiction can be arrived if there is a vertex in Ck of degree

more than 3 which proves (iv).

Conversely suppose G is of the given type. If G = C4, then γctR(G) = 4. Suppose

that G satisfies the given conditions. Since k is odd, χ(G) = 3. Now no vertex in

Ck can be assigned zero by any γctR function of G. For, otherwise the vertex which

is assigned zero can be colored with a unique color by some χ-coloring of G. The

other 2 colors can be used to color the rest of the vertices. Further by conditions (ii),

(iii) and (iv), one can infer that if some vertex not in Ck is assigned zero, then the

corresponding neighbor which is assigned 2 is adjacent to exactly one vertex assigned

zero. Thus, γctR(G) = n.

Theorem 17. Let G be a non-bipartite graph with χ(G) = w(G). Then γctR(G) = n if
and only if there exists a maximum clique H in G such that the following holds.

(i) Each component of the subgraph induced by V (G)\V (H) is a K2 or a K1.

(ii) Every vertex in H has at most one neighbor not in H.

Proof. Let H be a maximum clique in G. As in the proof of Theorem 16, one can

prove that every vertex not in H is at a distance at most 2 from H. Next we claim

that if w is a vertex not in H at a distance 2 from H, then deg(w) = 1. Suppose to

the contrary that deg(w) > 1. Then there exist two vertices w1, w2 ∈ N(w) such that

w1, w2 6∈ V (H). Now by assigning 2 to w, zero to w1, w2 and 1 elsewhere, a CTRDF

is obtained of weight lesser than n, a contradiction.

Again as in the proof of Theorem 16, it can be proved that every vertex not in H is

of degree at most 2. Thus each component of the subgraph induced by V (G)\V (H)

is a K2 or a K1 which proves (i).
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Suppose there is a vertex in H say w which has 2 neighbours w1, w2 not in H. Then

by assigning 2 to w, zero to w1, w2 and 1 elsewhere, a CTRDF is obtained of weight

lesser than n, a contradiction.

Converse is straightforward.

Remark 1. Characterization of split graphs G, with γctR(G) = n can also be derived
using Theorem 17.

In the following theorems, graphs with χ(G) = w(G) + 1 and γctR(G) = n are char-

acterized. For this purpose we define two families G1,G2 of graphs as follows.

A graph G ∈ G1 if G satisfies the following conditions.

(i) G is non bipartite

(ii) No two odd cycles in G are disjoint.

(iii) If B is the set of all vertices in G which lie in every odd cycle, then each com-

ponent of the subgraph induced by V (G)\B is a K2 or a K1.

(iv) Every vertex in B has at most two neighbors not in B.

(v) If a vertex in B has two neighbors x, y not in B, then every odd cycle in G

contains either x or y (Refer Figure 4).

For the graph G given in Figure 4, one can infer that G contains 4 odd cycles and

B = {w1, w2, w3, w4, w5, w6, w7}. The vertex w1 has two neighbors x, y not in B and

every odd cycle in G contains either x or y. Further G satisfies all the conditions of

G1. Hence G ∈ G1.

A graph G ∈ G2 if V (G) can be partitioned into two sets such that one set induces a

complete subgraph H1 of order ω(G)−2 and the other set induces a subgraph H2 ∈ G1
such that the following holds.

(i) If there is an odd cycle say C in H2 such that every vertex in C is adjacent to

every vertex in H1, then every vertex in H1 is adjacent to at most one vertex

not in C (with respect to H2). (Refer Figure 5).

(ii) If no such odd cycle exists, then every vertex in B (as mentioned in the definition

of G1) is adjacent to every vertex in H1 and in turn every vertex in H1 is adjacent

to at most two vertices not in B. (with respect to H2). If a vertex in H1

is adjacent to two vertices not in B, then both the vertices have a common

neighbor in B.

For the graph G given in Figure 5, clearly H2 ∈ G1 and there is an odd cycle C in H2

in which every vertex of C is adjacent to every vertex of H1 and no vertex in H1 has

a neighbor in V (H2)\V (C). Hence, G ∈ G2.

Theorem 18. Let G be a graph with χ(G) = w(G)+1 and w(G) = 2. Then γctR(G) = n
if and only in G ∈ G1.
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x
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w5w6

w1
w2
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Figure 4. A graph G ∈ G1 with γctR(G) = n

H1

H2

Figure 5. A graph G ∈ G2 with γctR(G) = n

Proof. Let γctR(G) = n. Since χ(G) = 3, G is not bipartite. Suppose that G has two

odd cycles which does not have a vertex in common. Let v1, v2, v3 be three vertices

in that order in one of the odd cycles. Then define f : V (G)→ {0, 1, 2} by f(v2) = 2,

f(v1) = f(v3) = 0 and f(v) = 1 for every v ∈ V (G)\{v1, v2, v3}. Now it is clear that

f is a CTRDF of G of weight lesser than n, a contradiction. Thus (ii) is proved.

To prove (iii), suppose to the contrary that some component of the subgraph induced

by V (G)\B is neither a K2 nor a K1. Then there exists vertices v1, v2, v3 which

form a path in that order. As before we get a CTRDF of weight lesser than n, a

contradiction. Thus (iii) is proved.

To prove (iv), suppose that there is a vertex w in B which has at least three neighbors

not in B. Choose 2 vertices x, y 6∈ B which are neighbors of w such that either x, y

belong to the same odd cycle or x is in one odd cycle and y not in any odd cycle or

both x, y does not belong to any odd cycle, or x, y belong to different odd cycles. In

the first three cases by assigning 2 to w and zero to x, y and 1 elsewhere, will give a

CTRDF of weight lesser than n, as in each case all the three colors will be used to the

vertices assigned the value 1 by any χ-coloring of G. Hence, we get a contradiction.

If x, y belong to different odd cycles, then choose a vertex z 6∈ B which is adjacent to

w and different from x and y. Now by assigning 2 to w, zero to y, z and 1 elsewhere,

will give a CTRDF of weight lesser than n, as all three colors will be used to color the

vertices in the odd cycle containing x by any χ-coloring of G. Thus, a contradiction
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is obtained and (iv) is proved.

To prove (v), let w be a vertex in B which has two neighbors x, y not in B. We claim

that every odd cycle in G contains either x or y. Suppose to the contrary that some

odd cycle does not contain both x and y, then by assigning 2 to w, zero to x, y and

1 elsewhere, will give a CTRDF of weight lesser than n, a contradiction. Thus (iv) is

proved and hence, G ∈ G1.

Conversely suppose G is a graph satisfying the given conditions. No vertex in B

can be assigned zero by any γctr-function of G, as the vertices in B lie in every odd

cycle and {v} is color class for every v ∈ B in some χ-coloring of G. By conditions

(iii), (iv) and (v), if any γctR-function assigns zero to a vertex not in B, then the

corresponding vertex which is assigned 2 is adjacent to exactly one vertex assigned

zero. Thus γctR(G) = n.

Remark 2. For odd cycles Cn, γctR(Cn) = n can also be derived from Theorem 18.

Theorem 19. Let G be a graph with χ(G) = w(G)+1 and w(G) ≥ 3. Then γctR(G) = n
if and only in G ∈ G2.

Proof. Let H1 be a complete subgraph of order ω(G)− 2. Let H2 be the subgraph

induced by V (G)\V (H). First we claim that H2 ∈ G1. Let w(G) = r. Since w(H2) ≥
3, H2 is not bipartite, which proves (i) of the definition of G1. To prove (ii) of G1,

suppose to the contrary that there are two odd cycles in H2 which are disjoint. Since

χ(G) = w(G) + 1, the (r+ 1)th color say c is used to color some vertex in H2. In any

χ-coloring of G, we have the following possibilities. The color c will be used in

(a) None of the two cycles

(b) Both the cycles

(c) Exactly one cycle.

Let v1, v2, v3 be a path in that order in one of the cycles (in case (c), choose them to

be in the cycle which does not use the color c). Now by assigning 2 to v2, zero to v1, v3
and 1 elsewhere, a CTRDF is obtained of weight lesser than n. Thus γctR(G) < n,

a contradiction. Hence, (ii) of G1 is proved. Now to prove every component of the

subgraph induced V (H2)\B is a K2 or K1, suppose that there are vertices v1, v2, v3
which form a path in that order exist in V (H2)\B. Then as discussed earlier, a

CTRDF is obtained of weight lesser than n, as some vertex in B will be assigned

the color c by every χ-coloring of G. Thus, (iii) of G1 is proved. As in the proof of

Theorem 18, conditions (iv) and (v) can be proved. Thus H2 ∈ G1.

Now to prove condition (i) of G2, suppose there is an odd cycle C in H2 such that

every vertex in C is adjacent to every vertex in H1. Then we claim that every vertex

in H1 is adjacent to at most one vertex not in C (with respect to H2). For otherwise,

if there are 2 vertices x, y not in C adjacent to a vertex w in H1. Then by assigning

2 to w, zero to x, y and 1 elsewhere, a CTRDF is obtained of weight lesser than n,
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as all the three colors, other than the r − 2 colors used in H1 are used to color the

vertices of C. Thus we get a contradiction. Hence, condition (i) of G2 is proved.

To prove condition (ii) of G2, suppose that no such odd cycle (as mentioned above)

exists. We claim that every vertex in B is adjacent to every vertex of H1. Suppose

to the contrary that some vertex w in B is not adjacent to a vertex in H1. Then

clearly the (r−2) colors used to color the vertices of H1 and 2 colors used to color the

vertices of H2 are sufficient for the entire graph G which implies that χ(G) = w(G)

which is not the case. Hence our claim holds. Next we claim that every vertex in

H1 is adjacent to at most 2 vertices not in B (with respect to H2). This fact can be

proved in a way similar to the proof of condition (iv) of Theorem 18. Finally we claim

that if a vertex in H1 is adjacent to two vertices not in B, then both the vertices have

a common neighbor in B. Suppose to the contrary that a vertex w in H1 is adjacent

to two vertices x, y not in B and both x, y does not have a common neighbor in B,

then by assigning 2 to w, zero to x, y and 1 elsewhere, a CTRDF is obtained of weight

lesser than n, a contradiction. Summing the above arguments, condition (ii) of G2
holds and thus, G ∈ G2.

As in the proof of Theorem 18, the converse part is proved.

Remark 3. For wheels Wn with even order, γctR(G) = n, can also be derived from
Theorem 19.
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