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Abstract: Operations in the theory of graphs has a substantial influence in the an-

alytical and factual dimensions of the domain. In the realm of chemical graph theory,

topological descriptor serves as a comprehensive graph invariant linked with a specific
molecular structure. The study on the Sombor index is initiated recently by Ivan Gut-

man. The triangle parallel graph comprises of the edges of subdivision graph along

with the edges of the original graph. In this paper, we make use of combinatorial
inequalities related with the vertices, edges and the neighborhood concepts as well as

the other topological descriptors in the computations for the determination of bounds

of Sombor index for certain corona products involving the triangle parallel graph.

Keywords: Sombor index, compounds graph, triangle parallel graphs, graph opera-

tions

AMS Subject classification: 05C09, 05C76, 05C92

1. Introduction

Molecular topology is necessarily a non-numerical mathematical entity. Specific
numerics often facilitate in the determination of certain quantifiable molecular traits.
A chemical compound is ought to alter itself to a molecular network such that the
molecular atoms correspond to vertices and the atomic edges are depicted to be
the edges. Let G be a molecular graph with vertex set V (G) and edge set E(G),
possessing p vertices and q edges, i.e., |V (G)| = p and |E(G)| = q. The degree of
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102 Bounds on Sombor Index for Corona Products on R-Graphs

vertex w in G is represented by dG(w)and e = vw is the edge joining the vertex v
with vertex w. For the graph, G the minimum and maximum degree are depicted by
δG and ∆G respectively.

Initiated by Gutman ,the first and second Zagreb index are the extensively
researched topological invariants while stipulating the π-electron energy of the
molecules [12–14, 21]. Randić index is one among the primitive and widely explored
molecular descriptors [9, 25]. Since then, a great deal of progress and advancements
have been carried out in the investigation of molecular descriptors in this realm of
chemical graph theory.
The sum-connectivity index, χ was proposed by Bo Zhou and Nenad Trinajstić. Sub-
sequently, numerous characteristics and combinatorial inequalities for corresponding
invariant were determined in [28].

χ(G) =
∑

vw∈E(G)

(dG(v) + dG(w))−1/2 .

Consequently, on [29] generalizing sum-connectivity index with the first Zagreb index
embarked the study on another descriptor called the general sum-connectivity index,
χα (α ∈ R). Certain theoretical underpinnings for the invariant have also been
determined in relation to certain graph operations [1].

χα(G) =
∑

yz∈E(G)

(dG(y) + dG(z))α .

Another topological descriptor known as the first general Zagreb index, Mα
1 (α ∈ R)

was introduced on implementing specific generalizations by Xueliang Li and Jie Zheng
[16]. Specific properties along with some graph edge operations have been observed
related to the descriptor [18].

Mα
1 (G) =

∑
w∈V (G)

(dG(w))α.

Notably, the notions and implementations on Sombor index(SO) were established by
Gutman [10] and substantial research on the graph invariant [4, 11, 22, 24] is being
explored. SO index for graph G is described:

SO(G) =
∑

yz∈E(G)

√
dG(y)2 + dG(z)2.

The study on several graph operations have always provided a wide scope for research

in the related areas of the discipline. The subdivision graph S(G) of the graph G is

generated by replacing every edge of G with a vertex of degree 2, keeping the original

vertices unchanged. Thus, |V (S(G))| = p+ q and |E(S(G))| = 2q.

Definition 1. The triangle parallel graph R(G) of the graph G is the graph with same
vertex set as S(G), including the edges of both G and S(G). Thus, V (R(G)) = V (S(G))
and E(R(G)) = E(G) ∪ E(S(G)), implying that |V (R(G))| = p+ q and |E(R(G))| = 3q.
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Figure 1. Triangle parallel graph of P4, R(P4)

Four new graph operational series related to the triangle parallel graphs have been

initiated by Jie Lan and Bo Zhou [15]. Combinatorial bounds have been obtained

for the general sum-connectivity index and the first entire Zagreb index with respect

to the corona products [2, 19]. Also inequalities related to the subdivision graph

and the corona product variants have been determined related to SK index in [27].

Related works have also been presented for the Sombor indices[6, 17, 23, 30]. Discrete

inequalities related to some graph operation formulations have been analysed for

certain other molecular descriptors[3, 5, 7, 8, 20, 26].

2. Methodology

In this paper, certain combinatorial bounds linked with corona graph products pred-

icated mainly on the triangle parallel graph, are proposed. We have included the

corona operations correlated with vertex, edge, vertex neighborhood and edge neigh-

borhood products for our computations.

2.1. R-Vertex Corona Product

Definition 2. [15] Let G be a simple graph with pG vertices and qG edges. Let H be
another simple graph with pH vertices and qH edges. The R-vertex corona product of G and
H, denoted by R(G) �H, is constructed by taking one copy of R(G) and pG copies of H,
connecting each vertex belonging to V (G) with all vertices of a distinct copy of H. Thus,
|V (R(G)�H)| = pG + qG + pGpH and |E(R(G)�H)| = 3qG + pGqH + pGpH .

Figure 2. R-vertex corona product R(P4) � P2

The degree behaviour of the vertices is:
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dR(G)�H(x) =


2dG(x) + pH ; if x ∈ V (G)

2 ; if x ∈ I(G)

dH(x) + 1 ; if x ∈ V (H).

Theorem 1. Assume that G and H are arbitrary graphs. Then

SO(R(G)�H) ≤ 2(SO(G) +M1(G)) + pGSO(H) + 2
√
pH

[
M

1/2
1 (G) +M

3/2
1 (G)

+ χ1/2(G)

]
+
√

2pG

[
M

1/2
1 (H) + χ1/2(H) + (

√
2 + 1)qH

]

+ 2qG

√
p2H + 4 + pH

(
pG

√
p2H + 1 + (4 +

√
2)qG

)
.

Equality holds if and only if the components of the graph G and H are isolated vertices.

Proof.

SO(R(G)�H) =
∑

xy∈E(R(G)�H)

√
dR(G)�H(x)2 + dR(G)�H(y)2

=
∑

xy∈E(R(G))
x,y∈V (G)

√
(2dG(x) + pH)2 + (2dG(y) + pH)2

+
∑

xy∈E(R(G))
x∈V (G),y∈I(G)

√
(2dG(x) + pH)2 + 4

+ pG
∑

xy∈E(H)

√
(dH(x) + 1)2 + (dH(y) + 1)2

+
∑

x∈V (R(G))
x∈V (G)

∑
y∈V (H)

√
(2dG(x) + pH)2 + (dH(y) + 1)2

=
∑

f1 +
∑

f2 +
∑

g +
∑

h

where,

∑
f1 =

∑
xy∈E(R(G))
x,y∈V (G)

√
(2dG(x) + pH)2 + (2dG(y) + pH)2

∑
f2 =

∑
xy∈E(R(G))

x∈V (G),y∈I(G)

√
(2dG(x) + pH)2 + 4

∑
g = pG

∑
xy∈E(H)

√
(dH(x) + 1)2 + (dH(y) + 1)2

∑
h =

∑
x∈V (R(G))
x∈V (G)

∑
y∈V (H)

√
(2dG(x) + pH)2 + (dH(y) + 1)2.
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For computation of
∑
f1 and

∑
f2,

∑
f1 =

∑
xy∈E(R(G))
x,y∈V (G)

√
(2dG(x) + pH)2 + (2dG(y) + pH)2

=
∑

xy∈E(R(G))
x,y∈V (G)

√
4(dG(x)2 + dG(y)2) + 4pH(dG(x) + dG(y)) + 2p2H

=⇒
∑

f1 ≤ 2SO(G) +
√

2pH

(√
2χ1/2(G) + qG

√
pH

)
.

Similarly for
∑
f2,we have

∑
f2 ≤ 2

[
M1(G) +

√
pHM

3/2
1 (G) + qG

√
p2H + 4

]
.

In order to determine
∑
g,

∑
g = pG

∑
xy∈E(H)

√
(dH(x) + 1)2 + (dH(y) + 1)2 ≤ pG

[
SO(H) +

√
2

(
χ1/2(H) + qH

)]
.

For the determination of
∑
h,

∑
h =

∑
x∈V (R(G))
x∈V (G)

∑
y∈V (H)

√
(2dG(x) + pH)2 + (dH(y) + 1)2

and so
∑

h ≤
√

2
(√

2pHM
1/2
1 (G) + pGM

1/2
1 (H)

)
+ pG

(
pH

√
p2H + 1 + 2qH

)
+ 4qGpH .

From all the computations,

SO(R(G)�H) ≤ 2(SO(G) +M1(G)) + pGSO(H) + 2
√
pH

[
M

1/2
1 (G) +M

3/2
1 (G)

+ χ1/2(G)

]
+
√

2pG

[
M

1/2
1 (H) + χ1/2(H) + (

√
2 + 1)qH

]

+ 2qG

√
p2H + 4 + pH

(
pG

√
p2H + 1 + (4 +

√
2)qG

)
.

The equality holds if and only if the components of the graph G and H are isolated

vertices. This concludes the proof.

2.2. R-Edge Corona Product

Definition 3. [15]The R-Edge Corona Product for R(G) and H as indicated by R(G)	H
is obtained by taking a copy of distinct vertex graph R(G) and qG copies of H and linking a
vertex of I(G) on ith location in R(G) to each vertex in the ith copy of H.|V (R(G)	H)| =
pG + qG + qGpH and |E(R(G)	H)| = 3qG + qGqH + qGpH .
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Figure 3. R-edge corona product R(P4) 	 P2

The degree behaviour of the vertices is:

dR(G)	H(x) =


2dG(x) ; if x ∈ V (G)

2 + pH ; if x ∈ I(G)

dH(x) + 1 ; if x ∈ V (H).

Theorem 2. Assume that G and H are arbitrary graphs. Then

SO(R(G)	H) ≤ 2SO(G) + qGSO(H) +
√

2

[
√

2M1(G) + qG

(
M

1/2
1 (H) + χ1/2(H)

)]

+ qG

[
√

2

(√
2(pH + 2) + qH(

√
2 + 1)

)
+ pH

(√
p2H + 4pH + 5

)]
.

Equality holds if and only if the components of the graph G and H are isolated vertices.

Proof.

SO(R(G)	H) =
∑

xy∈E(R(G)	H)

√
dR(G)	H(x)2 + dR(G)	H(y)2

=
∑

xy∈E(R(G))
x,y∈V (G)

√
(2dG(x))2 + (2dG(y))2 +

∑
xy∈E(R(G))

x∈V (G),y∈I(G)

√
(2dG(x))2 + (pH + 2)2

+ qG
∑

xy∈E(H)

√
(dH(x) + 1)2 + (dH(y) + 1)2

+
∑

x∈V (R(G))
x∈I(G)

∑
y∈V (H)

√
(pH + 2)2 + (dH(y) + 1)2.

So,
SO(R(G)	H) =

∑
f1 +

∑
f2 +

∑
g +

∑
h

where,

∑
f1 =

∑
xy∈E(R(G))
x,y∈V (G)

√
(2dG(x))2 + (2dG(y))2
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∑
f2 =

∑
xy∈E(R(G))

x∈V (G),y∈I(G)

√
(2dG(x))2 + (pH + 2)2

∑
g = qG

∑
xy∈E(H)

√
(dH(x) + 1)2 + (dH(y) + 1)2

∑
h =

∑
x∈V (R(G))
x∈I(G)

∑
y∈V (H)

√
(pH + 2)2 + (dH(y) + 1)2.

Now, for the computation of
∑
f1 and

∑
f2,

∑
f1 =

∑
xy∈E(R(G))
x,y∈V (G)

√
(2dG(x))2 + (2dG(y))2

= 2
∑

xy∈E(R(G))
x,y∈V (G)

√
dG(x)2 + dG(y)2

= 2SO(G)

and, ∑
f2 ≤ 2

[
M1(G) + qG(pH + 2)

]
.

To determine
∑
g,

∑
g = qG

∑
xy∈E(H)

√
(dH(x) + 1)2 + (dH(y) + 1)2

= qG
∑

xy∈E(H)

√(
dH(x)2 + dH(y)2

)
+ 2

(
dH(x) + dH(y)

)
+ 2

∑
g ≤ qG

[
SO(H) +

√
2

(
χ1/2(H) + qH

)]
.

For the determination of
∑
h,

∑
h =

∑
x∈V (R(G))
x∈I(G)

∑
y∈V (H)

√
(pH + 2)2 + (dH(y) + 1)2

∑
h ≤ qG

[√
2

(
M

1/2
1 (H) +

√
2qH

)
+ pH

(√
p2H + 4pH + 5

)]
.

Hence from all the computations,

SO(R(G)	H) ≤ 2SO(G) + qGSO(H) +
√

2

[
√

2M1(G) +mG

(
M

1/2
1 (H) + χ1/2(H)

)]

+ qG

[
√

2

(√
2(pH + 2) + qH(

√
2 + 1)

)
+ pH

(√
p2H + 4pH + 5

)]
.

The equality holds if and only if the components of the graph G and H are isolated

vertices. This concludes the proof.
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2.3. R - Vertex Neighborhood Corona Product

Definition 4. [15]The R-Vertex Neighborhood Corona Product for R(G) and H as
indicated by R(G) � H is obtained by taking one copy of distinct vertex graph R(G) and
pG copies of H and linking the adjacent or neighboring vertex of G in R(G) on the ith
location in R(G) to each vertex in the ith copy of H. |V (R(G)�H)| = pG+ qG+ pGpH and
|E(R(G)�H)| = 3qG + pGqH + 4qGqH .

Figure 4. R-vertex neighborhood corona product R(P4) � P2

The degree behaviour of the vertices is:

dR(G)�H(x) =


(2 + pH)dG(x) ; if x ∈ V (G)

2(pH + 1) ; if x ∈ I(G)

dH(x) + 2dG(y) ; if x ∈ V (H), y ∈ V (G).

Theorem 3. Assume that G and H are arbitrary graphs. Then

SO(R(G) �H) ≤ (pH + 2)SO(G) + pGSO(H) +M1(G)[pH(pH + 7) + 2]

+ 2

[
M

1/2
1 (G)χ1/2(H) + 2M

3/2
1 (G)M

1/2
1 (H)

]

+ 4qG

[
pH(pH + 2) +

√
2(
√

2 + 1)qH + 1

]
.

Equality holds if and only if the components of the graph G and H are isolated vertices.

Proof.

SO(R(G) �H) =
∑

xy∈E(R(G))

√
dR(G)(x)2 + dR(G)(y)2

+pG
∑

xy∈E(H)

√
dH(x)2 + dH(y)2 +

∑
x∈V (R(G))

∑
y∈V (H)

√
dR(G)(x)2 + dH(y)2
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=
∑

xy∈E(R(G))
x,y∈V (G)

√
(2 + pH)2dG(x)2 + (2 + pH)2dG(y)2

+
∑

xy∈E(R(G))
x∈V (G)
y∈I(G)

√
(2 + pH)2dG(x)2 + 4(pH + 1)2

+pG
∑

xy∈E(H)

√
(dH(x) + 2dG(wi))2 + (dH(y) + 2dG(wi))2

+
∑

x∈V (G)
wi∈NG(x)
wi∈V (G)

∑
y∈V (H)

√
((pH + 2)2dG(x)2 + (2dG(wi) + dH(y))2)

+
∑

x∈V (G)
wi∈NG(x)
wi∈I(G)

∑
y∈V (H)

√
4(pH + 1)2 + (2dG(x) + dH(y))2

=
∑

f1 +
∑

f2 +
∑

g +
∑

h1 +
∑

h2

where,

∑
f1 =

∑
xy∈E(R(G))
x,y∈V (G)

√
(2 + pH)2dG(x)2 + (2 + pH)2dG(y)2

∑
f2 =

∑
xy∈E(R(X))
x∈V (X)
y∈I(X)

√
(2 + pH)2dG(x)2 + 4(pH + 1)2

∑
g = pG

∑
xy∈E(H)

√
(dH(x) + 2dG(wi))2 + (dH(y) + 2dG(wi))2

∑
h1 =

∑
x∈V (G)
wi∈NG(x)
wi∈V (G)

∑
y∈V (H)

√
((pH + 2)2dG(x)2 + (2dG(wi) + dH(y))2)

∑
h2 =

∑
x∈V (G)
wi∈NG(x)
wi∈I(G)

∑
y∈V (H)

√
4(pH + 1)2 + (2dG(x) + dH(y))2.

Now for the computation of
∑
f1 and

∑
f2,

∑
f1 ≤ (pH + 2)SO(G)

∑
f2 ≤ (pH + 2)M1(G) + 4qG(pH + 1).



110 Bounds on Sombor Index for Corona Products on R-Graphs

Also for the computation of
∑
g,√

(dH(x) + 2dG(wi))2 + (dH(y) + 2dG(wi))2

= dH(x)2 + dH(y)2 + 8d2G(wi) + 4dG(wi)

[
dH(x) + dH(y)

]

=⇒
∑

g ≤ pGSO(H) + 2

[
M

1/2
1 (G)χ1/2(H) + 2

√
2qGqH

]
.

To determine
∑
h1,

∑
h1 =

∑
x∈V (G)
wi∈NG(x)
wi∈V (G)

∑
y∈V (H)

√
((pH + 2)2dG(x)2 + (2dG(wi) + dH(y))2)

=
∑

x∈V (G)
wi∈NG(x)
wi∈V (G)

∑
y∈V (H)

√
(pH + 2)2dG(x)2 + dH(y)2 + 4dG(wi)2 + 4dG(wi)dH(y)

=
∑

x∈V (G)

∑
wi∈NG(x)

∑
y∈V (H)

√
(pH + 2)2dG(x)2 + dH(y)2 + 4dG(wi)2 + 4dG(wi)dH(y).

Hence,

∑
h1 ≤ pH

(
pH + 2

)
M1(G) + 2

[
pHM1(G) +M

1/2
1 (H)M

3/2
1 (G)

]
+ 4qGqH .

To determine
∑
h2,

∑
h2 =

∑
x∈V (G)
wi∈NG(x)
wi∈I(G)

∑
y∈V (H)

√
4(pH + 1)2 + (2dG(x) + dH(y))2

=
∑

x∈V (G)

∑
y∈V (H)

√
4(pH + 1)2 + dH(y)2 + 4dG(x)dH(y) + 4dG(x)2.

Hence,

∑
h2 ≤ 2

[
M

3/2
1 (G)M

1/2
1 (H) + pHM1(G) + 2qG

(
pH(pH + 1) + qH

)]
.

From all the computations,

SO(R(G) �H) ≤ (pH + 2)SO(G) + pGSO(H) +M1(G)[pH(pH + 7) + 2]

+ 2

[
M

1/2
1 (G)χ1/2(H) + 2M

3/2
1 (G)M

1/2
1 (H)

]

+ 4qG

[
pH(pH + 2) +

√
2(
√

2 + 1)qH + 1

]
.

The equality holds if and only if the components of the graph G and H are isolated

vertices. This concludes the proof.
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2.4. R-Edge Neighborhood Corona Product

Definition 5. [15] The R-Edge Neighborhood Corona Product for R(G) and H as indi-
cated by R(G) �His obtained by taking copy of distinct vertex graph R(G) and qG copies
of H and linking the adjacencies or neighboring vertices of I(G) in R(G) on the ith lo-
cation in R(G) to each vertex in ith copy of H. |V (R(G) � H)| = pG + qG + qGqH and
|E(R(G)�H)| = 3qG + qGqH + 2qGpH .

Figure 5. R-edge neighborhood corona product R(P4) � P2

The degree behaviour of the vertices is:

dR(G)�H(x) =


(2 + pH)dG(x) ; if x ∈ V (G)

2 ; if x ∈ I(G)

dH(x) + 2 ; if x ∈ V (H).

Theorem 4. Assume that G and H are arbitrary graphs. Then

SO(R(G) �H) ≤ (pH + 2)SO(G) + qGSO(H) +M1(G)

[
pH(pH + 3) + 2

]
+ 2qG

[
χ1/2(H) + 2M

1/2
1 (H) +

√
2(
√

2 + 1)qH + 2(pH + 1)

]
.

Equality holds if and only if the components of the graph G and H are isolated vertices.

Proof.

SO(R(G) �H) =
∑

xy∈E(R(G))

√
dR(G)(x)2 + dR(G)(y)2

+

qG∑
i=1

∑
xy∈E(H)

√
dH(x)2 + dH(y)2 +

∑
x∈V (R(G))

∑
v∈V (H)

√
dR(G)(x)2 + dH(y)2
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=
∑

xy∈E(R(G))
x,y∈V (G)

√
(pH + 2)2dG(x)2 + (pH + 2)2dG(y)2

+
∑

xy∈E(R(G))
x∈V (G)
y∈I(G)

√
(pH + 2)2dG(x)2 + 4 +

qG∑
i=1

∑
xy∈E(H)

√
(dH(x) + 2)2 + (dH(y) + 2)2

+
∑

x∈I(G)
wi∈NG(x)
wi∈V (G)

∑
y∈V (H)

√
(pH + 2)2dG(wi)2 + (dH(y) + 2)2

=
∑

f1 +
∑

f2 +
∑

g +
∑

h.

where,

∑
f1 =

∑
xy∈E(R(G))
x,y∈V (G)

√
(pH + 2)2dG(x)2 + (pH + 2)2dG(y)2

∑
f2 =

∑
xy∈E(R(G))
x∈V (G)
y∈I(G)

√
(pH + 2)2dG(x)2 + 4

∑
g =

qG∑
i=1

∑
xy∈E(H)

√
(dH(x) + 2)2 + (dH(y) + 2)2

∑
h =

∑
x∈I(G)

wi∈NG(x)
wi∈V (G)

∑
y∈V (H)

√
(pH + 2)2dG(wi)2 + (dH(y) + 2)2.

For the computation of
∑
f1,

∑
f1 =

∑
xy∈E(R(G))
x,y∈V (G)

√
(pH + 2)2dG(x)2 + (pH + 2)2dG(y)2

= (pH + 2)
∑

xy∈E(R(G))
x,y∈V (G)

√
dG(x)2 + dG(y)2

= (pH + 2)SO(G).

Similarly for
∑
f2,

∑
f2 =

∑
xy∈E(R(G))
x∈V (G)
y∈I(G)

√
(pH + 2)2dG(x)2 + 4

=
∑

x∈V (G)

(√
(pH + 2)2dG(x)2 + 4

)
dG(x)
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Hence
∑
f2 ≤ (pH + 2)M1(G) + 4qG. To determine

∑
g,

∑
g =

qG∑
i=1

∑
xy∈E(H)

√
(dH(x) + 2)2 + (dH(y) + 2)2

= qG
∑

xy∈E(H)

√
(dH(x)2 + dH(y)2) + 4(dH(x) + dH(y)) + 8)

=⇒
∑

g ≤ qG

[
SO(H) + 2(χ1/2(H) +

√
2qH)

]
.

Also for
∑
h, we have,

∑
h ≤ pH(pH + 2)M1(G) + 4qG

[
M

1/2
1 (H) + pH + qH

]
.

Hence from all the computations,

SO(R(G) �H) ≤ (pH + 2)SO(G) + qGSO(H) +M1(G)

[
pH(pH + 3) + 2

]
+ 2qG

[
χ1/2(H) + 2M

1/2
1 (H) +

√
2(
√

2 + 1)qH + 2(pH + 1)

]
.

The equality holds if and only if the components of the graph G and H are isolated

vertices. This concludes the result.

3. Discussion

In this section, the formulae of the upper bounds of the Sombor index of the corona
graph product variants on the triangle parallel graph for path graphs have been
presented.

Example: For m,n ≥ 2, the upper bounds of Sombor index of the path graphs for
the corona products defined on R-graph are given as:

SO(R(Pn)� Pm) ≤ 2(n− 1)
√
m2 + 4 +mn

√
m2 + 1 + 2

√
m(6.242641n

− 7.02118) + 16.485281mn− 5.414214m+ 1.471621n− 20.026291

SO(R(Pn)	 Pm) ≤ m(n− 1)
√
m2 + 4m+ 5 + 13.071068mn− 13.071068m

+ 5.471621n− 11.841057

SO(R(Pn) � Pm) ≤ 8m2n− 10m2 + 76.970563mn− 91.67m− 16.558332n

+ 5.949926

SO(R(Pn) � Pm) ≤ 4m2n− 6m2 + 38.142136mn− 45.326854m− 1.570224n

− 4.799213
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Figure 6. Corona Product Variants for P3 graphs

For instance if we take n = 3, m = 3 then

SO(R(P3)� P3) = 119.547063 ( < 199.9495110)

SO(R(P3)	 P3) = 80.145618119218 ( < 113.5943280815567)

SO(R(P3) � P3) = 319.4687775336 ( < 499.999996)

SO(R(P3) � P3) = 172.959028762 ( < 251.788775)

Thus, we take the explicit example of standard path graphs for a more profound

understanding of the theorems stated.

4. Conclusion

In chemical graph theory, each molecular graph trait is critical for obtaining im-

provements and the procedure may be aided by the adequate research of topological

descriptors.

Accordingly, this paper monitors and analyses the proposed graph operational

products notably the R-Vertex, R-Edge, R-Vertex Neighborhood and R-Edge

Neighborhood Corona Product of two graphs by exploring the bounds of Sombor

index involving the triangle parallel graph or R-graph. The results achieved con-

tributes towards further research for the exploration in the realm of degree, distance

dependent descriptors and series of graph operational variants.
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