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Abstract: Let G = (V,E), V = {v1, v2, . . . , vn}, E = {e1, e2, . . . , em}, be a simple

graph of order n ≥ 2 and size m without isolated vertices. Denote with µ1 ≥ µ2 ≥
· · · ≥ µn−1 > µn = 0 the Laplacian eigenvalues of G. The Kirchhoff index of a graph
G, defined in terms of Laplacian eigenvalues, is given as Kf(G) = n

∑n−1
i=1

1
µi

. Some

new lower bounds on Kf(G) are obtained.
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1. Introduction

Let G = (V,E), V = {v1, v2, . . . , vn}, E = {e1, e2, . . . , em}, be a simple graph of order

n ≥ 2 and size m without isolated vertices. Denote by ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ >

0, di = d(vi), a sequence of vertex degrees given in nonincreasing order. If vertices vi
and vj are adjacent in G, we denote it as i ∼ j.
Let N(i) be a set of all neighbours of the vertex vi, i.e. N(i) = {vj | vj ∈ V , vi ∼ vj},
and dij the distance between the vertices vi and vj . Denote by Γd a set of all d-

regular graphs, 1 ≤ d ≤ n−1, with diameter D = 2 and |N(i)∩N(j)| = d, i � j, [15].

Denote by A (G) and D (G) = diag (d1, d2, . . . , dn) the adjacency and the diagonal

degree matrix of G, respectively. The Laplacian matrix of G is defined as L(G) =

D(G)−A(G). Eigenvalues of L, µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0, form the Laplacian

spectrum of G.
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The Wiener index, W (G), originally termed as a “path index”, is a topological graph
index defined as [17]

W (G) =
∑
i<j

dij ,

where dij is the number of edges in the shortest path between the vertices vi and vj
in graph G.
By analogy with Wiener index, in [8] the Kirchhoff index was introduced. It is defined
as

Kf(G) =
∑
i<j

rij ,

where rij is the resistance distance between the vertices vi and vj of G, i.e. rij
is equal to the resistance between two equivalent points on an associated electrical
network, obtained by replacing each edge of G by a unit (1 ohm) resistor. In [6, 19] it
was observed that the Kirchhoff index can be obtained from the non–zero eigenvalues
of the Laplacian matrix, that is

Kf(G) = n

n−1∑
i=1

1

µi
.

If G ∈ Γd, then [15]

Kf(G) =
n(n− 1)− d

d
.

The Kirchhoff index is investigated extensively in mathematical and chemical liter-

atures [1, 3, 4, 9–13, 18] In the present paper we consider lower bounds on Kf(G) as

well as its relationship with some other topological indices.

2. Preliminaries

In this section we recall some analytical inequalities and lower bound on Kf(G),

reported in [18], that are of interest for the present paper.

Lemma 1. [14] Let p = (pi), i = 1, 2, . . . , n, be a sequence of non–negative real numbers,
and a = (ai), i = 1, 2, . . . , n, sequence of positive real numbers. Then, for any real r, r ≤ 0
or r ≥ 1, holds (

n∑
i=1

pi

)r−1 n∑
i=1

pia
r
i ≥

(
n∑
i=1

piai

)r
. (1)

If 0 ≤ r ≤ 1, then the opposite inequality is valid. Equality holds if and only if either r = 0,
or r = 1, or a1 = a2 = · · · = an, or p1 = · · · = pt = 0 and at+1 = · · · = an, or a1 = · · · = at
and pt+1 = · · · = pn = 0, for some t, 1 ≤ t ≤ n− 1.

The inequality (1), originally proved in [7], is known as Jensen’s inequality.
Let a = (ai), i = 1, 2, . . . , n be a sequence of non–negative real numbers, and p = (pi)
a sequence of positive real numbers. Denote by I = {1, 2, . . . , n} and I2 = {1, n} two
index sets, and

M1(a, p; I) =

∑n
i=1 piai∑n
i=1 pi

.

In [5] the following result was proven.
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Lemma 2. [5] Let a = (ai) and b = (bi), i = 1, 2, . . . , n, be sequences of similar mono-
tonicity of non–negative real numbers, and p = (pi), i = 1, 2, . . . , n, a sequence of positive
real numbers. If the pairs

(
M1(a, p; I − I2) ,M1(a, p; I2)

)
and

(
M1(b, p; I − I2) ,M1(b, p; I2)

)
are similarly ordered, then

n∑
i=1

pi

n∑
i=1

piaibi −
n∑
i=1

piai

n∑
i=1

pibi ≥
p1pn(a1 − an)(b1 − bn)

p1 + pn

n∑
i=1

pi . (2)

Equality holds if and only if a2 = a3 = · · · = an−1 = a1+an
2

, or b2 = b3 = · · · = bn−1 =
b1+bn

2
. If the pairs

(
M1(a, p; I − I2) ,M1(a, p; I2)

)
and

(
M1(b, p; I − I2) ,M1(b, p; I2)

)
are

oppositely ordered, then the sense of (2) reverses.

The inequality (2) is generalization of the inequality proven in [16]. On the other

hand, it is a corollary of one more general result proven in [5].

Lemma 3. [2] Let a1 ≥ a2 ≥ · · · ≥ an > 0 be real numbers. Then

n∑
i=1

ai ≥ n
(

n∏
i=1

ai

)1/n

+ (
√
a1 −

√
an)2 , (3)

with equality if a2 = · · · = an−1 =
√
a1an .

A lower bound for Kf(G) that depends on all vertex degrees of G was determined in

[18].

Lemma 4. [18] Let G be a connected graph with n ≥ 2 vertices. Then

Kf(G) ≥ −1 + (n− 1)

n∑
i=1

1

di
. (4)

Equality holds if and only if either G ∼= Kn, or G ∼= Kt,n−t, 1 ≤ t ≤
[
n
2

]
, or G ∈ Γd.

3. Main results

In the next theorem we determine a relationship between the Kirchhoff index and the

first Zagreb index, M1(G).

Theorem 1. Let G be a connected graph of order n ≥ 4 and size m with p, 0 ≤ p ≤ n−2,
pendant vertices. If G is a d-regular graph, 2 ≤ d ≤ n− 1, then

Kf(G) ≥
n(n− 1)− d

d
, (5)

with equality if and only if G ∼= Kn, or G ∈ Γd. If di 6= ∆ for at least one i, 2 ≤ i ≤ n− p,
then

Kf(G) ≥ (n− 1)

(
p−

1

n− 1
+

1

∆

(
n− p+

(n∆− 2m− p(∆− 1))2

2m∆−M1(G)− p(∆− 1)

))
. (6)

Equality holds if and only if G ∼= Kt,n−t, 2 ≤ t < n
2
.
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Proof. Let p, 0 ≤ p ≤ n− 2, be an integer. Then, for any real r, r ≤ 0 or r ≥ 1, the
inequality (1) can be observed in a following form

(
n−p∑
i=1

pi

)r−1 n−p∑
i=1

pia
r
i ≥

(
n−p∑
i=1

piai

)r
. (7)

For r = 2, p = 0, pi = 1
di

, ai = di, i = 1, 2, . . . , n, from (7), that is (1), we obtain

n∑
i=1

1

di
≥

n2

2m
.

Now, from the above and (4) we obtain that

Kf(G) ≥ n2(n− 1)− 2m

2m
. (8)

If G is d-regular, 2 ≤ d ≤ n− 1, from (8) and identity 2m = nd, we arrive at (5). In

[15] (see also [12]) it was proven that equality in (5) holds if and only if G ∼= Kn, or

G ∈ Γd.
For r = 2, pi = ∆−di

di
, ai = di, i = 1, 2, . . . , n− p, the inequality (7) becomes

n−p∑
i=1

∆− di
di

n−p∑
i=1

(∆− di)di ≥
(
n−p∑
i=1

(∆− di)
)2

. (9)

Since

n−p∑
i=1

∆− di
di

= ∆

n−p∑
i=1

1

di
− n+ p ,

n−p∑
i=1

(∆− di)di = ∆

n−p∑
i=1

di −
n−p∑
i=1

d2
i = 2m∆−M1(G)− p(∆− 1) ,

n−p∑
i=1

(∆− di) = n∆− 2m− p(∆− 1) ,

from the above identities and (9) we obtain

(
∆

n−p∑
i=1

1

di
− n+ p

)
(2m∆−M1(G)− p(∆− 1)) ≥ (n∆− 2m− p(∆− 1))2 . (10)

If di = ∆, for every i, i = 1, 2, . . . , n − p, then in (10) equality occurs. Therefore,
without affecting the generality, assume that di 6= ∆ for at least one i, 2 ≤ i ≤ n− p.
In that case

2m∆−M1(G)− p(∆− 1) > 0 ,
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and hence from (10) we get

n−p∑
i=1

1

di
≥

1

∆

(
n− p+

(n∆− 2m− p(∆− 1))2

2m∆−M1(G)− p(∆− 1)

)
. (11)

On the other hand, if G has p, 0 ≤ p ≤ n − 2, pendant vertices, the inequality (4)
can be considered in the following way

Kf(G) ≥ −1 + (n− 1)

n∑
i=1

1

di
= (n− 1)

(
p−

1

n− 1
+

n−p∑
i=1

1

di

)
. (12)

Now, from the above and inequality (11) we arrive at (6).

Equality in (12) holds if and only if either G ∼= Kn, or G ∼= Kt,n−t, 1 ≤ t ≤
[
n
2

]
, or

G ∈ Γd. Since di 6= ∆, for at least one i, 2 ≤ i ≤ n − p (p 6= n − 1), equality in (11)

holds if G ∼= Kt,n−t, 2 ≤ t < n
2 . This implies that equality in (6) holds if G ∼= Kt,n−t,

2 ≤ t < n
2 .

Remark 1. The inequality (5) was proven in [15], whereas (8) in [12].
If the condition for pendant vertices is omitted, then similarly as in Theorem 1, when di 6= ∆,
for at least one i, 2 ≤ i ≤ n, it was proven that [9]

Kf(G) ≥
n(n− 1)−∆

∆
+

(n− 1)(n∆− 2m)2

∆(2m∆−M1(G))
,

with equality if and only if G ∼= Kt,n−t, 2 ≤ t < n
2

.

Corollary 1. Let G be a connected graph of order n ≥ 3 and size m, with p, 0 ≤ p ≤ n−1,
pendant vertices. Then

Kf(G) ≥ (n− 1)p+
(n− 1)(n− p)2 − (2m− p)

2m− p
. (13)

Equality holds if and only if either G ∼= Kn, or G ∼= K1,n−1, or G ∈ Γd.

Proof. For r = 2, pi = 1, ai = di, i = 1, 2, . . . , n− p, the inequality (7) becomes

n−p∑
i=1

1

n−p∑
i=1

d2
i ≥

(
n−p∑
i=1

di

)2

,

That is
(n− p)(M1(G)− p) ≥ (2m− p)2 . (14)

From the above and inequality (6) we obtain (13).

In the next theorem we determine a lower bound on Kf(G) in terms of number of

vertices, edges, pendant vertices, and vertex degrees ∆2 = d2 and δp = dn−p.
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Theorem 2. Let G be a connected graph of order n ≥ 4 and size m with p pendant
vertices. If p = n− 1, then

Kf(G) = (n− 1)2 .

If 0 ≤ p ≤ n− 2, then

Kf(G) ≥ (n− 1)

(
n− 1−∆

∆(n− 1)
+ p+

(n− p− 1)2

2m−∆− p
+

(∆2 − δp)2

∆2δp(∆2 + δp)

)
. (15)

Equality holds if and only if G ∼= Kn, or G ∈ Γd.

Proof. The inequality (2) can be considered as

n−p∑
i=2

pi

n−p∑
i=2

piaibi −
n−p∑
i=2

piai

n−p∑
i=2

pibi ≥
p2pn−p(a2 − an−p)(b2 − bn−p)

p2 + pn−p

n−p∑
i=2

pi ,

where p is an integer such that 0 ≤ p ≤ n− 2.
For pi = di, ai = bi = 1

di
, i = 2, 3, . . . , n− p, the above inequality transforms into

n−p∑
i=2

di

n−p∑
i=2

1

di
−
(
n−p∑
i=2

1

)2

≥
∆2δp

(
1
δp
− 1

∆2

)2

∆2 + δp

n−p∑
i=2

di ,

that is

(2m−∆− p)
n−p∑
i=2

1

di
≥ (n− p− 1)2 +

(∆2 − δp)2

∆2δp(∆2 + δp)
(2m−∆− p) . (16)

Since m ≥ n− 1 and 0 ≤ p ≤ n− 2, the following is valid

2m ≥ 2(n− 1) = n− 1 + n− 1 > ∆ + n− 2 ≥ ∆ + p ,

that is
2m−∆− p > 0 .

Now, from the above and inequality (16) we have that

n−p∑
i=2

1

di
≥

(n− p− 1)2

2m−∆− p
+

(∆2 − δp)2

∆2δp(∆2 + δp)
. (17)

Since G has p pendant vertices, the inequality (4) can be considered as

Kf(G) ≥ −1 + (n− 1)
n∑
i=1

1

di
= −1 + (n− 1)

(
n−p∑
i=2

1

di
+

1

∆
+ p

)
=

= (n− 1)

(
n− 1−∆

∆(n− 1)
+ p+

n−p∑
i=2

1

di

)
.

(18)

From the above and inequality (17) we obtain (15).

Equality in (18) holds if and only if either G ∼= Kn, or G ∼= Kt,n−t, 1 ≤ t ≤
[
n
2

]
,

or G ∈ Γd. Equality in (17) holds if and only if ∆2 = d2 = · · · = dn−p = δp, or
1
d3

= · · · = 1
dn−p−1

=
(

1
∆2

+ 1
δp

)
/2, 0 ≤ p ≤ n − 2. Since G is connected and

G � K1,n−1, p 6= n− 1, equality in (15) holds if and only if G ∼= Kn or G ∈ Γd.
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Corollary 2. Let G be a connected graph of order n ≥ 4 and size m with p pendant
vertices. If G ∼= K1,n−1, then

Kf(G) = (n− 1)2 .

If 0 ≤ p ≤ n− 2, then

Kf(G) ≥ (n− 1)

(
n− 1−∆

∆(n− 1)
+ p+

(n− p− 1)2

2m−∆− p

)
.

Equality holds if and only if G ∼= Kn, or G ∈ Γd.

Remark 2. If the condition for pendant vertices is omitted, then similarly as in Theorem
2, the following results can be proven.
Let G be a connected graph with n ≥ 3 vertices and m edges. Then

Kf(G) ≥
n− 1−∆

∆
+

(n− 1)3

2m−∆
+

(n− 1)(∆2 − δ)2

∆2δ(∆2 + δ)
. (19)

Equality holds if and only if either G ∼= Kn, or G ∼= K1,n−1, or G ∈ Γd.
Let G be a connected graph with n ≥ 3 vertices and m edges. Then

Kf(G) ≥
n− 1−∆

∆
+

(n− 1)3

2m−∆
. (20)

Equality holds if and only if either G ∼= Kn, or G ∼= K1,n−1, or G ∈ Γd.
The inequality (20) was proven in [12].

Theorem 3. Let G be a connected graph of order n ≥ 4 with p, 0 ≤ p ≤ n− 2, pendant
vertices. Then

Kf(G) ≥ (n− 1)

(
n− 1−∆

∆(n− 1)
+ p+ (n− p− 1)

(
∆

detD

) 1
n−p−1

+
(
√

∆2 −
√
δp)2

∆2δp

)
. (21)

Equality holds when G ∼= Kn, or G ∈ Γd.

Proof. The inequality (3) can be considered as

n−p∑
i=2

ai ≥ (n− p− 1)

(
n−p∏
i=2

ai

) 1
n−p−1

+ (
√
a2 −

√
an−p)2 ,

where p is an integer such that 0 ≤ p ≤ n− 2.
For ai = 1

di
, i = 2, 3, . . . , n− p, the above inequality becomes

n−p∑
i=2

1

di
≥ (n− p− 1)

(
n−p∏
i=2

1

di

) 1
n−p−1

+

(
1√
δp
−

1
√

∆2

)2

,
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that is
n−p∑
i=2

1

di
≥ (n− p− 1)

(
∆

detD

) 1
n−p−1

+
(
√

∆2 −
√
δp)2

∆2δp
. (22)

From the above and inequality (18) we obtain (21).

Equality in (22) holds when ∆2 = d2 = · · · = dn−p = δp, or d3 = · · · = dn−p−1 =√
∆2δp. Equality in (18) holds if and only if either G ∼= Kn, or G ∼= Kt,n−t, 1 ≤ t ≤[
n
2

]
, or G ∈ Γd. This implies that equality in (21) holds if G ∼= Kn, or G ∈ Γd.

Corollary 3. Let G be a connected graph of order n ≥ 3 with p, 0 ≤ p ≤ n− 2, pendant
vertices. Then

Kf(G) ≥ (n− 1)

(
n− 1−∆

∆(n− 1)
+ p+ (n− p− 1)

(
∆

detD

) 1
n−p−1

)
.

Equality holds when G ∼= Kn, or G ∈ Γd.

Remark 3. If the condition for pendant vertices is omitted, then similarly as in Theorem
3, the following results can be proven.
Let G be a connected graph with n ≥ 4 vertices. Then

Kf(G) ≥
n− 1−∆

∆
+ (n− 1)2

(
∆

detD

) 1
n−1

+ (n− 1)
(
√

∆2 −
√
δ)2

∆2δ
. (23)

Equality holds if either G ∼= Kn, or G ∼= K1,n−1, or G ∈ Γd.
Let G be a connected graph with n ≥ 3 vertices. Then

Kf(G) ≥
n− 1−∆

∆
+ (n− 1)2

(
∆

detD

) 1
n−1

. (24)

Equality holds if and only if either G ∼= Kn, or G ∼= K1,n−1, or G ∈ Γd.
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