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Abstract: Let S be a commutative ring with unity and A(S) denotes the set of

annihilating-ideals of S. The essential annihilating-ideal graph of S, denoted by EG(S),
is an undirected graph with A∗(S) as the set of vertices and for distinct I,J ∈ A∗(S),

I ∼ J is an edge if and only if Ann(IJ ) ≤e S. In this paper, we classify the Artinian

rings S for which EG(S) is projective. We also discuss the coloring of EG(S). Moreover,
we discuss the domination number of EG(S).
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1. Introduction

Throughout the paper S is a commutative ring with unit element 1 6= 0. I(S) denotes

the set of ideals of S and I∗(S) = I(S)\{0}. An ideal I of S is called an annihilating-

ideal if IJ = 0 for some J ∈ I∗(S). A(S) denotes the set of annihilating-ideals of

S and A∗(S) = A(S) \ {0}. If I ∩ J 6= 0 for every J ∈ I∗(S), then I is said to be

an essential ideal of S. An essential ideal I of S is denoted by I ≤e S. The set of

zero-divisors and the set of maximal ideals of S is denoted by Z(S) and Max(S),

respectively. If an = 0 for some positive integer n, then a is called nilpotent element

of S. The least positive integer m such that am = 0, is called the nilpotency index

of a denoted by ηa. We denote the set of nilpotent elements of S by Nil(S) and

∗ Corresponding Author



716 Essential annihilating-ideal graph of commutative rings

Nil∗(S) = Nil(S) \ {0}. We refer the reader to [5] for any ambiguous notation or

vocabulary in ring theory.

Let G(V,E) be a graph with vertex set V and edge set E. Two adjacent vertices

u and v in G are denoted by u ∼ v. The distance between two vertices u and v,

denoted by d(u, v), is the length of shortest path between u and v. If there is no

such path, then d(u, v) = ∞. If all the vertices of G are adjacent with each other,

then G is called a complete graph, which is denoted by Kn for |V | = n. If V can

be partitioned in to two nonempty disjoint sets V1 and V2 such that every edge of

G has one end in V1 and other end in V2, then G is called a bipartite graph. Also,

if each vertex of V1 is adjacent with every vertex of V2, then G is called a complete

bipartite graph. Moreover, if |V1| = n and |V2| = m, then it is denoted by Kn,m. A

maximal complete subgraph of G is called a clique of G. The number of vertices in a

clique of G is called the clique number of G denoted by ω(G). The coloring of G is an

assignment of color to the vertices of G such that no two adjacent vertices have the

same color. The minimum number of colors required for the coloring of G is called

the chromatic number of G denoted by χ(G). A set S ⊆ V is called a dominating

set of G, if every element of V \ S is adjacent with at least one element of S. The

cardinality of a minimum dominating set of G is called the domination number of G

denoted by λ(G). A dominating set S of minimum cardinality in G is called λ(G)-set

of G. For more details on graph theory, we refer the reader to [14, 15].

Several authors have intensively examined the graphs created from algebraic struc-

tures during the last three decades and it has become a prominent subject of research.

In the study of ring structure, assigning graphs to rings has been widely used. Study-

ing these graphs has the advantage of revealing knowledge about algebraic structures

and vice versa.

Beck [6] established the concept of the zero-divisor graph of a commutative ring in

1988, where he was primarily concerned in colorings. Beck proposed that χ(S) = ω(S)

for any commutative ring S in [6]. For some types of rings, such as reduced rings

and principal ideal rings, he established the supposition. However, this is not the

case in general. This was established in 1993, when Anderson and Naseer presented

a convincing counter example (see Theorem 2.1 in [4]) that proved Beck’s conjecture

for general rings to be false. Anderson and Naseer continued their research into the

colorings of a commutative ring. They take the vertex set as the ring elements and

define an edge between the vertices a and b if and only if ab = 0. In [3], Anderson

and Livingston introduced the zero-divisor graph of S, denoted by Γ(S), with vertex

set Z∗(S) and for distinct a, b ∈ Z∗(S), the vertices a and b are adjacent if and

only if ab = 0. In 2011, Behboodi and Rakeei [7, 8] described a new graph, called

it annihilating-ideal graph AG(S) on S, with the vertex set A∗(S) and two distinct

vertices I and J are adjacent if and only if IJ = 0. Selvakumar and Subbulakshmi

[9] characterize all commutative Artinian non-local rings S for which AG(S) has genus

one. The annihilator-inclusion ideal graph and sum-annihilating essential ideal graph

of a commutative ring have been studied [1, 2].

Recently, Nazim and Rehman [10] introduced and studied the essential annihilating-

ideal graph of a commutative ring S denoted by EG(S). It is an undirected graph
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with vertex set A∗(S) and two distinct vertices I and J are adjacent if and only if

Ann(IJ ) is an essential ideal of S. They proved that AG(S) is a spanning subgraph

of EG(S). Also, they proved that EG(S) is connected with diam(EG(S)) ≤ 3 and

gr(EG(S)) ∈ {3, 4,∞}. Moreover, they classified the Artinian commutative rings

S for which EG(S) is a tree, a unicycle graph, a split graph, a planar graph, an

outerplanar graph or a toroidal graph.

In this paper, we first classify the Artinian rings S for which EG(S) is a projective

graph. Then we discuss about the coloring of EG(S) and prove that EG(S) is weakly

perfect in case of Artinian ring. Finally, we discuss about the domination number of

EG(S) and prove that the domination number of EG(S) can be any arbitrary number.

2. Crosscap of essential annihilating-ideal graph

For non-negative integer k, let Nk signify a sphere with k crosscap attached to it.

For some non-negative integer k, every connected compact surface is homeomorphic

to Nk. The least positive integer k such that the graph G can be embedded in Nk
is the crosscap number of G, denoted by γ(G). It is obvious that γ(H) ≤ γ(G) for

every subgraph H of G. A graph with crosscap number one is said to be projective.

In this section, we classify the Artinian commutative rings S for which EG(S) is a

projective plane i.e., γ(EG(S)) = 1. The crosscap of the complete graph and complete

bipartite graphs are given in the following results, which are useful for proving the

results of this section.

Lemma 1. [15] (1) Let n ≥ 3. Then

γ(Kn) =

{⌈
(n−3)(n−4)

6

⌉
if n ≥ 3 and n 6= 7;

3 if n = 7.

(2) Let n,m ≥ 2. Then

γ(Km,n) =

⌈
(m− 2)(n− 2)

2

⌉
.

Theorem 1. Let (S,=) be a commutative Artinian local ring. Then γ(EG(S)) = 1 if and
only if S have at least five and at most six nonzero proper ideals.

Proof. The proof follows from [10, Lemma 3.2] and Lemma 1.

Theorem 2. Let S = Ψ1 ×Ψ2 × · · · ×Ψn be a commutative ring, where Ψi is a field for
each i and n ≥ 4. Then γ(EG(S)) = 1 if and only if n = 4.

Proof. Since S is a reduced ring, thus by [10, Theorem 2.5], EG(S) = AG(S). Hence

the proof follows from [12, Theorem 3.2].
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Theorem 3. Let S = S1×S2×· · ·×Sn be a commutative ring, where n ≥ 2 and (Si,=i)
is an Artinian local ring with =i 6= 0 for each i, then γ(EG(S)) 6= 1.

Proof. Since AG(S) is a subgraph of EG(S), the proof follows from [12, Theorem

3.3].

Theorem 4. Let S = S1 × S2 × · · · × Sn × Ψ1 × Ψ2 × · · · × Ψm be a commutative ring
, where each (Si,=i) is an Artinian local ring with =i 6= 0, each Ψj is a field and n,m ≥ 1.
Let ηi be the nipotency index of =i. Then γ(EG(S)) = 1 if and only if one of the following
holds:

1. n = m = 1, η1 = 3 and =1 and =2
1 are the only nonzero proper ideals of S1.

2. n = 1, m = 2, η1 = 2 and =1 is the only nonzero proper ideal of S1.

Proof. Suppose γ(EG(S)) = 1. If n ≥ 2, then from Theorem 3, γ(EG(S)) 6= 1, a

contradiction. Hence n = 1.

Suppose m ≥ 3, then the set {=1×(0)×(0)×· · ·×(0), (0)×Ψ1×(0)×· · ·×(0),=1×Ψ1×
(0)×· · ·×(0)}∪{(0)×(0)×Ψ2×(0)×· · ·×(0), (0)×(0)×(0)×Ψ3×(0)×· · ·×(0), (0)×
(0)×Ψ2×Ψ3× (0)×· · ·× (0),S1× (0)× (0)×· · ·× (0),S1× (0)×Ψ2× (0)×· · ·× (0)}
induces a copy of K3,5 in EG(S). Thus, γ(EG(S)) > 1 by Lemma 1, a contradiction.

Hence m ≤ 2. Take the following cases into consideration:

Case(i) m = 2. Suppose η1 ≥ 3. Then the set {S1× (0)× (0),=1× (0)× (0),=η1−1
1 ×

(0)× (0)}∪{(0)×Ψ1× (0), (0)× (0)×Ψ2, (0)×Ψ1×Ψ2,=1×Ψ1× (0),=1× (0)×Ψ2}
induces a copy of K3,5 as a subgraph of EG(S), which is a contradiction by Lemma

1. Hence η1 = 2.

Now, suppose I be a nonzero proper ideal of S1 such that I 6= =1. Then the set

{=1 × (0)× (0), (0)×Ψ1 × (0),=1 ×Ψ1 × (0)} ∪ {I × (0)× (0),=1 × (0)×Ψ2, (0)×
(0)×Ψ2, I × (0)×Ψ2,S1 × (0)× (0)} induces K3,5 as a subgraph of EG(S), which is

a contradiction from Lemma 1. Hence =1 is the only nonzero proper ideal of S1.

Case(ii) m = 1. Suppose η1 ≥ 4, then the set {=η1−1
1 × (0),=η1−2

1 × (0),=η1−3
1 ×

(0)} ∪ {=η1−1
1 × Ψ1,=η1−2

1 × Ψ1,=η1−3
1 × Ψ1, (0) × Ψ1,S1 × (0)} induces K3,5 as a

subgraph of EG(S), which is a contradiction by Lemma 1. Hence η1 ≤ 3.

Suppose η1 = 3 and J ba a nonzero proper ideal of S1 such that J 6= =1, =2
1. One can

see that the set {=1×(0),=2
1×(0),S1×(0)}∪{(0)×Ψ1,=1×Ψ1,=2

1×Ψ1,J×(0),J×Ψ1}
induces K3,5 as a subgraph of EG(S), a contradiction. Hence S1 has only two nonzero

proper ideals given by =1 and =2
1.

Suppose η1 = 2 and K be a nonzero proper ideal of S1 with K 6= =1. Then by [13,

Proposition 2.7] there exist at least three nonzero proper ideals K1, K2 and K3 of S1

such that K1,K2,K3 6= =1. One can see that the set {=1 × (0), (0)×Ψ1,=1 ×Ψ1} ∪
{K1× (0),K2× (0),K3× (0),K× (0),S1× (0)} induces K3,5 as a subgraph of EG(S), a

contradiction. Hence S1 has a unique nonzero proper ideal given by =1. Thus, EG(S)

is planar from [10, Theorem 4.10], a contradiction.

Conversely, if (1) holds, then the projective embedding of EG(S) is shown in Figure

1. If (2) holds, then the projective embedding of EG(S) is shown in Figure 2, where
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S1 × (0)

S1 × (0)

(0)×Ψ1(0)×Ψ1

=1 ×Ψ1

=2
1 ×Ψ1

=1 × (0)

=2
1 × (0)

Figure 1. Projective embedding of EG(S1 ×Ψ1), where =1 and =2
1 are only nonzero proper ideals of S1
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Figure 2. Projective embedding of EG(S1 ×Ψ1 ×Ψ2), where =1 is the only nonzero proper ideal of S1

a = =1 × (0) × (0), b = S1 × (0) × (0), c = =1 × Ψ1 × Ψ2, d = (0) × Ψ1 × Ψ2,

e = =1 × (0) × Ψ2, f = (0) × Ψ1 × (0), g = S1 × Ψ1 × (0), h = S1 × (0) × Ψ2,

i = (0)× (0)×Ψ2, j = =1 ×Ψ1 × (0).

3. Coloring of essential annihilating-ideal graph

In this section, we will discuss about the coloring of EG(S). We prove that EG(S)

is weakly perfect for an Artinian ring S. Moreover, the exact value of χ(EG(S)) is

given.

Theorem 5. Let S be a commutative Artinian ring. Then the following hold:

1. If S is a local ring, then ω(EG(S)) = χ(EG(S)) = |I∗(S)|.

2. If S is a non-local ring, then ω(EG(S)) = χ(EG(S)) = |N∗(S)| + |Max(S)|, where
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N(S) is the set of nilpotent ideals of S.

Proof. (1) Since S is local, then by [10, Lemma 3.2], EG(S) is a complete graph.

Hence ω(EG(S)) = χ(EG(S)) = |I∗(S)|.
(2) Since S is non-local Artinian ring, S ∼= S1×S2×· · ·×Sn, where each Si is a local

Artinian ring and n ≥ 2. Define

A = {I1 × I2 × · · · × In ∈ A∗(S) : Ii is a nilpotent ideal of Si for each 1 ≤ i ≤ n}

and

B = {I1 × I2 × · · · × In ∈ A∗(S) : Ii is not a nilpotent ideal of Si for some

1 ≤ i ≤ n}.

It is easy to see that A∗(S) = A ∪B and A ∩B = ∅. Consider the following claims:

Claim(i): EG(S)[A] is a complete subgraph of EG(S). Let I = I1×I2×· · ·×In ∈ A,

then Ii is a nilpotent ideal of Si for each 1 ≤ i ≤ n. This implies that I is also a

nilpotent ideal of S and hence is adjacent with every other vertex of EG(S) by [10,

Lemma 3.1]. Thus, our claim is proved.

Claim(ii): EG(S)[B] is a multipartite subgraph of EG(S). Define

B1 = {S1 × I2 × · · · × In ∈ B : Ii � Si for each 2 ≤ i ≤ n}

and for each 2 ≤ i ≤ n

Bi = {I1 × I2 × · · · × Ii−1 × Si × Ii+1 × · · · × In ∈ B : Ik � Sk for each

1 ≤ k ≤ i− 1 and Il � Sl for each i+ 1 ≤ l ≤ n}.

Then one can see that B =
n⋃
i=1

Bi and
n⋂
i=1

Bi = ∅. Let I = I1 × I2 × · · · × In and

J = J1 × J2 × · · · × Jn ∈ Bi for some 1 ≤ i ≤ n. Since Ann(IiJi) = Ann(Si) = 0,

Ann(IJ ) �e S. This implies that I � J in EG(S). Hence, no two elements of Bi
are adjacent for each 1 ≤ i ≤ n. This prove our claim.

Also, we can see in Claim(i) that each element of EG(S)[A] is adjacent with every

element of EG(S)[B]. Hence EG(S) = EG(S)[A] ∨ EG(S)[B], which implies that

ω(EG(S)) = χ(EG(S)) = |A|+ n = |N∗(S)|+ |Max(S)|, where n = |Max(S)|.

Corollary 1. Let S = S1 × S2 × · · · × Sn be a commutative ring, where Si is a local
Artinian ring for each 1 ≤ i ≤ n and n ≥ 2. If Si has finitely many ideals for each 1 ≤ i ≤ n,
then

ω(EG(S)) = χ(EG(S)) = n− 1 +
n∏

i=1

mi,

where mi is the number of proper ideals of Si for each 1 ≤ i ≤ n.
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Proof. Since Si is a local Artinian ring for each 1 ≤ i ≤ n, |Max(S)| = n. Also,

I = I1 × I2 × · · · × In is a nilpotent ideal of S if Ii � Si for each 1 ≤ i ≤ n. Thus,

|N∗(S)| =
n∏
i=1

mi − 1. Hence, by Theorem 5,

ω(EG(S)) = χ(EG(S)) = n− 1 +
n∏
i=1

mi.

Corollary 2. Let n = pk1
1 pk2

2 · · · pkm
m be the prime decomposition of n, where m ≥ 2.

Then

ω(EG(Zn)) = χ(EG(Zn)) = m+ k1k2 · · · km − 1.

Corollary 3. Let S = Ψ1 ×Ψ2 × · · · ×Ψn be a commutative ring, where Ψi is a field for
each 1 ≤ i ≤ n. Then

ω(EG(S)) = χ(EG(S)) = n.

We look at EG(S) with finite chromatic number in the next two results.

Theorem 6. Let S be a commutative non-reduced ring. If ω(EG(S)) < ∞, then these
statements are equivalent:

1. Z(S) = Nil(S).

2. S is an Artinian local ring.

Proof. (1) =⇒ (2) Let I be a nonzero nilpotent ideal of S. Then we claim that I
is finitely generated. Suppose on contrary that I is generated by {xi : i ∈ ∧} with

| ∧ | = ∞. Since xiS ⊆ Nil(S) for each i ∈ ∧, {xiS : i ∈ ∧} is an infinite clique by

[10, Lemma 3.1], a contradiction. Hence our claim is proved. Define X = {I ∈ S : I
is nilpotent ideal of S}. Then again by [10, Lemma 3.1], the graph induced by X is a

complete subgraph of EG(S) and thus |X| < ∞. This together with Z(S) = Nil(S)

implies that S is an Artinian ring. Also, Z(S) = Nil(S) shows that S is local.

(2) =⇒ (1) is clear.

Theorem 7. Let S be a commutative Artinian ring. Then ω(EG(S)) = χ(EG(S)) < ∞
if and only if one of the following holds:

1. S is a reduced ring.

2. S has finite number of ideals.
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Proof. One way is clear. Suppose that ω(EG(S)) = χ(EG(S)) < ∞ and S is not a

reduced ring. Since S is an Artinian ring, S ∼= S1 ×S2 × · · · × Sn, where (Si,=i) is a

local Artinian ring with =i 6= 0 for each i. Define X = {I × (0)× · · · × (0) ∈ I(S) : I
is a nilpotent ideal of S1}. Then by [10, Lemma 3.1], the graph induced by the set

X is a complete subgraph of EG(S), which implies that |X| < ∞. Since S1 is local,

Z(S1) = Nil(S1) and so S1 contains finitely many ideals. Let x ∈ Nil(S1) with

x2 = 0. Then the set {xS1 × I2 × I3 × · · · × In ∈ I(S) : I2 ∈ A∗(S2) and Ii = (0) for

each 3 ≤ i ≤ n} is a clique of EG(S) and so S2 has finitely many ideals. Applying the

same argument one can shows that S also have finitely many ideals.

4. Domination number of essential annihilating-ideal graph

In this section, we will discuss about the domination number EG(S). The following

result shows that the domination number of EG(S) may be any arbitrary number.

Proposition 1. Let S = Ψ1 ×Ψ2 × · · · ×Ψn be a commutative ring, where each Ψi is a
field and n ≥ 3 is a fixed integer. Then λ(EG(S)) = n.

Proof. We claim that A = {E1, E2, . . . , En} is a dominating set of EG(S), where

Ei = (0)×(0)×· · ·×(0)×Ψi×(0)×· · ·×(0) for each 1 ≤ i ≤ n. Let I = I1×I2×· · ·×In
be any vertex of EG(S), then there exists at least one 1 ≤ j ≤ n such that Ij = (0).

Since I · Ej = 0, I is adjacent with Ej in EG(S). This prove our claim. Hence

λ(EG(S)) ≤ n.

To show that λ(EG(S)) ≥ n, let A be any λ(EG(S))-set and E i = Ψ1 × Ψ2 × · · · ×
Ψi−1 × (0) × Ψi+1 × · · · × Ψn for each 1 ≤ i ≤ n. Observe that E i is only adjacent

with Ei for each 1 ≤ i ≤ n. Thus, |A ∩ {Ei, E i}| ≥ 1 for each 1 ≤ i ≤ n, which implies

that |A| ≥ n. Hence λ(EG(S)) = n.

Theorem 8. Let S be a commutative ring. Then λ(EG(S)) = 1 if and only if one of the
following holds:

1. There exists a nonzero ideal I of S such that Ann(I) ≤e S.

2. S ∼= Ψ×D, where Ψ is a field and D is an integral domain.

Proof. Suppose there exists I such that Ann(I) ≤e S. Since Ann(I) ⊆ Ann(IJ )

for each J ∈ A∗(S) \ {I}, Ann(IJ ) ≤e S. This implies that J is adjacent with I
for every J ∈ A∗(S) \ {I} and hence λ(EG(S)) = 1. If S ∼= Ψ×D, where Ψ is a field

and D is an integral domain. Then {Ψ × (0)} is a dominating set of EG(S). Hence

λ(EG(S)) = 1.

Conversely, suppose that λ(EG(S)) = 1. Consider the following cases:

Case(i) If S is a non-reduced ring with a ∈ Nil∗(S), then by [10, Lemma 3.1],

Ann(aS) ≤e S, where aS denotes the ideal generated by a in S.
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Case(ii) If S is a reduced ring, then EG(S) = AG(S) by [10, Theorem 2.5]. Hence

by [11, Corollary 2.2], S ∼= Ψ×D, where Ψ is a field and D is an integral domain.

We end this section with the classification of domination number of EG(S) for an

Artinian ring S.

Corollary 4. Let S = S1×S2× · · · × Sn be a commutative ring, where each Si is a local
Artinian ring and n ≥ 2. Then one of the following holds:

1. If Si is a field for each i and n ≥ 3, then λ(EG(S)) = n.

2. If n = 2, S1 and S2 both are fields, then λ(EG(S)) = 1.

3. If Si is not a field for some i, then λ(EG(S)) = 1.
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