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Abstract: A subset D of the vertex set V (G) in a graph G is a point-set dominating

set (or, in short, psd-set) of G if for every set S ⊆ V −D, there exists a vertex v ∈ D
such that the induced subgraph 〈S ∪ {v}〉 is connected. The minimum cardinality

of a psd-set of G is called the point-set domination number of G. In this paper, we
establish two sharp lower bounds for point-set domination number of a graph in terms

of its diameter and girth. We characterize graphs for which lower bound of point set

domination number is attained in terms of its diameter. We also establish an upper
bound and give some classes of graphs which attains the upper bound of point set

domination number.
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1. Introduction

For standard terminologies used in this paper we refer to books by F. Harary [8]

and Chartrand [2]. Throughout this paper we consider simple, finite, undirected and

connected graphs. For any graph G, the set V (G) (or, simply V ) and E(G) (or,

simply E) represents its vertex set and edge set respectively.

The neighborhood of a vertex v in a graph G, denoted by NG(v) (or simply, N(v)),

is the set of all vertices in G adjacent with the vertex v. The set NG(v) ∪ {v} is the
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closed neighborhood of vertex v in G and is denoted by NG[v] (or simply, N [v]). For

any set S ⊂ V , N(S) = ∪v∈SN [v]. The maximum degree among the vertices of G is

denoted by ∆(G).The diameter of G is given by diam(G) = max{d(u, v) : u, v ∈ V }
where d(u, v) denotes distance between u and v. A spider graph is a tree with at

most one vertex of degree greater than 2. In other words, a spider graph is a tree

homeomorphic to star K1,n for some n ≥ 1.

A subset D of the vertex set V (G) of a graph G is called a dominating set of G

if every vertex not in D is adjacent to a vertex in D. The minimum cardinality

of a dominating set of G is called the domination number of G and is denoted by

γ(G). The study of domination and its variants is one of the major research areas

within graph theory. The two books by Haynes et al. [9, 10] provide a comprehensive

treatment of the fundamental concepts and surveys on several advanced topics.

The following theorem provides bounds for the domination number in terms of the

order of the graph and the maximum degree ∆(G).

Theorem 1. [10] Let G be any graph of order n and maximum degree ∆(G). Then

n

1 + ∆(G)
≤ γ(G) ≤

⌊
n

2

⌋
. (1)

Since the introduction of domination, more than 85 variants of concept of domination

have came into existence [9, 10] and have been extensively studied. One such concept

is point set domination in graphs. Point-set domination as a concept was introduced

by Sampathkumar and Pushpa Latha [12] in 1993 purely from theoretical interest by

generalizing the notion of domination. Due to its applicability, point-set domination

has seen stupendous development and several variants of point-set domination [3–6,

11] like global point-set domination, 2-point set domination, point-set tree domination

etc., have also been introduced over the years.

A subset D of the vertex set V (G) in a graph G is a point-set dominating set (or, in

short, psd-set) of G if for every set S ⊆ V −D, there exists a vertex v ∈ D such that

the induced subgraph 〈S ∪ {v}〉 is connected. The minimum cardinality of a psd-set

of G is called the point-set domination number of G and is denoted by γp(G). The

point-set domination number was introduced by Sampathkumar and Pushpa Latha

in [12].

This definition can be seen as a natural extension of the concept of domination (cf.

[9, 10]) by using the interpretation that a subset D of the vertex set V of G is a

dominating set if and only if for every singleton subset {s} of V −D, there exists a

vertex d in D such that the induced subgraph 〈{s} ∪ {d}〉 is connected.
The condition for psd-set reduces to usual domination if S = {s} and hence every
psd-set is a dominating set. Thus

γ(G) ≤ γp(G). (2)

Proposition 1. [12] If D is a psd-set of a graph G, then d(u, v) ≤ 2 for all u, v ∈ V −D.
Also, if G is a graph with maximum degree ∆(G) and order n, then

γp(G) ≤ n−∆(G). (3)
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Inequalities (1), (2) and (3) lead to the inequality

n

1 + ∆(G)
≤ γp(G) ≤ n−∆(G). (4)

In [7], the characterization was given for the extremal graphs for the lower bound

given in (4) for point-set domination number.

Theorem 2. [7] Let G be any graph of order n and maximum degree ∆(G). Then
γp(G) = n

1+∆(G)
if and only if ∆(G) = n− 1.

In this paper, we first establish another lower bound for point-set domination number

of a graph in terms of its diameter and thereafter, we characterize extremal graphs

for the lower bound. Further, though characterizing extremal graphs for the upper

bound given in (4) for point-set domination number is a complex problem, we provide

some classes of extremal graphs for the upper bound.

The following useful observations made in [1, 12] are easy consequences of the defini-

tion of psd-sets.

Proposition 2. [1] Let G be any graph. Then, D ⊆ V is a psd-set of G if and only if
every independent subset W in V −D is contained in N(u) for some u ∈ D.

Theorem 3. [12] For any tree T of order n and maximum degree ∆, γp(T ) = n−∆.

Here we list psd number of some well known classes of graphs.

1. γp(Pn) = n− 2;n ≥ 3.

2. γp(Cn) = n− 2;n ≥ 6.

3. γp(Kn) = 1.

4. γp(Kr,s) = 2; r ≥ 2, s ≥ 2.

Note that if G ∈ {Pn, Cn}, then n
1+∆(G) = n

3 , γ(G) = dn3 e, γp(G) = n − ∆(G).

Therefore n
1+∆(G) < γ(G) < γp(G) = n − ∆(G). Also, if G = Kn, n

1+∆(G) =

γ(G) = γp(G) = n − ∆(G) = 1. In Kr,s,
n

1+∆(G) = r+s
1+max{r,s} , γ(G) = γp(G) = 2

n−∆(G) = r + s−max{r, s}, therefore n
1+∆(G) < γ(G) = γp(G) < n−∆(G).

2. Bounds on Point-set Domination Number

In the next theorem, we establish a lower bound for point-set domination number of

a graph in terms of its diameter.

Theorem 4. For any graph G, γp(G) ≥ diam(G)− 1.
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Proof. Let diam(G) = k and P be any diametrical path of G. Then |V (P )| =

k + 1. We claim that γp(G) ≥ k − 1. Let D be any psd-set of G. From Proposition

1, distance between any two vertices of V (G) − D is at most 2 and consequently,

|(V −D) ∩ V (P )| ≤ 3.

Hence γp(G) ≥ (k + 1) − |(V − D) ∩ V (P )|. Now if |(V − D) ∩ V (P )| ≤ 2, then

γp(G) ≥ k − 1 and we are through in this case. If |(V − D) ∩ V (P )| = 3, let

(V − D) ∩ V (P ) = {x, y, z}. Let w ∈ D such that w is adjacent to y. Clearly w ∈
D−(V (G)−V (P )) and hence γp(G) ≥ |D∩V (P )|+1 = k−1. Thus γp(G) ≥ k−1

As an immediate consequence of Theorem 4 and the bounds for point-set domination

number for a graph given in equation (4), we have the following result.

Corollary 1. For any graph G, max

{
n

1+∆(G)
, diam(G)− 1

}
≤ γp(G) ≤ n−∆(G).

Proof. The results follows from (4) and Theorem 4.

Our immediate aim is to characterize extremal graphs for both lower and upper bound

for point-set domination number obtained in above theorem. In this direction, we first

introduce some definitions and notations.

Definition 1. Consider two paths Pl and Pm of length l and m respectively, and a
complete bipartite graph Kp,q with bi-partition (V1, V2) such that |V1| = p and |V2| = q.
The graph obtained by joining all vertices of V1 to an end vertex u of path Pl and all vertices
of V2 to an end vertex v of a path Pm is denoted by Kl,m

p,q .

Figure 1. Graph Kl,m
p,q .

Clearly, the vertex set of graph Kl,m
p,q can be partitioned into 4 sets V1, V2, V3 and V4

of cardinalities p, q, l and m, respectively such that 〈V1 ∪ V2〉 ∼= Kp,q, 〈V3〉 ∼= Pl and

〈V4〉 ∼= Pm.

Theorem 5. For a graph G of order n, γp(G) = max

{
n

1+∆(G)
, diam(G)− 1

}
if and only

if one of the following holds:

i. G has a spanning tree isomorphic to star K1,n−1,
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ii. G has a spanning tree isomorphic to a spider graph having at most two legs of length
greater than 1, (say) P1 and P2 with l(P1) + l(P2) = diam(G),

iii. G has a spanning subgraph H isomorphic to graph Kl,m
p,q with l +m = diam(G)− 1.

Proof. If γp(G) = n
1+∆(G) , then by Theorem 2, (i) holds. Suppose γp(G) = k − 1,

where k = diam(G). Let D be a γp(G)-set of G. It follows from proof of Theorem 4

that |(V −D) ∩ V (P )| = 2 or 3.

If |(V − D) ∩ V (P )| = 3, then |D ∩ V (P )| = k − 2. Since |D| = k − 1, therefore

D = (D ∩ V (P )) ∪ {w} for some w ∈ V (G) − V (P ). Further using the fact that

D is a psd-set of G and P is a diametrical path of G, it can be easily seen that

V (G)−D ⊆ N(w) and thus (ii) holds.

If |(V −D)∩V (P )| = 2, then let (V −D)∩V (P ) = {x, y}. In view of argument given

in the previous case, d(x, y) = 2 gives (ii). If d(x, y) = 1, then again as D is a psd-set

of G and P is a diametrical path of G, it can be proved that V −D ⊆ N(x1)∪N(y1)

where {x1} = D ∩N(x) and {y1} = D ∩N(y). Furthermore since P is a diametrical

path of G, N(x1) and N(y1) are disjoint subsets of V (G) and every vertex of N(x1)

is adjacent to each vertex of N(y1). Whence condition (iii) holds.

Conversely, suppose G satisfies condition (i), then ∆(G) = n − 1 and diam(G) = 2.

By Theorem 2, γp(G) = n
1+∆(G) = max{ n

1+∆(G) ,diam(G) − 1}. Now suppose G

satisfies (ii) and ∆(G) 6= n− 1. Let w be the central vertex of G. Then V (G)−N(w)

will form a psd-set of G with cardinality k − 1 = diam(G) − 1. By Theorem 4

γp(G) = diam(G) − 1. Next suppose G satisfies condition (iii), then V3 ∪ V4 forms

a psd-set of G and therefore γp(G) ≤ |V3 ∪ V4| = diam(G) − 1. By Theorem 4, we

conclude γp(G) = diam(G)− 1. Hence the result.

After having characterized extremal graphs for the lower bounds of point-set domina-

tion number, next we focus on the upper bound for the point-set domination number

of a graph given in equation (4). First we observe that the upper bound in equation

(4) is a sharp bound for the point-set domination number of a graph. In fact, for

any tree T , γp(T ) = n −∆(T ) (Theorem 3). However, for a graph G, the difference

(n−∆(G))− γp(G) could be made arbitrarily large. For example, if we consider the

complete bipartite graph Kr,s, r > s, γp(G) = 2 and (n − ∆(G)) − γp(G) = s − 2

which depends on s and hence could be made arbitrarily large.

Characterizing graphs whose point set domination number attains the upper bound

appears to be a complex problem. However, in the next section, we make an attempt

to explore extremal graphs for the upper bound and in the process we identify some

classes of graphs attaining the upper bound.
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3. Some classes with γp(G) = |V (G)| −∆(G)

A graph in which the vertex set V (G) can be partitioned into two subsets Ω and I

such that 〈Ω〉 is a clique and I is an independent set in G is called a split graph G

with partition (Ω, I). It is easy to observe that for any split graph G with partition

(Ω, I), ∆(G) ≥ |Ω|.

Theorem 6. If G is a split graph, then γp(G) = |V (G)| −∆(G).

Proof. Let G be a split graph of order n and V (G) = Ω ∪ I, where Ω is a clique in

G and I is an independent subset of G. We will prove that γp(G) = n −∆(G). Let

D be any γp(G)-set. We have two possibilities.

Case 1. (V −D) ∩ I 6= ∅
Let S = (V − D) ∩ I. Since D is a psd-set, there exists some w ∈ Ω such that
S ⊆ N(w). We claim that V −D ⊆ N(w). Consider

V −D = ((V −D) ∩ I) ∪ ((V −D) ∩ (Ω− {w}))
= S ∪ ((V −D) ∩ (Ω− {w}))
⊆ N(w).

Then γp(G) = |D| ≥ n− |V −D| ≥ n− |N(w)| ≥ n−∆(G).

Case 2. (V −D) ∩ I = ∅.
Then V −D ⊆ Ω. Again, γp(G) = |D| ≥ n− |V −D| ≥ n− |Ω| ≥ n−∆(G).

Thus in both cases, we obtain that γp(G) ≥ n−∆(G). From inequality (4) it follows

that γp(G) = n−∆(G).

The Cartesian product of G1 and G2, denoted as G12G2, has V (G1)2V (G2) as vertex

set and two vertices (u1, u2) and (v1, v2) of G12G2 are adjacent if either u1 = v1 and

u2v2 ∈ E(G2) or u1v1 ∈ E(G1) and u2 = v2.

Cartesian product of paths Pn and Pm is called grid and is denoted by Pn2Pm.

Theorem 7. For the graph G = Cn2K2 (n 6= 3), γp(G) = 2n− 3.

Proof. For the graph G, |V (G)| = 2n and ∆(G) = 3 and therefore by inequality (4),

γp(G) ≤ 2n− 3.

Let D be a γp(G) set. This implies diam(〈V − D〉) ≤ 2. But the only induced

subgraph of diameter 2 in this graph is isomorphic to either K1,3 or C4 which means

|V −D| ≤ 4.

If |V −D| = 4, then V −D is isomorphic to one of C4 and K1,3. But in either case, D

ceases to be a psd-set of G. Hence it follows that |V −D| ≤ 3, that is, |D| ≥ 2n− 3.

Hence the result.

Theorem 8. For the graph G = Cn2Pm, (n,m ≥ 3), γp(G) = nm− 4.
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Proof. For the graph G, |V (G)| = nm and ∆(G) = 4 and therefore by inequality

(4), γp(G) ≤ nm− 4.

Let D be a γp(G)-set, which implies diam(〈V −D〉) ≤ 2. The maximum number of

vertices possible in an induced subgraph of G with diameter at most 2 is 5. Thus

|V −D| ≤ 5.

In case |V −D| = 5, V −D is isomorphic to K1,4. But, then, D ceases to be a psd-set

of G. Hence |V −D| ≤ 4, and the result follows.

Theorem 9. For a graph G = Cr2Cs, γp(G) = n−∆(G), where n = rs.

Proof. Follows immediately on lines similar to the proof of Theorem 8.

Theorem 10. For a grid G = Pn2Pm,(n,m ≥ 3) γp(G) = nm− 4.

Proof. Follows immediately on lines similar to the proof of Theorem 8.

In the next Theorem we prove that middle graph of cycle graph also attains the

upper bound of psd number in the inequality (3).

The middle graph of a connected graph G, denoted by M(G), is the graph with vertex

set V (M(G)) = V (G)∪E(G) and uv ∈ E(M(G)) if either u and v are adjacent edges

of G or one is a vertex of G and the other is an edge of G incident with it.

Theorem 11. For the graph G = M(Cp), where Cp is a cycle of length p, γp(G) = 2p−4.

Proof. For the graph G = M(Cp), |V (G)| = 2p and ∆(G) = 4. By inequality (3),

γp(G) ≤ 2p− 4.

Let D be a γp(G)-set, which implies diam(〈V −D〉) ≤ 2. The maximum number of

vertices possible in an induced subgraph of G with diameter at most 2 is 5. Thus

|V −D| ≤ 5.

In case |V −D| = 5, 〈V −D〉 is isomorphic to a friendship graph with 5 vertices. But,

then, D ceases to be a psd-set of G. Hence |V −D| ≤ 4, and the result follows.

4. Another Bound for γp(G) in terms of Girth of G

In this section we establish another sharp lower bound for point-set domination num-

ber of a graph G in terms of its girth g(G).

Theorem 12. For any graph G � C5 with girth g(G) ≥ 3, γp(G) ≥ g(G)− 2.
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Proof. Let g(G) = k and C be any cycle of length k. We claim that γp(G) ≥ k− 2.

Let D be any psd-set of G. If g(G) = 3, then inequality holds trivially. Note that

when γp(G) = 1, then there is a vertex u ∈ G with deg(u) = |V (G)| − 1. In that

case either G is isomorphic to a star or g(G) = 3. Therefore if g(G) > 3, we have

γp(G) ≥ 2. Thus the result holds for g(G) = 4. Next consider that girth of G is 5. We

shall prove that γp(G) ≥ 3. If |(V −D)∩ V (C)| ≤ 2, then we are through. Therefore

let |(V − D) ∩ V (C)| > 2 and let C = (x0, x1, x2, x3, x4, x0). Since g(G) = 5, for

any i ∈ Z5, N(xi−1, xi+1) = {xi}. Hence, for any i ∈ Z5, {xi−1, xi, xi+1} * V −D.

Hence at least two non adjacent vertices of C belong to D, say x2 and x4. Further

since G � C5 and is a connected graph, there exists u ∈ V (G) \ V (C) such that u is

adjacent to at least one vertex of C. If u ∈ D, then |D| ≥ 3 and we are done. Let

u /∈ D. As g(G) = 5, u is adjacent to exactly one vertex of C and in every possible

case there exists a vertex in D \ V (C) adjacent to u and one vertex of {x0, x1, x2}.
Then in that case |D| ≥ 3. Hence γp(G) ≥ 3 whenever g(G) = 5.

Now let g(G) > 5 and C = (x0, x1, x2, . . . , xk−1, x0). Then since N(xi−1, xi+1) = {xi}
for any i ∈ Zk, therefore {xi−1, xi, xi+1} * V −D. Further, since the distance between

any two vertices of V −D is at most 2 (Proposition 1), we have |(V −D)∩V (C)| ≤ 2.

Hence γp(G) ≥ k − 2 and the result follows.

Remark 1. Note that if G ∼= C5, then γp(G) = 2 = g(G) − 3 < g(G) − 2. Also the
bound for γp(G) obtained in Theorem 12 is sharp. In fact, for any cycle Cn (n 6= 5),
γp(Cn) = n− 2 = g(Cn)− 2.

5. Concluding Remarks

In this paper, we focused on lower and upper bounds of point-set domination number

of a graph. We succeeded in finding extremal graphs for the lower bound of point-

set domination number in terms of its diameter. Although characterizing graphs

attaining the upper bound is an interesting but complex problem, we could establish

certain classes of graphs such that every graph in that class attains the upper bound.

We proved that psd-number of middle graph of a cycle attains the upper bound. It

is our hunch that middle graph of a tree and of a unicyclic graph are also extremal

graphs for the upper bound of their psd-number.

Conjecture 1. If G is a tree, then γp(M(G)) = |V (M(G))| −∆(M(G)).

Conjecture 2. If G is a unicyclic graph, then γp(M(G)) = |V (M(G))| −∆(M(G)).

We further raise the problem:

Problem 1. Characterize graphs G such that γp(G) = |V (G)| −∆(G).
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