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Abstract: A generic rectangular partition is a partition of a rectangle into a finite
number of rectangles provided that no four of them meet at a point. A graph H is

called dual of a plane graph G if there is one−to−one correspondence between the

vertices of G and the regions of H, and two vertices of G are adjacent if and only if the
corresponding regions of H are adjacent. A plane graph is a rectangularly dualizable

graph if its dual can be embedded as a rectangular partition. A rectangular dual R
of a plane graph G is a partition of a rectangle into n−rectangles such that (i) no
four rectangles of R meet at a point, (ii) rectangles in R are mapped to vertices of

G, and (iii) two rectangles in R share a common boundary segment if and only if the

corresponding vertices are adjacent in G. In this paper, we derive a necessary and
sufficient for a rectangularly dualizable graph G to admit a unique rectangular dual

upto combinatorial equivalence. Further we show that G always admits a slicible as

well as an area−universal rectangular dual.

Keywords: plane graphs, rectangularly dualizable graphs, rectangular duals, rectan-

gular partitions

AMS Subject classification: 68R10, 68U05

1. Introduction

A generic rectangular partition is a partition of a rectangle into a finite number of

rectangles provided that no four of them meet at a point. In this paper, we consider

simple and finite graphs and a rectangular partition, we mean a generic rectangular

partition. A graph is simple if it is has no multiple edges (parallel edges) as well as

loops. A graph is called planar if it can be drawn in the Euclidean plane without
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14 Rectangularly dualizable graphs

crossing its edges except at its endpoints. A plane graph is a planar graph with

a fixed planar drawing. It splits the Euclidean plane into connected regions called

faces; the unbounded region is the exterior face (the outermost face) and all other

faces are interior faces. The vertices lying on the exterior face are exterior vertices

and all other vertices are the interior vertices. The edges of the exterior face is called

the exterior edges or boundary edges. A graph H is called dual of a plane graph G
if there is a one−to−one correspondence between the vertices of G and the regions

of H, and two vertices of G are adjacent if and only if the corresponding regions of

H are adjacent. An extended graph (4−completion) E(G) of an RDG G is obtained

by inserting a cycle of length 4 at the exterior of the RDG and then connecting the

vertices of the cycle to the exterior vertices of G. A plane graph is a rectangularly

dualizable graph (RDG) if its dual can be embedded as a rectangular partition. A

rectangular dual R of a plane graph G is a partition of a rectangle into n−rectangles

such that (i) no four rectangles of R meet at a point, (ii) rectangles in R are mapped

to vertices of G, and (iii) two rectangles in R share a common boundary segment if

and only if the corresponding vertices are adjacent in G.

A rectangular dual R naturally induces a labeling of its extended dual graph E(G).

If two rectangles of R share a vertical segment, then blue color is assigned to the

corresponding edge in E(G) and is directed from left to right otherwise if they share

a horizontal segment, red color is assigned to the corresponding edge in E(G) and is

directed from bottom to top (see Fig. 1). Then the orientations of all edges incident

to some vertex vi of an RDG G is a clockwise sequence of these edges composed of four

subsequences: vertical edges directed into vi, followed by horizontal edges directed

into vi and then vertical and horizontal from vi. Such labeling is called regular edge

labeling and vi is called a well formed vertex. If each vertex of G is well formed, then

G is called a well formed graph (an oriented graph).
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Figure 1. Two combinatorially equivalent rectangular duals inducing the same regular edge labeling of
their extended graph.

Two rectangular duals F1 and F2 of the same extended graph E(G) are said to be

combinatorially equivalent (topologically equivalent) if they induce the same regular

edge labeling of E(G). Otherwise, if they induce different regular edge labelings of

E(G), they are said to be topologically distinct. For instance, the rectangular duals

shown in Fig. 2a and 2c are topologically distinct since they induce different regular

edge labelings (shown in Fig. 2d and 2e respectively) of their extended dual graph
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shown in Fig. 2b. In fact, the edge between v10 and v4 has different color in their

respective regular edge labelings. On the other hand, the rectangular duals shown

in Fig. 1 are combinatorially equivalent since they induce the same regular edge

labelings; the only difference is that the dimensions of the component rectangles are

different.
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Figure 2. Two topologically distinct rectangular duals (a & c) corresponding an extended RDG (b) induce
distinct regular edge labelings (d & e).

1.1. Related Work

Not every plane graph can be rectangularly dualized [11, 14, 16]. Constructive rect-

angular duals of planar graphs can be seen in [2, 9, 10, 23].

In general, an RDG may admit many rectangular duals. Rectangular duals of a given

RDG thus generated are adjacency preserving. Adjacency preserving transforma-

tions of rectangular duals have been studied using graph notion [12, 13, 20]. By these

transformations, a number of topologically distinct rectangular duals of a given RDG

can be generated. Such transformations generate different regular edge labelings of

an extended RDG representing a given rectangular dual. Any arbitrary regular edge

labeling of an RDG may not guarantee to admit a rectangular dual. More precisely,

an RDG, in general, admits a lot of regular edge labelings. In 1997, Kant and He [10]

presented an algorithm for deriving a regular edge labeling obtained. Buchin et al. [4]

established an upper bound on the number of edge regular labelings of an RDG. The

concept of regular edge labelings is not only important because of their connection to

find topological distinct rectangular partitions but also because of their connection

to 4−connected plane graphs. Biedl et al. [3] showed that 4−connected plane graphs

with at least four vertices on the exterior face can be extended to an irreducible trian-

gulation. Regular edge labelings can then be used to obtain straight−line drawings of
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these graphs on a small grid [7]. Fusy [7] showed that there is a function α : V → Z

(the set of integers) such that the regular edge labelings of an irreducible triangulation

G are in bijection with the α−orientations of the angular graph of G.

Besides the notion of strong equivalence of rectangular partitions, there is also a notion

of weak equivalence, where two rectangular partitions are said to be equivalent if the

incidence structure among rectangles and maximal line segments is the same. The

number of weak equivalence classes can be seen in [1].

1.2. Motivation

Recently, a series of papers [1, 8, 15, 18, 19, 21, 22] have studied partitions of a

rectangle into n−rectangles without considering prior adjacencies of its rectangles. It

is evident that these enumerations produce a large solution set. In fact, they do not

enumerate all rectangular partitions of a given adjacency set (or a given RDG) which

can be seen in [12, 13, 20], but find all possible combinations of adjacencies among

its rectangles. This makes the solution set very large. For practicality of a solution,

it is computationally expensive to pick a suitable candidate solution from this large

solution set.

Our motivation to find all RDGs that admit unique rectangular duals upto combina-

torial equivalence stems from slicibility and area−universality characteristics of the

unique rectangular duals upto combinatorial equivalence. It is often hard to find

whether an area−universal assignment to a set of rectangles that corresponds to a

given graph is feasible and to construct the corresponding rectangular partition. But

it is easy to do with slicible rectangular duals. In an area−universal rectangular dual,

the assignments of areas to its rectangles can be specified at later design stages. Thus,

we see that the ability of finding an area−universal rectangular dual at the early de-

sign stage will greatly simplify the design process at later stages. Thus in VLSI circuit

and architectural floorplanning, these rectangular duals are always desirable.

1.3. Preliminaries

Let G admit a rectangular dual F . A corner rectangle Rc in F has two adjacent

sides adjacent to the unbounded face and the vertex that is dual to Rc is a corner

vertex in G. The point where three or more rectangles of a given rectangular dual

meet is called a joint. We know that a rectangular dual has 3−joints and 4−joints

only where 4−joints are regarded as a limiting case of 3−joints [17]. Hence, abiding

by the common design practice, we consider rectangular duals with 3−joints in this

paper. An interior face f of an oriented RDG is towards a vertex v if two edges of f

with the same orientation are incident to v. Corresponding to a distinct regular edge

labeling of an RDG, there is a topologically distinct rectangular dual of the RDG.

Theorem 1. [20, Theorem 2] An edge e or a block B formed by the four edges incident
at an interior vertex of degree 4 of an oriented RDG is a changeable edge set if and only if
one of the following is true:
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i. the four boundary edges of e or of B have alternating orientations,

ii. e is a boundary edge and the interior face containing e is towards a corner vertex.

Definition 1. [12] A single edge in a rectangular dual F (or in its RDG) is a turnable
structure (T−structure) if it occurs in any one of the four configurations shown in Fig. 3a−3d
(or in Fig. 3e−3h). The red edges in Fig. 3 are T−structures. A T−structure may consist of
more than one edge. A simple T−structure A in F is defined as a T−structure for which there
exist 4 edges in F that do not belong to A, but share endpoints with A. Correspondingly
in the RDG, a simple T−structure is a 4−cycle enclosing at least one vertex. For more
clarification, refer to Fig. 4.

Theorem 2. [12, Theorem 6] A necessary and sufficient condition for a set A of edges
in a rectangular dual F to be a simple T−structure is that the subgraph A∗ consisting of
edges that are dual to A in the oriented extended graph E(G) representing F is the subgraph
contained in the interior of a 4−cycle C (cycle of length 4).

A 4−cycle in a plane graph is called a complex 4−cycle if it encloses at least one vertex.

A 4−cycle is maximal if it is not contained in other 4−cycle. A rectangular dual is

slicing if it is obtained by repeatedly cutting (slicing) a rectangle into component

rectangles.
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Figure 3. (a−d) Single edge simple T−structures in a rectangular dual and (e−h) Corresponding single
edge simple T−structures in its RDG
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Theorem 3. [23, Theorem 1] If an RDG G contains no complex 4−cycle, then it can be
realized by a slicible rectangular dual.

Theorem 4. [5, Theorem 1] An RDG G with n vertices, n > 4, is slicible if it satisfies
either of the following two conditions:

• its outermost cycle is the only complex 4−cycle in G and at least one of its four vertices
is a non−distinct corner;

• all the complex 4−cycles of G are maximal.

Definition 2. [6] A rectangular dual is called area−universal if each assignment of areas
to its rectangles can be realized by a combinatorially equivalent rectangular dual.

Definition 3. [6] A line segment in a rectangular dual is formed by a sequence of con-
secutive inner edges of the rectangular dual. A segment is maximal if it is not contained in
any other segment.

Theorem 5. [6, Theorem 2] A rectangular dual F is area−universal if and only if every
maximal internal line segment is the side of at least one rectangle of F .

1.4. Results

Previous attempts [12, 13, 20] show that a number of topologically distinct rectangular

duals can be realized from an RDG, i.e., regular edge labeling of a rectangular dual

for a given RDG, in general, may not be unique. Yet, there exist a lot of RDGs in

which each can be uniquely dualized (refer to Fig. 5) but the class of RDGs wherein

each RDG can be uniquely dualized is still unknown.

In this paper, we derive a necessary and sufficient for a rectangularly dualizable

graph to admit a unique rectangular dual upto combinatorial equivalence. Further

we characterize the rectangularly dualizable graph by the fact that its rectangular dual

is slicible and area−universal. Mathematically it is interesting to study this class since

these RDGs has no alternative solutions, i.e., there is no need to recursively improve

the solution.

In Section 2, we first present a necessary and sufficient condition for an RDG to admit

a unique rectangular dual upto combinatorial equivalence. Then we show that this

RDGs admits a slicible as well as an area−universal rectangular dual. Finally, we

conclude our contribution in Section 3.
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Figure 5. (a) An RDG that admits (b) a unique rectangular dual upto combinatorial equivalence.

2. Derivation of Unique Rectangularly Dualizable Graphs

In this paper, we derive a necessary and sufficient for a rectangularly dualizable

graph to admit a unique rectangular dual upto combinatorial equivalence. Further

we characterize the rectangularly dualizable graph by the fact that its rectangular

dual is slicible as well as area−universal. For the sake of simplicity, we write a unique

rectangular dual instead of a unique rectangular dual upto combinatorial equivalence

throughout the section.

Theorem 6. Let G be an RDG having at least 4 vertices. A necessary condition for G
to admit a unique rectangular dual is that G has exactly 4 vertices of degree 2.

Proof. Assume that G admits a unique rectangular dual F . Denote the degree of a

vertex vk of G by d(vk). Let vc be a vertex in G that corresponds to a corner rectangle

Rc in F . Since Rc is a corner rectangle in F , its two adjacent sides are adjacent to

the exterior. We claim that d(vc) = 2. To the contrary, suppose that d(vc) > 2. This

implies that there exist rectangles R1, R2, . . . , Rn (n ≥ 2) that are adjacent to the

same side of Rc and one of them is an exterior rectangle. Denote it by Re. Now the

edges that have an endpoint incident to R1 , R2 , . . . , Rn and the other endpoint

incident to vc have the same orientations (horizontal or vertical). Consequently, the

inner face containing the boundary edge eb joining vc and the vertex dual to Re is

towards vc. By Theorem 1, the orientation of eb is changeable, which contradicts the

fact that G admits a unique rectangular dual. This proves our claim. Similarly, the

degree of vertices, that are duals to the remaining three corner rectangles of F , can

be shown to be equal to two. Hence the theorem.

Consider the RDG G, but not the E(G) shown in Fig. 2b. It admits more than one

topological distinct rectangular duals as shown in Fig. 2a and 2c, although it has 4

vertices of degree 2; v1, v3, v5, and v7. Thus we see that the converse of Theorem 6

is not true.

It can be seen in Theorem 6 that the orientations of both boundary edges incident to

a two degree vertex of an RDG is not changeable. This means that the orientations

of edges of four corner rectangles in the corresponding rectangular dual are fixed and
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hence the orientations of edges of all its exterior rectangles with the exterior are also

fixed. Now we make the necessary condition in Theorem 6 more stronger so that it

can be a sufficient condition. We first need to prove the following Lemma.

vb

va

vc vdvfve

Rd

Rb

Rc

Ra

Re Rf

 C1

C2

Figure 6. Two 4−cycles intersecting at two non−adjacent vertices of each other.

Lemma 1. Let G be an RDG. If C1 and C2 are 4−cycles in G intersecting each other
at vertices va and vb such that two edges of C1 lie in the interior of C2 and va, vb are
non−adjacent in both C1 and C2, then C1 and C2 never bound a T−structure.

Proof. The statement can be visualized using Fig. 6, where C1 (passing through va,

vd, vb, and ve) intersects C2 (passing through va, vc, vb, and vf ) at two non−adjacent

vertices va and vb. Shaded areas contain other component rectangles. Note that the

rectangles dual to a 4−cycle of an RDG enclosing some vertices, bound a rectangular

area. Therefore the rectangles that are dual to the four vertices of C2 bounds a

rectangular area enclosing the rectangle Re which is dual to a vertex ve of C1. This

implies that the edges incident to ve and lying on C2 have the same orientations which

leads to a directed path consisting of only red edges (or blue edges) in the regular

edge labeling of G joining va and vb on C1. This implies that C1 is not a cycle of

alternating edges in the regular edge labeling of G and hence by Theorem 1 or 2, C1

never bounds a T−structure. Applying the same argument, we can show that C2

never bounds a T−structure. Hence the result.

Lemma 2. If G is an RDG, then each of its regions is triangular.

Proof. Assume that F is a rectangular dual that admits G. No four rectangles of F
meet at a point, i.e., F can have 3−joints only. Let R1, R2, R3 be any three interior

rectangles of F which meet at a point or form a 3−joint. Then three vertices of G
which are duals to these rectangles of F form a cycle of length 3 in the interior of G.

Hence each interior face (region) of G is triangular.
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Theorem 7. Let G be an RDG having at least 4 vertices. A necessary and sufficient
condition for G to admit a unique rectangular dual is that G has 4 vertices of degree 2 and
for any 4−cycle C1 in G, there is another 4−cycle C2 intersecting C1 at vertices va and vb
of G such that two edges of C1 lie in the interior of C2 where va and vb are non−adjacent in
both C1 and C2.

Proof. Necessary Condition: Assume that G admits a unique rectangular dual

F . By Theorem 6, it has four vertices of degree 2.

By Lemma 2, each regions of G is triangular. Then for n > 3, there always exists at

least one 4−cycle in G consisting of a single edge or at least one vertex in its interior.

To the contrary, assume that for a 4−cycle C1 in G, there is no another 4−cycle C2

intersecting C1 at vertices va and vb of G such that two edges of C1 lie in the interior

of C2 where va and vb are non−adjacent in both C1 and C2. Then there are six

possibilities for the occurrence of 4−cycles in G:

i. a 4−cycle enclosing a single edge (see Fig. 7a),

ii. two 4−cycles Cp and Cq intersecting at two vertices va and vb where va and vb
are non−adjacent in Cp and are adjacent in Cq (see Fig. 7d),

iii. a 4−cycle enclosing atleast one vertex (see Fig. 7g),

iv. two 4−cycles intersecting at vertex va such that one completely lies inside the

other (see Fig. 7j),

v. two 4−cycles sharing an edge such that one completely lies inside the other (see

Fig. 7k),

vi. two 4−cycles sharing two edges such that one completely lies inside the other

(see Fig. 7l).

As shown in Fig. 7, the first three cases have T−structures. In Fig. 7j, the interior

4−cycle has no T−structure due to the well formedness of the outer 4−cycle. Since

the outer 4−cycle encloses at least one vertex, it is similar to the 4−cycle shown in

Fig. 7g and hence it has a T−structure.

If there exists another 4−cycle C containing this outer 4−cycle in its interior sharing

a vertex, then C is similar to the 4−cycle shown in Fig. 7g and hence C has a

T−structure and the interior two 4−cycles enclosed by it has no T−structure. If

there is a chain of such 4−cycles with the property that the one which lies inside other

shares a vertex, then the outermost 4−cycle in such chain has always a T−structure.

Similarly, the outermost 4−cycle has a T−structure in Fig. 7k and 7l. Thus we have

seen that all the six possibilities have T−structure which is a contradiction to the

fact that G admits a unique rectangular dual F . This proves the necessary part.



22 Rectangularly dualizable graphs

v1 v2

v4 v3

R1

R4

R2

R3

R1 R2

R3R4

R4 R3

R2

R1

R5

R6

v6

v5

v1

v2

v3

v4

R4
R3

R1

R5

R2

R6

v1

v2

v3

v4

R1

R2

R4

R3

R3

R2

R1

R4

a b c

d e f

g h i

j k l

v1

v2

v3

v4

v5

v6

v7

v1

v2 v3

v4

v5v6

v1

v2

v3

v4

v5

Figure 7. Demonstrations of all possible T−structures upto isomorphism.

Sufficient Condition: Assume that the given conditions hold. Note that none of

the boundary edges incident to a vertex vt of degree 2 can be towards vt. By Theorem

1, the orientations of both boundary edges incident to vt are not changeable. Also by

Lemma 1, C1 and C2 never bound a T−structure. Consequently, G admits a unique

rectangular dual. Hence the proof.

Consider the RDG shown in Fig. 5. There is only one pair of 4−cycles satisfying

Theorem 7: v1v2v3v5v1 and v1v4v5v6v1. Also the given RDG has four vertices v6, v7,

v10, and v12, each of degree 2. Hence the given RDG admits a unique rectangular

dual.

Theorem 8. If an RDG admits a unique rectangular dual F , then F is slicible.

Proof. Assume that G is an RDG that admits a unique rectangular dual F . If G
has no 4−cycle, then by Theorem 3, G admits a slicible rectangular dual. If G has

4−cycles, then by Theorem 7 there only exist pairs of 4−cycles in G intersecting each

other at vertices va and vb of G such that the two edges of one of the two cycles

(forming a pair) lie in the interior of the other where va and vb are non−adjacent in
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both cycles. Clearly, none of them is contained in each other and hence both 4−cycles

are maximal. Since the pair of 4−cycles is arbitrary, each 4−cycle of G is maximal.

Hence By Theorem 4, G admits a slicible rectangular dual F .

s
s

Figure 8. Multiple rectangles on both sides of a maximal line segment s.

Theorem 9. If an RDG admits a unique rectangular dual F , then F is area−universal.

Proof. Assume that G is an RDG that admits a unique rectangular dual F . To the

contrary, suppose that F is not area−universal. By Theorem 5, there is a maximal

internal line segment s in F which is not the side of any of its rectangles, i.e., s is

a maximal internal line segment of F with multiple rectangles on both of its sides.

Then an edge e of F (from which s is formed) must have one of its endpoints as

a T−junction (a point where three rectangles meet) formed by the corners of two

rectangles on one side of s, and on its other endpoint, it must have a T−junction

formed by the corners of two rectangles on the other side of s, as shown in Fig. 8.

Vertices dual to these four rectangles form a 4−cycle of the alternating orientations

in G. By Theorem 1, this 4−cycle is a changeable set which contradicts the fact that

G admits a unique rectangular dual F . Hence the result.

3. Concluding Remarks

In general, the solution set (in terms of rectangular duals) of an RDG is very large.

The crux of this study is to identify those RDGs whose solution set is singleton. In

the literature, a series of papers studied transformations among rectangular duals of

the oriented RDGs. Contrarily, we studied the uniqueness of rectangular duals by

means of unoriented RDGs. Moreover, we characterized that each of these RDGs

admits a slicible as well as an area−universal rectangular dual.
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