
CCO
Commun. Comb. Optim.

c© 2023 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization

Vol. 8, No. 4 (2023), pp. 737-749

DOI: 10.22049/CCO.2022.27794.1355

Research Article

On several new closed-form evaluations for the generalized

hypergeometric functions

B. R. Srivatsa Kumar1, Dongkyu Lim2,∗, Arjun K. Rathie3

1
Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher

Education, Manipal 576 104, India
sri−vatsabr@yahoo.com

2
Department of Mathematics Education, Andong National University

Andong 36729, Republic of Korea
dklim@anu.ac.kr

3
Department of Mathematics, Vedant College of Engineering and Technology, (Rajasthan

Technical University), Village: Tulsi, Post: Jakhmund, Dist: Bundi, 323021, Rajasthan, India
arjunkumarrathie@gmail.com

Received: 4 May 2022; Accepted: 1 September 2022

Published Online: 6 September 2022

Abstract: The main objective of this paper is to establish as many as thirty
new closed-form evaluations of the generalized hypergeometric function q+1Fq(z) for

q = 2, 3. This is achieved by means of separating the generalized hypergeometric func-

tion q+1Fq(z) for q = 1, 2, 3 into even and odd components together with the use of
several known infinite series involving reciprocal of the non-central binomial coefficients

obtained earlier by L. Zhang and W. Ji.

Keywords: Generalized hypergeometric function, central and non-central binomial

coefficients, combinatorial sum, reciprocals

AMS Subject classification: Primary: 05A15, 11B68, 33C20, Secondary: 30C05,
33C05, 33C15

1. Introduction

A natural generalization of the well-known Gauss’s hypergeometric function 2F1 is
the generalized hypergeometric function pFq is defined by [12]

pFq

 a1, a2, . . . , ap

b1, b2, . . . , bq

; z

 =

∞∑
n=0

(a1)n(a2)n . . . (ap)n

(b1)n(b2)n . . . (bq)n

zn

n!
, (1)
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where (a)n is the well-known Pochhammer’s symbol (or the shifted or raised factorial,
since (1)n = n!) defined for the complex number a(6= 0) by

(a)n =


a(a+ 1) . . . (a+ n− 1), n ∈ N

1, n = 0.

In terms of well-known gamma function, (a)n is defined by

(a)n =
Γ(a+ n)

Γ(a)
.

The series (1) is convergent for all values of |z| < ∞ if p ≤ q and for all values of

|z| < 1 if p = q+1 while it is divergent for all values of z, z 6= 0 if p ≥ q+1. Also, when

|z| = 1 with p = q+ 1, the series (1) converges absolutely if Re
(∑q

j=1 bj −
∑p

j=1 aj

)
> 0

conditionally convergent if −1 < Re
(∑q

j=1 bj −
∑p

j=1 aj

)
≤ 0, z 6= 1 and divergent if

Re
(∑q

j=1 bj −
∑p

j=1 aj

)
< −1.

It is not out of place to mention here that the generalized hypergeometric function
occurs in many theoretical and practical applications such as mathematics, theoretical
physics, engineering and statistics. For more details about this function, we refer [1–
3, 9, 12, 15].
On the other hand, the binomial coefficients are defined by

(n
k

)
=


n!

k!(n−k)!
; n ≥ k

0 ; n < k.

(2)

for nonnegative integers n and k. The central binomial coefficients are defined by

(2n

n

)
=

(2n)!

(n!)2
(n = 0, 1, 2, . . .). (3)

It is well known that the binomial and reciprocal of binomial coefficients play an

important role in many areas of mathematics (including number theory, probability

and statistics). Actually the sums containing the central binomial coefficients and

reciprocals of the central binomial coefficients have been studied for a long time. A

large number of very interesting results can be seen in the research papers by Lehmer

[7], Mansour [8], Pla [10], Sherman [14], Sprugnoli [16, 17], Sury [18], Sury et al.

[19], Trif [20], Wheelon [21] and Zhao and Wang [23]. Many facts about the central

binomial coefficients and the reciprocals of the central binomial coefficients can be

found in the book of Koshy [5]. Gould [4] has collected numerous identities involving

central binomial coefficients. Riordan [13] is also a good reference. By employing

several interesting and useful results containing infinite series involving central bino-

mial coefficients and reciprocal of the central binomial coefficients obtained earlier by

Lehmer [7], very recently, Kumar et al. [6] obtained several interesting closed-form
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evaluations of the generalized hypergeometric functions.
Moreover, in 2013, by utilizing Gamma-Beta function, Zhang and Ji [22] obtained the
following result containing infinite series involving reciprocal of non-central binomial
coefficients viz.

∞∑
m=0

1(2m+1
m

) =
2

3
+

4
√

3π

27

and by item splitting established the following fifteen results viz.

∞∑
m=0

1(2m+1
m

)
(2m+ 3)

=
4
√

3π

9
− 2, (4)

∞∑
m=0

1(2m+1
m

)
(2m+ 5)

=
28
√

3π

9
−

50

3
, (5)

∞∑
m=0

1(2m+1
m

)
(2m+ 7)

=
148
√

3π

9
−

4018

45
(6)

∞∑
m=0

1(2m+1
m

)
(2m+ 9)

=
3548

√
3π

45
−

225158

525
, (7)

∞∑
m=0

1(2m+1
m

)
(2m+ 3)(2m+ 5)

= −
4
√

3π

3
+

22

3
, (8)

∞∑
m=0

1(2m+1
m

)
(2m+ 3)(2m+ 7)

= −4
√

3π +
982

45
(9)

∞∑
m=0

1(2m+1
m

)
(2m+ 3)(2m+ 9)

= −
196
√

3π

15
+

112054

1575
, (10)

∞∑
m=0

1(2m+1
m

)
(2m+ 5)(2m+ 7)

= −
20
√

3π

3
+

1634

45
, (11)

∞∑
m=0

1(2m+1
m

)
(2m+ 5)(2m+ 9)

= −
284
√

3π

15
+

18034

175
, (12)

∞∑
m=0

1(2m+1
m

)
(2m+ 7)(2m+ 9)

= −
156
√

3π

5
+

267422

1575
, (13)

∞∑
m=0

1(2m+1
m

)
(2m+ 3)(2m+ 5)(2m+ 7)

=
4
√

3π

3
−

326

45
, (14)

∞∑
m=0

1(2m+1
m

)
(2m+ 3)(2m+ 5)(2m+ 9)

=
44
√

3π

15
−

25126

1575
, (15)

∞∑
m=0

1(2m+1
m

)
(2m+ 3)(2m+ 7)(2m+ 9)

=
68
√

3π

15
−

38842

1575
, (16)
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∞∑
m=0

1(2m+1
m

)
(2m+ 5)(2m+ 7)(2m+ 9)

=
92
√

3π

15
−

52558

1575
, (17)

∞∑
m=0

1(2m+1
m

)
(2m+ 3)(2m+ 5)(2m+ 7)(2m+ 9)

= −
4
√

3π

5
+

762

175
. (18)

Also, in the same paper , they have obtained the following result of infinite series
(containing positive and negative terms) involving reciprocal of non-central binomial
coefficients viz.

∞∑
m=0

(−1)m(2m+1
m

) =
2

5
+

8
√

5

25
lnϕ

with the golden ration ϕ =
√
5+1
2 and by item splitting established the following

results viz.

∞∑
m=0

(−1)m(2m+1
m

)
(2m+ 3)

= −
8
√

5

5
lnϕ+ 2, (19)

∞∑
m=0

(−1)m(2m+1
m

)
(2m+ 5)

=
72
√

5

5
lnϕ−

46

3
, (20)

∞∑
m=0

(−1)m(2m+7
m

)
(2m+ 3)

= −
1144

√
5

15
lnϕ+

3698

45
, (21)

∞∑
m=0

(−1)m(2m+1
m

)
(2m+ 9)

=
1832

√
5

5
lnϕ−

206939

525
, (22)

∞∑
m=0

(−1)m(2m+1
m

)
(2m+ 3)(2m+ 5)

= −8
√

5 lnϕ+
26

3
, (23)

∞∑
m=0

(−1)m(2m+1
m

)
(2m+ 3)(2m+ 7)

=
56
√

5

3
lnϕ−

902

45
, (24)

∞∑
m=0

(−1)m(2m+1
m

)
(2m+ 3)(2m+ 9)

= −
184
√

5

3
lnϕ+

103994

1575
, (25)

∞∑
m=0

(−1)m(2m+1
m

)
(2m+ 5)(2m+ 7)

=
136
√

5

3
lnϕ−

2194

45
, (26)

∞∑
m=0

(−1)m(2m+1
m

)
(2m+ 5)(2m+ 9)

= −88
√

5 lnϕ+
16574

175
, (27)

∞∑
m=0

(−1)m(2m+1
m

)
(2m+ 7)(2m+ 9)

= −
664
√

5

3
lnϕ+

375122

1575
. (28)

Remark 1. The results (6), (7), (9), (12), (15), (18) and (25) are given here in corrected
form.

The rest of the paper is organized as follows. In section 2, we shall establish the results

(8) to (18) and (23) to (28) in a very elementary way using a partial fraction method.

In addition to this, in this section, we shall add five new results that will be required

in our present investigation. In section 3, we shall express the results (4) to (28) and

(29) to (33) in terms of the generalized hypergeometric functions. Finally, in section
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4, we shall establish as many as thirty new and interesting closed-form evaluations

of the generalized hypergeometric functions q+1Fq(z) for q = 2 and 3 with argument
1

16
. This is achieved by means of separating the generalized hypergeometric function

q+1Fq(z) for q = 1, 2 and 3 into even and odd components together with the results

given in section 3.

2. Alternative derivations of the results (8) to (18) and (23) to
(28) together with five new results

In this section, first we shall provide an alternative derivation of the results (8)

to (18) and (23) to (28) and thereafter provide five new results by the same technique.

(a) Derivation of the results (8) to (18) and (23) to (28)
In order to derive the result (8), let us denote the left-hand side of (8) by S, we have

S =
∞∑

m=0

1(2m+1
m

)
(2m+ 3)(2m+ 5)

.

Now, using partial fractions, it is easy to see that

S =
1

2

∞∑
m=0

1(2m+1
m

) [ 1

2m+ 3
−

1

2m+ 5

]

=
1

2

{ ∞∑
m=0

1(2m+1
m

)
(2m+ 3)

−
∞∑

m=0

1(2m+1
m

)
(2m+ 5)

}
.

Finally, using the results (4) and (5), we at once arrive at the right-hand side

of (8). This completes the proof of the result (8). In exactly the same manner,

the results (9) to (18) and (23) to (28) can be derived. So we prefer to omit the details.

(b) Five new results
In this sub-section, we shall provide the following five new results without proof as
these can be derived in a similar manner mentioned in the sub-section (a). These are

∞∑
m=0

(−1)m(2m+1
m

)
(2m+ 3)(2m+ 5)(2m+ 7)

= −
40
√

5

3
lnϕ+

646

45
, (29)

∞∑
m=0

(−1)m(2m+1
m

)
(2m+ 3)(2m+ 5)(2m+ 9)

=
40
√

5

3
lnϕ−

180689

12600
, (30)

∞∑
m=0

(−1)m(2m+1
m

)
(2m+ 3)(2m+ 7)(2m+ 9)

= 40
√

5 lnϕ−
271129

6300
, (31)
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∞∑
m=0

(−1)m(2m+1
m

)
(2m+ 5)(2m+ 7)(2m+ 9)

=
200
√

5

3
lnϕ−

903827

12600
, (32)

∞∑
m=0

(−1)m(2m+1
m

)
(2m+ 3)(2m+ 5)(2m+ 7)(2m+ 9)

= −
40
√

5

3
lnϕ+

120523

8400
. (33)

3. Results (4) to (28) and (29) to (33) in terms of hypergeo-
metric functions

In terms of the generalized hypergeometric function, the results (4) to (28) and (29)
to (33) can be written in the following manner.

2F1

 1, 2

5
2

; 1
4

 =
4
√

3π

3
− 6, (34)

3F2

 1, 2, 5
2

3
2
, 7
2

; 1
4

 = 5

(
28
√

3π

9
−

50

3

)
, (35)

3F2

 1, 2, 7
2

3
2
, 9
2

; 1
4

 = 7

(
148
√

3π

9
−

4018

45

)
, (36)

3F2

 1, 2, 9
2

3
2
, 11

2

; 1
4

 = 9

(
3548

√
3π

45
−

225158

525

)
, (37)

2F1

 1, 2

7
2

; 1
4

 = 5(22− 4
√

3π), (38)

3F2

 1, 2, 7
2

5
2
, 9
2

; 1
4

 = 21

(
982

45
− 4
√

3π

)
, (39)

3F2

 1, 2, 5
2

3
2
, 9
2

; 1
4

 = 35

(
1634

45
−

20
√

3π

3

)
, (40)

3F2

 1, 2, 9
2

5
2
, 11

2

; 1
4

 = 27

(
112054

1575
−

196
√

3π

15

)
, (41)

4F3

 1, 2, 5
2
, 9
2

3
2
, 7
2
, 11

2

; 1
4

 = 45

(
18034

175
−

284
√

3π

15

)
, (42)
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3F2

 1, 2, 7
2

3
2
, 11

2

; 1
4

 = 63

(
267422

1575
−

156
√

3π

5

)
, (43)

2F1

 1, 2

9
2

; 1
4

 = 105

(
4
√

3π

3
−

326

45

)
, (44)

3F2

 1, 2, 9
2

7
2
, 11

2

; 1
4

 = 135

(
44
√

3π

15
−

25126

1575

)
, (45)

3F2

 1, 2, 7
2

5
2
, 11

2

; 1
4

 = 189

(
68
√

3π

15
−

52558

1575

)
, (46)

3F2

 1, 2, 5
2

3
2
, 11

2

; 1
4

 = 315

(
92
√

3π

15
−

52558

1575

)
, (47)

2F1

 1, 2

11
2

; 1
4

 = 945

(
762

175
−

4
√

3π

5

)
, (48)

2F1

 1, 2

5
2

;− 1
4

 = 6−
24
√

5

5
lnϕ, (49)

3F2

 1, 2, 5
2

3
2
, 7
2

;− 1
4

 = 5

(
72
√

5

5
lnϕ−

46

3

)
, (50)

3F2

 1, 2, 7
2

3
2
, 9
2

;− 1
4

 = 7

(
3698

45
−

1144
√

5

15
lnϕ

)
, (51)

3F2

 1, 2, 9
2

3
2
, 11

2

;− 1
4

 = 9

(
1832

√
5

5
lnϕ−

206939

525

)
, (52)

2F1

 1, 2

7
2

;−
1

4

 = 15

(
26

3
− 8
√

5 lnϕ

)
, (53)

3F2

 1, 2, 7
2

5
2
, 9
2

;− 1
4

 = 21

(
56
√

5

3
lnϕ−

902

45

)
, (54)

3F2

 1, 2, 5
2

3
2
, 9
2

;− 1
4

 = 35

(
136
√

5

3
lnϕ−

2194

45

)
, (55)

3F2

 1, 2, 9
2

5
2
, 11

2

;− 1
4

 = 27

(
103994

1575
−

184
√

5

3
lnϕ

)
, (56)
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4F3

 1, 2, 5
2
, 9
2

3
2
, 7
2
, 11

2

;− 1
4

 = 45

(
16574

175
− 88

√
5 lnϕ

)
, (57)

3F2

 1, 2, 7
2

3
2
, 11

2

;− 1
4

 = 63

(
375122

1575
−

664
√

5

3
lnϕ

)
, (58)

2F1

 1, 2

9
2

;− 1
4

 = 105

(
646

45
−

40
√

5

3
lnϕ

)
, (59)

3F2

 1, 2, 9
2

7
2
, 11

2

;− 1
4

 = 135

(
40
√

5

3
lnϕ−

180689

12600

)
, (60)

3F2

 1, 2, 7
2

5
2
, 11

2

;− 1
4

 = 189

(
40
√

5 lnϕ−
271129

6300

)
, (61)

3F2

 1, 2, 5
2

3
2
, 11

2

;− 1
4

 = 315

(
200
√

5

3
lnϕ−

903827

12600

)
, (62)

2F1

 1, 2

11
2

;− 1
4

 = 945

(
120523

8400
−

40
√

5

3

)
. (63)

4. Closed form evaluations

In this section, we shall establish the following thirty new closed-form evaluations for
the generalized hypergeometric function 3F2(1/16), 4F3(1/16) and 5F4(1/16).

3F2

 1, 1, 3
2

5
4
, 7
4

; 1
16

 = 2

(√
3π

3
−

6
√

5

5
lnϕ

)
, (64)

3F2

 1, 3
2
, 2

7
4
, 9
4

; 1
16

 = 10

(√
3π

3
− 3 +

6
√

5

5
lnϕ

)
, (65)

3F2

 1, 1, 3
2

3
4
, 9
4

; 1
16

 = 36
√

5 lnϕ− 80 +
70
√

3π

9
, (66)

3F2

 1, 3
2
, 2

5
4
, 11

4

; 1
16

 =
9

4

(
140
√

3π

9
−

20

3
− 72

√
5 lnϕ

)
, (67)

4F3

 1, 1, 3
2
, 7
4

3
4
, 5
4
, 11

4

; 1
16

 =
1

3

(
518
√

3π

3
−

224

3
−

4004
√

5

5
lnϕ

)
, (68)
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4F3

 1, 3
2
, 2, 9

4

5
4
, 7
4
, 13

4

; 1
16

 =
9

2

(
148
√

3π

3
−

2572

5
+

1144
√

5

5
lnϕ

)
, (69)

4F3

 1, 1, 3
2
, 9
4

3
4
, 11

4
, 13

4

; 1
16

 =

(
1774

√
3π

5
−

1296291

350
+

8244
√

5

5
lnϕ

)
, (70)

4F3

 1, 3
2
, 2, 11

4

5
4
, 7
4
, 15

4

; 1
16

 =
33

2

(
3548

√
3π

45
−

6073

175
−

1832
√

5

5
lnϕ

)
, (71)

3F2

 1, 1, 3
2

7
4
, 9
4

; 1
16

 = 10(−
√

3π + 12− 60
√

5 lnϕ), (72)

3F2

 1,
3

2
, 2

9

4
,

11

4

;
1

16

 =
7

2

(
120
√

5 lnϕ− 20
√

3π − 20
)
, (73)

3F2

 1, 1, 3
2

5
4
, 11

4

; 1
16

 = 196
√

5 lnϕ− 42
√

3π +
56

3
, (74)

3F2

 1, 3
2
, 2

7
4
, 13

4

; 1
16

 =
135

2

(
628

15
−

56
√

5

3
lnϕ− 4

√
3π

)
, (75)

4F3

 1, 1, 3
2
, 7
4

3
4
, 9
4
, 11

4

; 1
16

 =
1

3

(
−350

√
3π −

1960

3
+ 2380

√
5 lnϕ

)
, (76)

4F3

 1, 3
2
, 2, 9

4

5
4
, 11

4
, 13

4

; 1
16

 =
63

2

(
−20
√

3π +
1276

5
− 136

√
5 lnϕ

)
, (77)

4F3

 1, 1, 3
2
, 9
4

5
4
, 7
4
, 13

4

; 1
16

 =

(
46296

25
− 828

√
5 lnϕ−

882
√

3π

5

)
, (78)

4F3

 1, 3
2
, 2, 11

4

7
4
, 9
4
, 15

4

; 1
16

 =
165

2

(
1612

315
−

196
√

3π

15
+

184
√

5

3
lnϕ

)
, (79)

3F2

 1, 1, 3
2

3
4
, 13

4

; 1
16

 = −426
√

3π +
22248

5
− 1980

√
5 lnϕ, (80)

3F2

 1, 3
2
, 2

5
4
, 1
4

; 1
16

 =
231

2

(
292

35
+ 88

√
5 lnϕ−

284
√

3π

15

)
, (81)

5F4

 1, 1, 3
2
, 7
4
, 9
4

3
4
, 5
4
, 11

4
, 13

4

; 1
16

 =

(
321272

25
− 6972

√
5 lnϕ−

4914
√

3π

5

)
, (82)
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5F4

 1, 3
2
, 2, 9

4
, 11

4

5
4
, 7
4
, 13

4
, 15

4

; 1
16

 =
297

2

(
664
√

5

3
lnϕ−

1436

21
−

156
√

3π

5

)
, (83)

3F2

 1, 1, 3
2

9
4
, 11

4

; 1
16

 =

(
70
√

3π +
1120

3
− 700

√
5 lnϕ

)
, (84)

3F2

 1, 3
2
, 2

11
4
, 13

4

; 1
16

 =
945

2

(
4
√

3π

3
−

108

5
+

40
√

5

3
lnϕ

)
, (85)

3F2

 1, 1, 3
2

7
4
, 13

4

; 1
16

 = 198
√

3π −
1145091

560
+ 900

√
5 lnϕ, (86)

3F2

 1, 3
2
, 2

9
4
, 15

4

; 1
16

 =
1155

2

(
44
√

3π

15
−

6773

4200
−

40
√

5

3
lnϕ

)
, (87)

4F3

 1, 1, 3
2
, 9
4

5
4
, 11

4
, 13

4

; 1
16

 = 3780
√

5 lnϕ−
1279491

200
+

2142
√

3π

5
, (88)

4F3

 1, 3
2
, 2, 11

4

7
4
, 13

4
, 15

4

; 1
16

 =
1485

2

(
68
√

3π

15
+

38587

2100
− 40

√
5 lnϕ

)
, (89)

4F3

 1, 1, 3
2
, 7
4

3
4
, 11

4
, 13

4

; 1
16

 = 966
√

3π −
1324291

80
+ 10500

√
5 lnϕ, (90)

4F3

 1, 3
2
, 2, 9

4

5
4
, 13

4
, 15

4

; 1
16

 =
2079

2

(
92
√

3π

15
+

53707

1400
−

200
√

5

3
lnϕ

)
, (91)

3F2

 1, 1, 3
2

11
4
, 13

4

; 1
16

 =
1413891

160
− 378

√
3π − 6300

√
5 lnϕ, (92)

3F2

 1, 3
2
, 2

13
4
, 15

4

; 1
16

 =
10395

2

(
40
√

5

3
lnϕ−

4
√

3π

5
−

83947

8400

)
. (93)

Proof. In order to establish the results (64)-(93), we shall use the following general
results recorded in [11].

q+1Fq

[
a1, a2, . . . , aq+1

b1, b2, . . . , bq
; z

]
+ q+1Fq

[
a1, a2, . . . , aq+1

b1, b2, . . . , bq
;−z

]

= 2 2q+2F2q+1


a1
2
, a1

2
+ 1

2
, . . . ,

aq+1

2
,
aq+1

2
+ 1

2

1
2
, b1

2
,
b1

2
+ 1

2
, . . . ,

bq
2
,
bq
2

+ 1
2

; z2

 (94)
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and

q+1Fq

 a1, a2, . . . , aq+1

b1, b2, . . . , bq

; z

− q+1Fq

[
a1, a2, . . . , aq+1

b1, b2, . . . , bq
;−z

]

=
2a1a2 . . . aq+1

b1b2 . . . bq
2q+2F2q+1

 a1
2

+ 1
2
, a1

2
+ 1, . . . ,

aq+1

2
+ 1

2
,
aq+1

2
+ 1

3
2
, b1

2
+ 1

2
, b1

2
+ 1, . . . ,

bq+1

2
+ 1

2
,
bq
2

+ 1

; z2

 . (95)

It is not out of place to mention here that the results, (94) and (95) can be established

by resolving a generalized hypergeometric function

q+1Fq

 a1, a2, . . . , aq+1

b1, b2, . . . , bq

;±z


into even and odd components and making use of the following identities:

(a)2n = 22n
(a

2

)
n

(
a

2
+

1

2

)
n

and

(a)2n+1 = a22n
(
a

2
+

1

2

)
n

(a
2

+ 1
)
n
.

Therefore, for the derivation of the results (64) and (65), we substitute the results

(34) and (49) by letting q = 1 and substituting a1 = 1, a2 = 2, b1 = 5/2 and z = 1/4

in (94) and (95) respectively, after some simplification, we obtain the results (64)

and (65) respectively. Similarly, the other results (66) to (93) can be established by

choosing the appropriate parameters and making use of the results (35) to (63) in

(94) and (95) respectively. We however omit the details.

We conclude this section by remarking that the results (64) to (93) have been verified

by using MAPLE software.

5. Concluding remark

In this paper, as many as thirty new-closed form evaluations of the generalized

hypergeometric functions q+1Fq(z) for q = 2, 3 with arguments 1
16 have been

established. This is achieved by means of separating the generalized hypergeometric

function q+1Fq(z) into even and odd components together with the use of the several

known results of interesting series involving reciprocals of the non-central binomial

coefficients obtained earlier by Zhang and Ji [22]. We believe that the results

established in this paper have not appeared in the literature before and represent a
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definite contribution to the theory of the generalized hypergeometric function. It is

hoped that the results could be of potential use in the area of mathematics, statistics

and mathematical physics.
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