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Abstract: Transit functions are introduced to study betweenness, intervals and con-
vexity in an axiomatic setup on graphs and other discrete structures. Prime example of

a transit function on graphs is the well studied interval function of a connected graph.

In this paper, we study the Cycle transit function C(u, v) on graphs which is a transit
function derived from the interval function. We study the betweenness properties and

also characterize graphs in which the cycle transit function coincides with the interval

function. We also characterize graphs where |C(u, v) ∩ C(v, w) ∩ C(u,w)| ≤ 1 as an
analogue of median graphs.

Keywords: Interval function, Cycle transit function, Betweenness

AMS Subject classification: 05C12, 05C38

1. Introduction

Transit functions are introduced by Mulder [9] to generalize three classical notions,

namely convexity, interval and betweenness. The theory of transit functions follows

an axiomatic approach to study betweenness.

Formally, a transit function on a non-empty set V , is defined as a function R : V ×V
to 2V satisfying the following three axioms:

(t1) u ∈ R(u, v), for all u, v ∈ V ,

(t2) R(u, v) = R(v, u), for all u, v ∈ V ,
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(t3) R(u, u) = {u}, for all u ∈ V .

R is called as a transit function on V . If V is the vertex set of a graph G and R is a

transit function on V , then we say that R is a transit function on G. Given a transit

function R on a finite set V , a subset W of V is said to be R-convex if R(u, v) ⊆ V ,

for all u, v ∈W . The collection of all R-convex sets in V is termed as the R-convexity

on V , which is a collection of subsets of V closed under intersection and contains the

empty set ∅ and V .

Throughout this paper, we consider only finite, simple and connected graphs. The

underlying graphGR of a transit function R on V is the graph with vertex set V , where

two distinct vertices u and v are joined by an edge if and only if R(u, v) = {u, v}.
A u − v shortest path in a connected graph G = (V,E) is a u − v path in G of

minimal length, in the sense that it contains minimum number of edges. The length

of a shortest u − v path P is the standard distance in G. We describe some graph

theoretical notions and terminologies required in this paper. Let G = (V,E) be a

connected graph and let u ∈ V (G) then, NG(u) = {v ∈ V (G) : uv ∈ E(G)} is the

neighborhood of u in G. NG[u] = NG(u) ∪ {u} is the closed neighborhood of u in

G and δG(u) = |NG(u)| is the degree of u in G. A subgraph H of G is called an

isometric subgraph if the distance dH(u, v) between any pair of vertices, u, v in H

coincides with that of the distance dG(u, v). H is called an induced subgraph if u, v

are vertices in H such that uv is an edge in G, then uv must be an edge in H also.

A path in G which is induced as a subgraph is an induced path. The complete graph

on n vertices is denoted by Kn. A graph G is a geodetic graph, if any two vertices in

G has a unique shortest path between them.

The n- dimensional hypercube Qn is defined as the Cartesian product of two graphs,

Qn = K2 × Qn−1 where Q1 = K2 . A graph H has an isometric embedding into a

graph G if and only if H ⊆ G and for all u, v ∈ V (H), dH(u, v) = dG(u, v). A graph G

is a partial cube if it can be isometrically embedded into a hypercube Qn. A Hamming

graph is the Cartesian product of complete graphs Ha1,··· ,an
= Ka1

× · · · ×Kan
. A

partial Hamming graph is an isometric subgraph of a Hamming graph. For an edge

e = ab ∈ E, we define the following

Wab = {w ∈ V : d(w, a) < d(w, b)}.

W = {w ∈ V : d(w, a) = d(w, b)}.

Uab = {w ∈Wab : w is adjacent to a vertex in Wba}.

Uba = {w ∈Wba : w is adjacent to a vertex in Wab}.

The interval function IG of a connected graph G is the function IG : V × V −→ 2V

defined as

IG(u, v) = {w ∈ V : w lies on some shortest u, v − path in G}
= {w ∈ V : d(u,w) + d(w, v) = d(u, v)}.
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The interval function IG is the classical instance of a transit function on G. If the

graph G is clear from the context, we may simply, denote the interval function IG
by I. It is easy to see that the underlying graph GI of I is isomorphic to G. The

interval function and the corresponding I-convexity, namely the geodesic convexity of

a connected graph is an important tool in metric graph theory and extensively stud-

ied by several authors including Mulder in [8], Nebeský [11, 12], Chepoi [6] and others.

Nebeský in a series of papers, [11–16], followed by Mulder and Nebeský in [10]

obtained an axiomatic characterization of the interval function I(u, v) in terms of

a set of first order axioms defined on an arbitrary transit function. The axiomatic

characterization of the interval function is further extended to arbitrary graphs

including disconnected graphs in [4]. The following five axioms, namely, the transit

axioms (t1), (t2) and (b2), (b3), and (b4) are essential in all these characterizations.

(b2) if x ∈ R(u, v) and y ∈ R(u, x), then y ∈ R(u, v),

(b3) if x ∈ R(u, v) and y ∈ R(u, x) then x ∈ R(y, v),

(b4) if x ∈ R(u, v) then R(u, x) ∩R(x, v) = {x}.

We quote two more axioms and the Mulder-Nebeský Theorem from [10] characterizing

the interval function of a connected graph.

(s1) : R(u, ū) = {u, ū}, R(v, v̄) = {v, v̄}, u ∈ R(ū, v̄) and ū, v̄ ∈ R(u, v), then v ∈
R(ū, v̄).

(s2) : R(u, ū) = {u, ū}, R(v, v̄) = {v, v̄}, ū ∈ R(u, v), v /∈ R(ū, v̄), v̄ /∈ R(u, v), then

ū ∈ R(u, v̄).

Theorem 1. [10] Let R : V × V −→ 2V be a function on V , satisfying the axioms
(t1), (t2), (b2), (b3), (b4) with the underlying graph GR and let I be the interval function of
GR. The following statements are equivalent.

(a) R = I.

(b) R satisfies axioms (s1) and (s2).

Motivated by the interest on the interval function I of a graph G, one can look at

transit functions on G derived from the I. Examples of such transit functions are

the functions Ij , I
∆ and pre-fiber transit function IF . The functions Ij and I∆

are introduced in [3] and the function I∆ is studied in detail in [5]. Recently, the

transit function IF and its betweenness properties are discussed in [2]. For the sake

of clarity, we define these transit functions on the vertex set V of a connected graph G.

Ij(u, v) = {w ∈ V : w lies on some u− v path in G of length ≤ d(u, v) + j,

for a positive integer j}.

I∆(u, v) = {w ∈ V : w lies on some shortest u − v path in G or w is

adjacent to two adjacent vertices in some shortest u− v path in G}.
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IF (u, v) = {w ∈ V : I(u,w) ∩ I(w, v) = {w}}.

From the definition of these transit functions, it can be observed that I(u, v) ⊆
Ij(u, v), IG(u, v) ⊆ I∆(u, v) and I(u, v) ⊆ IF (u, v), for every u, v ∈ V .

In this paper, we attempt to study another derived transit function from I, namely

the C− transit function of a graph G, which is a transit function finer than IG. This

transit function is obtained from the C-convexity introduced by Norbert Polat in [17]

in the context of the so called netlike partial cubes.

In Section 2, we formally define the C− transit function and discuss its betweenness

properties. In Section 3, we discuss graphs in which the set C(u, v, w) = C(u, v) ∩
C(v, w)∩C(u,w) contain at most one element, for every triple of vertices u, v, w in G.

2. C− transit function and betweenness axioms

In [17], Polat introduced the C-convexity as a convexity finer than the geodesic

convexity as follows. On a graph G with the interval function I, define the map

I : P (V ) → P (V ) as I(A) :=
⋃

u,v∈A I(u, v), for each A ⊆ V . The set of vertices of

G which belong to a cycle of G is denoted by CV (G) and the set of vertices of the

subgraph of G induced by IG(A) is denoted by CV (G[IG(A)]). A set A ⊆ V (G) is

C-convex if CV (G[IG(A)]) ⊆ A.

Now, we define C(u, v) as C(u, v) = {u, v}∪ {w : w ∈ I(x, y) where x, y ∈
I(u, v) and I(x, y) is a cycle (which is clearly isometric) }. If I(u, v) doesn’t contain

any cycle, then C(u, v) = {u, v}. It can be easily observed that if the set A ⊂ V (G)

is C- convex, then C(u, v) ⊆ A, for all u, v ∈ A.

Now let u, v ∈ A be arbitrary and let w ∈ C(u, v), then if w = u or w = v then

clearly w ∈ A. Otherwise, by the definition of C(u, v), w belongs to some I(x, y),

where x, y ∈ I(u, v) and I(x, y) induces a cycle. Then w ∈ CV (G[I(u, v)]). Since A

is C-convex, w ∈ CV (G[I(u, v)]) ⊆ CV (G[IG(A)]) ⊆ A. Thus w ∈ A. It is interesting

to observe that the function C(u, v) is a well defined transit function in the sense that

it satisfies all the axioms (t1), (t2), and (t3) and that the C-convexity is a convexity

induced by the transit function C(u, v).

From the definition of C-transit function, it is clear that C(u, v) ⊆ I(u, v). We are

interested to find graphs G in which C(u, v) = {u, v} and C(u, v) = I(u, v), for every

u, v ∈ V (G). We will also prove that in general, the C-transit function does not satisfy

all the axioms that are satisfied by the interval function I.

We have the following straightforward proposition.

Proposition 1. A connected graph G is a geodetic graph if and only if C(u, v) = {u, v}
for all u, v ∈ V (G).

It is easy to observe that the interval function IG of a graph G satisfies a weaker

axiom than the axiom (b3), named as (b1), defined as:
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(b1) x ∈ R(u, v), x 6= v ⇒ v 6∈ R(u, x), ∀u, v ∈ V .

Next preposition shows that in addition to the transit axioms, (t1), (t2), (t3), the C−
transit function satisfy the axioms (b1), (b2), (b4) and (s1) that are satisfied by the

interval function.

Proposition 2. Let G be a connected graph. Then the C- transit function satisfy the
axioms (b1), (b2), (b4) and (s1).

Proof. For (b1): Let x ∈ C(u, v), x 6= v. If possible assume v ∈ C(u, x), then since

C(u, v) ⊆ I(u, v), v ∈ I(u, x), a contradiction.

For (b2): Let x ∈ C(u, v) then x ∈ I(u, v). If C(u, x) = {u, x}, then clearly, C(u, x) ⊆
C(u, v). If C(u, x) 6= {u, x}, then there exist a y 6= x such that y ∈ C(u, x) and then

y ∈ I(u, x). That is y is a vertex of some cycle C which is induced by the vertices in

I(u, x). That is, y ∈ C(u, x) ⊆ I(u, x) ⊆ I(u, v). Hence y ∈ I(u, v) and y is a vertex

of some cycle C whose vertices belongs to I(u, x) ⊆ I(u, v). Thus y ∈ C(u, v).

For (b4): Let x ∈ C(u, v). We have to show that C(u, x)∩C(x, v) = {x}. Suppose not.

That is, there exists y 6= x such that y ∈ C(u, x) ∩ C(x, v). But C(u, x) ⊆ I(u, x) and

C(x, v) ⊆ I(x, v). Therefore y ∈ I(u, x) and y ∈ I(x, v) implies y ∈ I(u, x) ∩ I(x, v)

and y 6= x, a contradiction. Therefore C(u, x) ∩ C(x, v) = {x}.
For (s1): We have I satisfies the axiom (s1), which means that if d(u, v) = k then

d(ū, v̄) = k. That is the vertices u, v, ū, v̄ lies on some cycle on G. That is, v ∈ I(ū, v̄)

and v lies on some cycle on G. Therefore, v ∈ C(ū, v̄).

The graphs in Figure 1 shows that C(u, v) need not satisfy the axioms (b3) and (s2).

The next theorem characterize the graphs in which C coincide with I.

Figure 1. Example showing that C(u, v) does not satisfy the axioms (b3) and (s2)

Theorem 2. Let G be a connected graph. Then C(u, v) = I(u, v) for all u, v ∈ V (G) if
and only if for any two vertices x, y ∈ V (G) with d(x, y) = 2 there exists at least two shortest
path between x and y.
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Figure 2. K3,2

Proof. First assume that C(u, v) = I(u, v), for every u, v ∈ V (G). Let u, v be

two vertices in G with distance d(u, v) = 2 and have exactly one shortest path be-

tween them. Then the vertices in I(u, v) does not induce a cycle. That implies

C(u, v) = {u, v} 6= I(u, v), contradiction. Therefore there exist at least two shortest

path between any two vertices with distance two.

Conversely, assume that there exist at least two shortest path between any two vertices

with distance two. We have to show that C(u, v) = I(u, v). Suppose w ∈ I(u, v). Let

P be a u − v shortest path containing w and let w′ and w′′ be two vertices in the

shortest path P and adjacent to w. Then d(w′, w′′) = 2. By our assumption there

exist another w′−w′′ shortest path say R which does not contain the vertex w. Let y

be the vertex between w′ and w′′ in the path R. Then the vertices w′yw′′ww′ induces

a cycle and all these vertices belongs to I(u, v). Therefore these vertices belongs to

C(u, v). In particular w ∈ C(u, v). Thus C(u, v) = I(u, v).

A graph G, with interval function I and distance function d is interval- regular if,

|I(u, v) ∩ N(u)| = dG(u, v) or |I(u, v) ∩ N(v)| = dG(u, v). We have the following

remark.

Remark 1. In an interval- regular graph G, C(u, v) = I(u, v), since for any two vertices
with distance 2 in G there is exactly two shortest paths. Hypercubes and Hamming graphs
are examples of interval- regular graphs.

There exist graphs which are not interval-regular but C(u, v) = I(u, v). For example

Kn,m, n ≥ 2,m > 2. In Kn,m, n ≥ 2,m > 2 for any two vertices u, v ∈ V (G) with

d(u, v) = 2 there exists at least two shortest paths between u and v but |I(u, v) ∩
N(u)| 6= d(u, v).

Let G be a connected graph and R be a transit function on G. Then generally the

underlying graph GR and G need not be isomorphic. In case of interval function I,

G and GI are isomorphic but in the case of C- transit function, GC and G need not

be isomorphic. From Theorem 2, we have the following remark.

Remark 2. Let G be a connected graph and let C be the C-transit function then G is
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isomorphic to GC if and only if for any two vertices u, v with d(u, v) = 2 has at least two
shortest path between them.

The following are some axioms satisfied by the C - transit function.

(c1) : if x ∈ R(u, v), y ∈ R(u, x) and x /∈ R(y, v) then R(x, y) = {x, y}.

(c2) : if x ∈ R(u, v), x 6= u, v then there exist y ∈ R(u, v) with y /∈ R(u, x) and

y /∈ R(v, x).

Proposition 3. Let G be a connected graph. Then the C- transit function satisfy the
axioms (c1) and (c2).

Proof. For (c1): Suppose x ∈ C(u, v). Then x is a vertex of some cycle say Cn

which is induced by some vertices in I(u, v). Also y ∈ C(u, x) implies that y is

a vertex of some cycle say Cm which is induced by some vertices in I(u, x). Now

x /∈ C(y, v) implies that the subgraph induced by the vertices in I(y, v) contain no

cycle with x as its vertex, which implies that x and y are the vertices in same cycle

induced by some vertices in I(u, v) and hence there is only one y − x shortest path

and C(x, y) = {x, y}.
For (c2): Suppose x ∈ C(u, v). Then x is a vertex of some cycle say Cn which is

induced by some vertices in I(u, v). Let P and Q be the two disjoint subpaths of the

u− v shortest path in the cycle. Assume x is in the subpath P and let d(u, x) = m.

Then there exist a vertex y in the subpath Q with d(u, y) = m. Therefore y ∈ C(u, v)

and y /∈ C(u, x) and y /∈ C(v, x).

3. Graphs with |C(u, v, w)| ≤ 1

The graphs G having the property that |I(u, v, w)| ≤ 1, for every triple of vertices

u, v, w ∈ V (G) are well studied. These graphs include the class of median graphs,

where |I(u, v, w)| = 1 and the so called weakly median graphs, see [1]. In this section,

we attempt the analogue of graphs G having |I(u, v, w)| ≤ 1, that is, |C(u, v, w)| ≤ 1,

for every triple of vertices u, v, w ∈ V (G). We need the following result by Chepoi [7].

Theorem 3. [7] For the connected graph G the following conditions are equivalent.

1. G is isometrically embeddable in a Hamming graph.

2. For every edge e = ab, the sets Wab,Wba and W are geodesic convex sets.

We have the following Theorem.

Theorem 4. Let G be a partial Hamming graph, then | C(u, v, w) |≤ 1, for any triple of
vertices u, v, w in G.
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Figure 3. Example for | C(u, v, w) |≤ 1 but not a partial Hamming graph.

Proof. First assume that either one of u ∈ C(v, w) or v ∈ C(u,w) or w ∈ C(u, v).

Without loss of generality assume that u ∈ C(v, w). Then there exist vertices v′

(may be v itself) and w′ (may be w itself) with v′, w′ ∈ C(v, w) such that v′ and

w′ are the diametric vertices of a cycle and u ∈ C(v′, w′). Since C satisfies axiom

(b4) and u ∈ C(v, w) implies that C(u, v) ∩ C(v, w) ∩ C(u,w) = {v}. Therefore |
C(u, v, w) |= 1. Now assume that u /∈ C(v, w) and v /∈ C(u,w) and w /∈ C(u, v).

If C(u, v) = {u, v}, C(u,w) = {u,w} and C(v, w) = {v, w} then | C(u, v, w) |= φ.

Suppose that | C(u, v, w) |> 1. That is, there exist vertices x, y with x 6= y and

x, y /∈ {u, v, w} such that x, y ∈ C(u, v, w). Since x, y ∈ C(u, v, w), the subgraph

induced by I(u, v) contains a cycle say Cuv such that x and y are two vertices in

Cuv. That is, there exist vertices u′ (may be u itself) and v′(may be v itself) with

u′, v′ ∈ C(u, v) such that u′ and v′ are the diametric vertices of the cycle Cuv and

x, y ∈ C(u′, v′). Also Since x, y ∈ C(u,w), the subgraph induced by I(u,w) contains a

cycle say Cuw such that x and y are any two vertices of Cuw and since x, y ∈ C(v, w),

the subgraph induced by I(v, w) contains a cycle say Cvw such that x and y are any

two vertices of Cvw. Also we can find diametric vertices u′ and w′ (resp v′ and w′)

corresponding to the cycle Cuw (resp Cvw). Let P and Q be the disjoint u′ − v′ path

in Cuv. Then we have `(P ) = `(Q). Now suppose that both the vertices x and y lies

on the path P . Let u′′ be the neighbour of u′ on the path Q. Then Wu′′u′ contains all

the vertices in the path Q and it does not contain any vertices of the path P . That

is x, y /∈Wu′′u′ and v ∈Wu′′u′ . Also, since x, y ∈ C(u,w) and u′ and w′ are diametric

vertices of the cycle Cuw, we have w ∈ Wu′′u′ . That is, both v and w are in Wu′′u′ .

But x, y ∈ I(v, w) and x, y /∈ Wu′′u′ . That is, Wu′′u′ is not geodesic convex and G

is not a partial Hamming graph, a contradiction. Now suppose that vertex x lies on

the path P and vertex y lies on the path Q. Now x /∈ Wu′′u′ and y, v, w ∈ Wu′′u′ .

Here also, x ∈ I(v, w), but x /∈ Wu′′u′ . That is, Wu′′u′ is not geodesic convex and

G is not a partial Hamming graph, a contradiction. Therefore in a partial Hamming

graph | C(u, v, w) |≤ 1 for any triple of vertices u, v, w.

Consider the graph in Figure 3. In this graph, | C(u, v, w) |≤ 1, for any three vertices

u, v, w. But it is not a partial Hamming graph. The next theorem characterize the
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graph class in which | C(u, v, w) |≤ 1.

Theorem 5. For a graph G, | C(u, v, w) |≤ 1 for all u, v, w ∈ V (G) if and only if G does
not contain K2,3 and its particular subdivisions (subdivision of K2,3 by keeping the distance
d(u, x) = d(u, y), d(v, x) = d(v, y) and d(w, x) = d(w, y) in Figure 2) as isometric subgraphs.

Proof. Suppose G contain K2,3 or its above mentioned subdivision as an isometric

subgraph as labeled in Figure 2, then clearly | C(u, v, w) |= 2. Now assume G does not

contain K2,3 and its above mentioned subdivision as an isometric subgraph. We have

to show that | C(u, v, w) |≤ 1. Assume | C(u, v, w) |> 1. That is there exist at least

two vertices x, y with x 6= y and x, y /∈ {u, v, w} such that x, y ∈ C(u, v, w). Since

x, y ∈ C(u, v), the subgraph induced by I(u, v) contains a cycle say Cuv such that x

and y are any two vertices of Cuv. Then there exist vertices u′ (may be u itself) and

v′(may be v itself) with u′, v′ ∈ C(u, v) such that u′ and v′ are the diametric vertices

of the cycle Cuv and x, y ∈ C(u′, v′). Since x, y ∈ C(u,w), the subgraph induced by

I(u,w) contains a cycle say Cuw with diametric vertices u′ and w′ such that x and

y are any two vertices of Cuw. Also since x, y ∈ C(v, w), the subgraph induced by

I(v, w) contains a cycle say Cvw with diametric vertices v′ and w′ such that x and y

are any two vertices of Cvw.

Claim: d(u′, x) = d(u′, y), d(v′, x) = d(v′, y) and d(w′, x) = d(w′, y). Suppose

d(u′, x) 6= d(u′, y). That is either d(u′, x) < d(u′, y) or d(u′, x) > d(u′, y). We

may assume d(u′, x) < d(u′, y). Then d(v′, x) > d(v′, y), since d(u′, x) + d(x, v′) =

d(u′, v′), d(u′, y) + d(y, v′) = d(u′, v′) and u′ and v′ are the diametric vertices

of the cycle Cuv. Also d(w′, x) > d(w′, y), since d(u′, x) + d(x,w′) = d(u′, w′),

d(u′, y) + d(y, w′) = d(u′, w′) and u′ and w′ are the diametric vertices of the cy-

cle Cuw. But both d(v′, x) > d(v′, y) and d(w′, x) > d(w′, y) are not possible.

If d(v′, x) > d(v′, y) then d(w′, x) < d(w′, y), since d(v′, x) + d(x,w′) = d(v′, w′),

d(v′, y)+d(y, w′) = d(v′, w′) and v′ and w′ are the diametric vertices of the cycle Cvw.

Therefore d(u′, x) = d(u′, y), d(v′, x) = d(v′, y) and d(w′, x) = d(w′, y) and hence the

claim. That is the vertex u′ is common to both the cycle Cuv and Cuw, the vertex v′ is

common to both the cycle Cvw and Cuv and the vertex w′ is common to both the cy-

cles Cuw and Cvw. Also d(u′, x) = d(u′, y), d(v′, x) = d(v′, y) and d(w′, x) = d(w′, y).

The above arguments implies that G contain either a K2,3 or its subdivisions (sub-

division of K2,3 by keeping the distance d(u, x) = d(u, y), d(v, x) = d(v, y) and

d(w, x) = d(w, y) in Figure 2) as isometric subgraphs.

Theorem 6. For a graph G, C(u, v, w) = ∅ for all u, v, w ∈ V (G) if and only if G is a
geodetic graph.

Proof. Let G be a geodetic graph. Then C(x, y) = {x, y} for all x, y ∈ V (G) so

that C(u, v, w) = C(u,w) ∩ C(w, v) ∩ C(u, v) = ∅. Now suppose C(u, v, w) = ∅ for all

u, v, w ∈ V (G). We have to prove that G is a geodetic graph. Assume G is not a

geodetic graph. Then there exist vertices say x and y with d(x, y) > 1 such that there
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are at least two shortest path (not necessarily disjoint) between them. This means

that C(x, y) 6= {x, y}. That is a vertex say z which is disjoint from x and y such that

z ∈ C(x, y) and then z ∈ C(x, y, z). Which is a contradiction to our assumption that

C(u, v, w) = ∅. So G is a geodetic graph.

If the graph G is a hypercube, then C(u, v) = I(u, v) for all u, v ∈ V (G) by Theorem 2.

Also in hypercube, | I(u, v, w) |= 1. Then we have the following remark.

Remark 3. Let G be a hypercube then | C(u, v, w) |= 1 for all u, v, w ∈ V (G).

Concluding Remarks: In this paper, we have obtained some preliminary results

on the cycle transit function and we have checked the status of the betweenness

axioms of the interval function on the cycle transit function. An interesting problem

is to characterize the cycle transit function using a set of first order axioms, which

we may pursue in the near future.
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