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Abstract: We consider a stochastic convex optimization problem over nonsymmetric
cones with discrete support. This class of optimization problems has not been studied
yet. By using a logarithmically homogeneous self-concordant barrier function, we present
a homogeneous predictor-corrector interior-point algorithm for solving stochastic nonsym-
metric conic optimization problems. We also derive an iteration bound for the proposed
algorithm. Our main result is that we uniquely combine a nonsymmetric algorithm with
efficient methods for computing the predictor and corrector directions. Finally, we describe
a realistic application and present computational results for instances of the stochastic fa-
cility location problem formulated as a stochastic nonsymmetric convex conic optimization
problem.
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1. Introduction

Nonsymmetric convex conic optimization [13, 14, 16, 18, 20, 24, 26, 28, 29, 31, 34, 35,
37,39, 40, 42] is an active research area in mathematical programming. In nonsym-
metric programming problems, we minimize a linear function over the intersection
of an affine linear manifold with the Cartesian product of nonsymmetric cones (also
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532 A homogeneous predictor-corrector algorithm

known as non-self-scaled cones). Examples of nonsymmetric cones include, but not
limited to [16, 20, 24, 26, 29, 35, 37, 39]. The doubly nonnegative cone (the set of
positive semidefinite matrices with nonnegative elements), the exponential cone, the
power cone, the copositive cone, the completely positive cone, the extended second-
order cone, the hyperbolic cone, and the pth-order cone. Therefore, nonsymmetric
programming covers a variety of general optimization problems, such as pth-order
cone programming [18, 40, 42], copositive programming [13], extended second-order
cone programming [28], and hyperbolic programming [31].

Stochastic programming [12] was introduced in the middle of the last century to
handle the optimization problems that involve uncertainty in data. There are three
basic formulations in stochastic programming. The first formulation is based on
Bender’s decomposition, which decomposes a stochastic program into stages where,
at each stage, variables at preceding stages are considered as constraints so that
the subproblem at the current stage is easier to solve. The methods proposed in
[2,4,5,8,9, 15, 41, 43] are based on this formulation. The second formulation is
based on the Dantzig-Wolfe decomposition which associates a small program with
each scenario and connects all these small programs by the so-called nonanticipativity
constraints which, in turn, can be relaxed by the Lagrangian dual. The methods
proposed in [27, 32, 44] are based on this formulation. The third formulation is the
deterministic equivalence, which is the extensive formulation of a stochastic program
that forms an equivalent large one-stage problem containing all constraints and all
scenarios. The methods proposed in [3, 6, 7, 11, 19, 21, 25, 36] are based on this
formulation.

Despite widespread applications of different classes of nonsymmetric optimiza-
tion problems [13, 14, 16, 18, 24, 26, 28, 29, 31, 34, 35, 39, 40, 42], they have
been studied narrowly in comparison to symmetric optimization problems [5, 33],
such as linear programming, second-order cone programming (see for example
[1, 22]) and semidefinite programming (see for example [23, 38]). In particu-
lar, we emphasize that all the stochastic optimization problems considered in [2-
9,11,15,19, 21, 25,27, 32, 36, 41, 43, 44] are studied over symmetric cones. To the best
of our knowledge, there are no studies of interior-point algorithms for stochastic op-
timization problems over nonsymmetric cones. The main reason for the abundance
of stochastic symmetric programming studies and the limitedness of stochastic non-
symmetric programming studies is due to the fact that there is a unifying theory
based on Euclidean Jordan algebras that connects all symmetric cones [17, 33]. In the
absence of such theory in the case of nonsymmetric cones, one is unable to extend
the analysis of some established stochastic interior-point algorithms from symmetric
cones to nonsymmetric cones. This makes the study of stochastic nonsymmetric
optimization problems more challenging.

In their pioneer work [35], Skajaa and Ye derived a homogeneous interior-point algo-
rithm for the deterministic nonsymmetric programming problem. As we mentioned
earlier, there are no algorithms that solve the stochastic nonsymmetric programming
(SNSP). Inspired by this evident gap in the literature, in this paper, we are interested
in developing an interior-point algorithm for solving the two-stage SNSP problem
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based on the third formulation, which is the deterministic equivalence, by consider-
ing the case in which the event space is finite with K realizations. In fact, the third
formulation is found to be more doable than the other two formulations mentioned
above for the nonsymmetric setting because the self-concordant analysis is highly
involved in the other two formulations which depend very heavily on elements and
notions of Euclidean Jordan algebra that are absent in the nonsymmetric case. By
utilizing the approach in [35] and exploiting the special structure of the deterministic
equivalent formulation, we present a homogeneous predictor-corrector interior-point
algorithm that uses a logarithmically homogeneous self-concordant barrier function
and solves the two-stage SNSP problem with discrete support. While the analysis in
this paper is also influenced, in part, by that in [35] for deterministic nonsymmetric
programming, the stochasticity adds a new different dimension of difficulty to our
work.

At each iteration of Skajaa and Ye’s algorithm [35], the authors used the factorization
(Cholesky decomposition) to find the predictor and corrector directions. In [35], the
number of factorization steps needed is reduced and the data sparsity is exploited
by successfully employing quasi-Newton updating and Runge—Kutta type second-
order search direction. In spite of this, we cannot ignore the fact that the factorization
step is the most computationally expensive step in Skajaa and Ye’s algorithm. The
most key part of this paper is describing a method for computing the predictor and
corrector directions in the proposed algorithm that exploits the special structures in
the deterministic equivalent formulation. This method decomposes into K smaller
computations that can be performed in parallel. This is the essence of the proposed
algorithm in this paper. We also derive an iteration bound for the algorithm that we
develop. The implementation is another key part consisting a realistic application.
We present computational experiments for instances of the stochastic facility loca-
tion problem over nonsymmetric cones. Our computational results show that the
proposed algorithm is efficient and is evidently more effective than the existing algo-
rithm in [35] in stochastic environments especially when the number of realizations
is very large, which is typically the case in practice. This is due to taking advantage
of special deterministic equivalent structures while computing the predictor and
corrector directions in this work.

This paper is organized as follows. In the remaining part of this section, we first
provide a motivating example for this paper, and then review some definitions and
properties that will be used in the subsequent sections. Section 2 is devoted to
introducing the SNSP problem, writing its homogeneous model, and identifying the
central path associated with the problem. In Sections 3 and 4, the prediction and
correction phases for the proposed algorithm are highlighted and discussed. Most
notably, Sections 3 and 4 consist the crux of our method for computing the predictor
and corrector directions respectively. The homogeneous primal-dual interior-point
algorithm is formally stated in Section 5 and its complexity result is also presented
there. In Section 6, we present our computational results. Section 7 contains some
concluding remarks.
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1.1. Motivating example: Stochastic facility location problem

The notations in this part are independent of the other parts of the paper. To model
the stochastic facility location problem as our test problem, we use the power cone of
dimension 3 with parameter p > 1 defined as

e 1opL
Co={x=|x |€R*XR:x/x," >|xsl¢. (1)
X3

It is known that Cg is a nonsymmetric convex cone for any value p > 1.
Lett, y1,Y2,-..,Yn € Rsuchthatt =), y;. Note that, foreachi =1,2,...,1n, we have

Vi
t ECﬁ,i:1,2,...,n = ytr 1>, i=12,...,n

Xi
n n
== =1 Z Y = Z ol ()
i=1 i=1

n 1/p
— iz {Z |x,-|v] - ).
i=1

This means that the p"h—order cone constraint ¢t > ||x||,, for x € R", can be written as
the constraints (y;, ¢, x;) € Cci=1,2,...,n and eyy = t, where y € R", and e, € R"
is the vector of all ones. This enables us to formulate a two-stage stochastic facility
location problem in R"*! as the two-stage SNSP problem over three-dimensional
power cones.

Assume that we are given f existing fixed facilities with coordinates represented by
fixed points, say ay,4s,...,a5 € R", and r random fixed facilities with coordinates
represented by random points, say b;(w), b2(w), ..., b/(w) € R", whose realizations
depend on underlying outcomes w in an event space Q2 with a known probability
measure P. In the two-stage stochastic facility location problem, we plan to add a
new facility in R" among the existing (fixed and random) facilities so that the sum of
its weighted distances to the fixed facilities (measured by p; norms, where p; > 1) and
the sum of its weighted expected distances to the realizations of the random facilities
(measured by g; norms, where g; > 1) are both minimized.

Suppose that, at present time we do not know the realization of r random facilities,
and that at some point in the future these realizations become known. Also, suppose
that the location of the new facility is to be determined so that the total sum is mini-
mized. This decision needs to be made before the realizations of the random facilities
become available. Consequently, when the realization of the random facilities do be-
come available, the location of the new facility that has already been determined, say
by the point xy € R”, may or may not minimize the sum of its weighted expected
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distances to the realized random facilities. In order to make the location of the new
facility minimizing the total sum of all weighted distances described above, we are
allowed to change its location, say to the point xp + x(w) € R", depending on the
realized outcome w € Q, if necessary. Given this, we are interested in a two-stage
stochastic model of the form

f
min )" & ko —ail, + E[Q(o, )] ®)
i=1

where E[Q(xy, w)] := fm <o Qxo, w) P(dw), and Q(xo, w) is the minimum value of the
problem

min Y @) lixo + x(@) = bj(@)lly,, @)

=

where &; > 0 is the weight associated with the distance between the new facility and
the i existing facility fori = 1,2,..., f, and (j(w) > 0 is the weight associated with
the expected distance between the new facility and the realization of the j! random
facility for j =1,2,...,r.

By the observation that given in (2), we can formulate the two-stage stochastic facility
location problem (3, 4) as the following two-stage SNSP problem over power cones
with recourse

f
min Z &iup + E[Q(xo, w)]
=1

xg,xg,v,u,s
— 4t — | —
s.t. Ui =Xy — Xy — 4, i=12,...,f ®)
Te. — 7. 4 = Yy = e = 1 '—1 2
efsl_ulll ull_uIZ_ _uln/ 1= 7 /"'/f/
3 P — —
(Uiflsif/uif)ecpi/ Z_]~/2/"-/_f/ 5_1/2/'- /n/
+ -
X3, %5 20,

where E[Q(x, w)] := fw < Qxo, w) P(dw), and Q(xo, w) is the minimum value of the
problem

min . ZC]'((U) zj1(w)
j=1

xtx7,y,z,

s.t. yj() = x§ — x5 +x"(0) - x"(w) - bj(w), ji=12,...,r, ©)
e tj(w) = zj(w), zj (@) = zp(w) =+ =zp(w), j=12,...,1,
(vje(@), tielw), zje(@)) € C3,, i=12..r €=1,2,...m,

X3y, x5, %% (@), x"(w) 2 0.

Then the two-stage SNSP problem (5, 6) can be formulated as the following SNSP
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problem with K scenarios

f K r
. k) _(k
min Zéi Uy + Z Cﬁ,) 2H
xo, Xy,v,u,8 ol =1 j=1
xt,x Yzt
s.t. v,—xo Xy = ai, i=12,...,f,
y(k)—xo—xo + x®0+ — xa‘)’—b;k), ji=12,...,1 k=1,... K
€.si = Ujp, Uil = Upp =+ = Uiy, i=12,....f, @
T,k _ (k) (k) _ (k) _ _
e,t], _z.l,z],1 12 = z]n {_1,2,. L1 k=1,...,K
(vie, sie, ,{)ECP, l=1/2/“~/f/ ¢=1,2,...,n,
(y<k> 9,2 ;;>)ec3 j=1.n £=1,..n k=1,...,K
x5, Xy ,xB+ 0= >0, k=1,...,K

1.2. Preliminaries

Let & be a finite-dimensional real vector space combined with the dual vector space
&* and equipped with the scalar product (s, x) for x € &and s € E*. A cone is called
proper if it is convex, closed, pointed, and solid cone. The dual cone of a proper cone
K c Eis the cone K* C E* defined as

K* = {s €& (s, x)> 0,Vx€7(}.

If K = K*, we say that K is self-dual. A proper cone is called homogeneous if its
automorphism group acts transitively on its interior. Proper cones that are both
homogeneous and self-dual are called symmetric cones. Therefore, nonsymmetric cones
are the proper cones that lack either homogeneity or self-duality.

Let K be a proper cone, int K denote its interior, and bd K denote its boundary. A
continuous function F : K — R U {oeo} is called a barrier function of K if it satisfies

F(x) < oo for x € int'X, and F(x) = oo for x € bd K.

If a barrier F(x) has the form F(x) := — In ¢p(x) where ¢(x) is continuous function from
K to R, (the set of all non-negative real numbers), then F(x) is said to be a logarithmic
barrier. A barrier function F(x) is called self-concordant if for every x € K and h € R”,
the function ¢(a) := F(x + ath) satisfies the property

6| <2(6(0)")" .

A logarithmic barrier function F is called logarithmically homogeneous with barrier
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parameter v if it satisfies [29]
F(tx) = F(x) —vInt, for x €int K and ¢ > 0.

A logarithmic barrier function F is called logarithmically homogeneous self-concordant
barrier (LHSCB) function with barrier parameter v if it is convex, self-concordant, and
logarithmically homogeneous with the parameter v.

For example, it is also known [14] that the function

: 20 -
p-1 1
F,(x) ——ln( g —xz)——lnxl——lnxz
P X% p p

is an LHSCB function with parameter 3 for the power cone C}% defined in (1).
Let F be a LHSCB function for the cone K. Then the function

F*(s) := max{ (s, x) — F(x)}

is called the conjugate function of F, and it is an LHSCB function for the dual cone K™*.
For x € int K and s € intK*, the LHSCB function F and its conjugate F* have the
following properties [30]:

—VF(x) € intK*, —VF*(s) € intk,

VF* (-VF(x)) = -x, VF (-VF*(s)) = -s,

V2F(x)x = —VF(x), (VE(x), x) = —(V2F(x)x,x) = —
V2F (=VF*(s)) = (VzF*(s))_l, V2F* (-VF(x)) = (VzP(x))_l

Letp € 9 € &,x € intK and s € int K*. We define the following local Hessian
norms on K and K™* [30]:

Il = (VE@pp) T = [(v2F@) 7,
i = (o, ()0 = [(R) ],
Il = ((VF*) p,p)m = () 4.
gl = {2.(v2F©)q) " = |(v2Fre) ",

where ||-|| denotes the Euclidean norm. As shown in [30, 35], for x € intX and
s € int K*, we have

2
llxdlls = lIslly = llsll* g,y and llxll; = o.



538 A homogeneous predictor-corrector algorithm

The Dikin ellipsoid [10] centered at x € K is defined as
Eri={peb:llp—xll <1},
and that centered at s € K™ is defined as
& =1{qe & tllg—xlF <1}
The Dikin ellipsoids are feasible [10]. That is,
E CK forxeintX, and & C K™ fors € intK*. 8)

In Table 1, we summarize the notations that were given in this subsection and will
be used throughout the rest of the paper.

Table 1. A table of notations that appear in Subsection 1.2.

Notation Denotation

R, The set of all non-negative real numbers
R™ The space of n-dimensional real vectors
& A finite-dimensional real vector space
&> The dual vector space to &

K A proper cone

intK The interior of K

bd K The boundary of K

K* The dual cone of a proper cone
F() An LHSCB function for K
F*(") The conjugate function of F(-)
11l The Euclidean norm

[I{1 Local Hessian norm on K localized at x € int K
[]1s Local Hessian norm on K localized at s € int K*
1%, Local Hessian norm on K™ localized at x € int K
[I-IIx Local Hessian norm on K™* localized at s € int K*
Ey Dikin ellipsoid centered at x € K

&Er Dikin ellipsoid centered at s € K*

2. The SNSP problem and its homogeneous model

In this section, we introduce the two-stage SNSP problem, write its corresponding
homogeneous model and identify the central path associated with our problem.
We define the two-stage SNSP with recourse in primal standard form based on
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deterministic data Wy € R™>*" 1y € R™ and ¢y € IR™; and random data B € R"2*",
W e R™", h € R™ and ¢ € R"™ whose realizations depend on an underlying
outcome w in an event space () with known probability function P. Let & := R™
and &, := R™ be n'" and n!P-dimensional Euclidean spaces, respectively, with the
standard inner product. Let also K; € &; and K, C &, be two proper cones that are
not necessarily symmetric. Given this data, the two-stage SNSP problem with recourse
in primal standard form is
n}(in coxo + E[Q(xo, w)]
0

s.t. WoXo = ]’lo
xo € K1,
where xg € IR™ is the first-stage decision variable, Q(xy, w) is the minimum value of
the problem
min  c(w) x(w)
s.t.  W(w)x(w) = h(w) — B(w)xg
x(a)) € 7(21

where x(w) € R™ is the second-stage decision variable, and

E[Q(xo, w)] := Q(xo, w)P(dw).

weQ)

We consider the special case in which the event space is finite with K realizations. Let
{(Bx, Wi, I, cx) : k= 1,...,K} be the set of the possible values of the random variables
(B(@), W(w), h(w), c()) and let p; == P((B(w), W(w), h(w), c(w)) = (B, W, I, ct)) be
the associated probability fork = 1,2, ..., K. Then, the SNSP with K scenarios in primal
standard form is the problem

rr)lcin CoX0 + C1X1 + ++ + CpXk
k

s.t. WQXO = hO
leO + Wixg = hl
)
BKX() + WKXK = h[(

X0 €7(1, X1,X2,...,XK E(](z,

where xp € R™ and x; € R™, fork =1,2,...,K, are the decision variables. Note that,
for convenience, the probabilities p1,pa, ..., px in the objective function of Problem
(9) have been absorbed by redefining c as ¢ := prcx fork =1,2,..., K.
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The dual of (9) is the problem

T T T
Iylgagk( hoyo +hyy1 + -+ + hyyk
st. Wyyo+Blyi+ -+ + Bryx +5so = co
T
lel +51 =0

(10)

T
WK]/K + Sk = Cx

* *
S()E?(, 51,52,...,SK€7(,

where yo € R™,y € R™,s50 € R", and s, € R™, for k = 1,2,...,K, are the decision
variables, and K} and K are the dual cones of K; and K5, respectively.
Now, we make the following assumptions.

Assumption 1.  Consider the primal-dual pair (9) and (10). The my rows of the matrix Wy
are linearly independent, and, for each k = 1,2,...,K, the m, rows of the matrix Wy are linearly
independent, and the m, rows of the matrix By are linearly independent.

Assumption 2. Both primal and dual problems are strictly feasible, that is, there exist primal-
feasible vectors xo, X1, . .., Xk such that xy € int K and x; € int ¥;, and there exist dual-feasible vectors
Yo, Y1, -+, Yk and so, 81, . .., g such that sy € int K and si € int K, fork=1,2,...,K.

Assumption 1 is important to validate the operations described in our upcoming
computations. This assumption can be achieved in practice by applying row elim-
ination. Assumption 2 guarantees strong duality for the primal-dual pair (9) and
(10).
Let R; denote the set of positive real numbers. The homogeneous model of (9) and
(10) is

Woxg — hpt =0

ka0+wkxk_hkT 0,k=0,1,...,K;

K
T T
-Wyyo — Z B, yx + Tco — 5o
k=1
~Wlyr + o — s¢

oo
2

[
L
—
I
S
=
X

(11)

K K

Zh,ka _ZCZX" -A = 0;

k=0 k=0

Xoeq(l, Xkeq(z, ’[E]R+, k:1,2,...,K;

5067(1*, SkEW*,/\EIR_,., k=1,2,...,K
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We can write the system in (11) simply as

X0 50
Y| |0
Glx|—-|s]|=0, (12)
Y 0
T A
where
X 1 51 0 —WJ 0 -BT o
X2 Y2 S2 Wo 0 0 0 =—hy
xi=|.|eRf2,y:=| |eRM2,5:=| . |eR"2, andG:=| 0 0 0o -w' «¢|. (13)
: : : B 0 W 0 -h
XK Yk SK —Cg— hg - Wl 0
Here,
C1 h1 B1
ci=|:|eR",h:=|:|eR",B:=|: |e R,
K hk Bk
and

W := diag(Wy, ..., Wx) € RKmxKn,

Now, we introduce some notations that will be used in the sequel. We define

K—times

R
|

= IO XIGO XK X - X Ko XIR,,
K* = KEXKF XK X XK xRy,
= KX R x R

\ﬁ
1l

Besides the vectors x, y and s defined in (13), we define

© R

<

N>
1l
=
fo¥]
=]
Q.
N
Il

(14)
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Note that, using (14), equation (12) can be written as

Gt-2=0, (15)
where the matrix G is defined in (13). Note also that G is skew-symmetric (i.e.,
G" = —G). The proof of the following lemma is essentially based on the skew-

symmetry of the constraint system of our homogeneous model.

Lemma 1. The following optimization problem is self-dual.

min 0
s.t. Gz-2z2=0
zeF.

Lemma 1 is important in the subsequent developments in the paper, because it tells us
that a primal-dual interior-point algorithm can be applied to solve the homogeneous
model (15) when z € . Like all interior-point methods, in our algorithm we track
the central path to approach a solution.

Let F1 be a LHSCB function with barrier parameter v; for the cone %, and F; be a
LHSCB function with barrier parameter v, for the cone %5, then the function

K
F() = F1(x) + Z Fa(x) = Int
k=1

is a LHSCB function for the cone K with barrier parameter v; + Ko, + 1. This
immediately follows by noting that

F(tx)

K
Fi(txo) + Z Fa(txy) — In(tt)
k=1

K
Fi(xo) — o1 Int + Z (Fa(xe) —vaInt) —Int —Int
k=1

K

Fi(xo) + Z Fa(x) — In 1—] — (v + Koy + 1) Int
k=1

F(J_C) - (Z)l + Kvy + 1) Int.

Following the notions in Section 2, we use the following norms for p € K and g € K*:

Iplle = (V2E@)" p]| and. gl = |(vFc) ]
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We define the complementary gap by
w(z) ;= ————— for ze F. (16)
1 2

Our algorithm is initialized with z° := (%°,5°,#°) € F. Let u° := pu(z°). The central
path of the homogeneous model (12), which is parametrized by y € [0, 1], is defined
by the points z, := (%,,5,, 7,) that satisfy

G -2, = (G-,
17
111}(32.)// S_)// ‘V"lo) = O/ ( )
where
Y(%,5,t) ;= 5§+ tVE(x), for x € K,5€ K*, and a scalar ¢. (18)

For a fixed parameter n € [0,1], we define the neighborhood of the central path as
follows

N ={ze F : [p&E 5 u@)|; <nu@).

Starting from the initial point z° (at y = 1), the central path approaches a solution of
(15) as y decreases to zero. This guarantees the convergence of the central path to the
solution of the original problem.

3. An efficient method for computing the predictor direction

In this section, we discuss the prediction phase of the algorithm. We particularly
describe an efficient method for computing the predictor direction and then discuss
the termination of the prediction process.

The predictor direction is the direction d, tangent to the central path. This direction
can be determined by differentiating the system (17) with respect to y.

Using (18), the second equation in (17) can be written as

5, + yu’VE(x)) =0, orequivalently u’VF(x,)=—y7'5). (19)

Letd;, := d%,/dy and similarly for all other variables. By differentiating the left-hand
side equation in (19) with respect to y, we get

ds, + yu’V2E(x,)) di, + u"VE(x,) =0,

which, by using the right-hand side equation in (19) and putting u(z) := yu° (here u°
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is obtained from (16) by setting (%, 5) = (¥%,5%)), can be written as
ds, + u@2)V?F(x,)) de, = 7715, (20)

Using (15) and (20), after rescaling the later by —y, we can conclude that the differen-
tiation of the system (17) with respect to y is the system

Gds — ds = —(Gt-3),

ds + u(z)V2F®)dy = 5. (21)

Note that, for the sake of simplicity, we dropped the argument y. Thus, the predictor
direction d; is determined by solving the system (21). In fact, we have

§de + J_Cng + ng = lp(Z)de,
x+d)"(5+ds) =0, (22)
d;dg = _IP(Z)de-,

where the first equation follows from the second equation in (21) and the definition
of Y(-), the second equation follows from reordering the first equation in (21) and
multiplying the result by (7 + dy, ¥ + dx), and the third one follows from expanding
the second and using the first.
We now describe a method for computing the predictor direction. As we have seen,
the predictor direction d; is determined by solving the system (21). This system can
be written as

Wodx, — hod: = -1,

Bydy, + Widy, — lid- —T2%k,

~Widy, — Ypoy Bldy, +deco —ds, = -3,

_WTd . T d Ck — d = —T4

k7 Yk T Sk ’ 23
ZII<<=O h}Idyk - Z]Ifz() C]l—dxk - d/\ = —t5, ( )
/\d'[ + Td/\ = —T/\,
ds, + pV2F1(x0)dy, = —so,
ds, + uVZFo(xi)dy, = =Sk,

wherek=1,2,...,Kand

roo= W()X() - ho’[,
ok = Brxo + Wixg — Iy, re = W]y e =5,
— T K T ,_ K" T K T
r3 = _WO Yo — Zk:1 Bk Yk + TCo — So, rs = Zk:o hk Yk — Zk:O Cp Xk — A

Using the last equation of (23), we get

ds, = —uV?Fa(xi)dy, — si (24)
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fork =1,2,...,K By substituting this equation into the fifth equation of (23) we can
write dy, as

dy, = (#Vze(xk))_l (_r‘*k + Wydy, — deci — Sk) (25)

fork=1,2,...,K. We now substitute (25) into the second equation of (23) to get

Midy, — qid. + Bidy, — g = =121

where
My = Wi(uVZFa(xi)) ™ Wy,
G = Wi(uV2Fa(xx) ek + by,
ne = Wi(uV2F2(xk)) ™ (rak + si),

fork=1,2,...,K This gives
dy, = =M (Bidx, — qdz — nge + ). (26)
Using the seventh equation of (23), we obtain
ds, = —uV?F;(x0)dx, — S0 (27)

Using this equation and (26) in the third equation of (23), we get

K K K
—W(-)rdyo + [Z B;Mlek] dxo - [Z quk] dr — Z B;nk +dco+ (JVZFl(Xo)dXO + 89 = —13.
k=1 k=1 k=1

Thus, we can write d,, as
dy, = My*Wyd,, — Nd. + U, (28)

where

S
Il

HVZFa(xi) + Yy ByM, By,
N = My'(co - Ly Bige),
U = My (Zi Bime — 3+ 50).

We now substitute (28) into the first equation of (23) to obtain
WQ(Mglwgdyo - Nd»[ + U) - hodT = -r.
Using the above equation, d,,, can be expressed as

dyo = (Xod»[ + ‘30, (29)
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where

Qag
Bo

Now the next step is backward substituting to obtain d,, d,,,d,, and then d. First,
we substitute (29) in (28) to get

(WoMz W)™ (WoN + o),
— (WoM W) (Woll + ).

dy, = My W (aod: + o) — Nd: + U.

So, d, can be written as
dX() = EbOdT + ¢0/ (30)

where
¢0 = Malwgao -N,
¢0 Malwgﬁo - U

Substituting (30) in (26), we obtain

dy, = =M 'Br(ipody + o) + gid- + ny.

From this equation, one can write dyk as

dyk = (Xde + ﬁk, (31)
where
Qg = —M;13k¢0 + 4k,
ﬁk = _Mllek¢0 + Ny,

fork=1,2,...,K Also, we substitute (31) in (25) to get

dy, = (Uszz(Xk))_l (—r4k + W,I(ade + i) — dock — Sk).

Hence, d,, can be written as

dy, = Yrde + Pr, (32)
where
Yy = (llv21:2(3€1<))_1 (W]Ia‘k - Ck) ,
Pr = (HVZI"z(xk)y1 (WIBk = rax —si),

fork =1,2,...,K Now, we substitute (29), (30), (31), and (32) into the fifth equation
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of (23) to obtain

K

K
Y (e + B = Y i+ 69) = (AT = de) = =75,
k=0

k=0

Thus, d. is given by
o= ~Eialifi— e (A +1s)

T K T T (33)
T Zkzo(hk(xk - Ckl/)k) +A
Finally, using the sixth equation of (23), d, is given by
dy = —%dT—)\. (34)

We now discuss the convergence of the prediction process. In this process, z denotes
the starting point and z* denotes the point after the prediction step. Defining

zt=(x%,5%,9) = (3? +ady, 5+ ads, 7 + adg) =z+ad, and u* := pu(z").

Similarly, we also define 2* := 2 + ad; and Z* := Z + ads. Then, the predictor direction
d, satisfies the system

Gst -3t = (1-a)(Gs—2),

1-a)u@E)+(1-a)

P(2)"ds (35)

U1 +K7)2+1I

p(z")

where the first equation is nothing more than applying elementary linear algebra to
the first equation of (17), and the second follows directly from the complementary
gap and using (22).

One can prove that, if z € N(1), then the following bounds for 3, d; and dy can indeed
be obtained:

l1511%
lIdzllz
sl

IA

uAmP? +0v1+ Koy +1,
ke =1+ P2 +01+ Koy +1, (36)
ksy, where ks := ks + \/772 +01 + Koy + 1+ k2.

IA

IA

In addition, for < 1/6, the following bound for ¢* := ¢ (¥*,5", u(z*)) can also be
obtained:

IY*IIE < 2nu™. (37)

In the following lemma, the big Omega notation “a = (1/ Vo + sz) ” means that
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there exist a positive (possibly small) constant cy and a natural number vy such that
a 2 co/ Vo1 + Kv, for all v1 and v, having v1 + Kvp > vp(1 + K).

Lemma 2. Letz € N(1). Then
(1) we can choose @ = Q) (1/ Vo + sz) so that z* € F,

(2) ifn <1/6, then we can choose a = Q (1/ Vo + sz) so that z* € N(21).

Proof Letting aq :=1/kz = Q (1/ Vo1 + sz) and using the second inequality in (36),
then for any o < a; we get

I — %" |lz = I¥ — (% + ady)lls = alldslls < ak: <1,

and hence by (8), we have x* € K.
Similarly, letting a; := (1 —1)/ks = Q (1/ Voug + I(vz) and using the third inequality in
(36), then for any a < a, we get

st + uVF@| ey = L5+ ade + HVE(S
% Hlp + ads_“—vp(x)

i W“fm@ + %a ”dgHtVF(J?)
N+ aks

W ovre

IAIN TN
=

Hence, using the fact that —uVF(¥) € K* and using (8), we have (1/u)s* € K*, and
hence 5* € K*. The fact that x* € K and that 5 € K* demonstrate the feasibility
of z*. The first item is established. The second item follows directly from (37). The
proof is complete. O

4. Computation of the corrector direction

In this section, we discuss the correction phase of the algorithm. In analogy to the
method presented in Section 3, this section presents the summary of a similar method
applied to compute the corrector direction. We also discuss the termination of the
correction process.

In the correction phase, our focus is to find a new point z = (%,5, %) closer to the
central path (in the sense that z € N(n)) satisfying the same constraints as z*, i.e.,
GZ —Z = GZ* — Z*. This leads us to apply Newton’s method to the system

Gt - = G&* -3,

Y(F,5,u(z) = 0. (38)
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Ox, 0
j = 6 g = 5 ’ (Sy = [ yo], then 52 =
Or Oy

is the Newton step for (38). Following our notations in a previous section, we also let

Let
Oz
S
v

o

Ox, Os,
Oy, 0
0s:=| 0| and 05 :=]06s].
0y 0
O¢ O

Note that the Newton step 6, is determined by solving the system

Gég—ég = O/ 39
0s + u(z) (VZF@®) 85 = —y(&,5, u(2)). (39)

Applying a similar method as that in Section 3 for the predictor direction, we can
show that the corrector direction 0; is given by

Oxp = Podr + Po,

6xk = ¢k5r+¢kz

05y = —UV2F1(x0)0x, — 72,

Os = —HVZFa(x)0x, = Tak,

5y0 = b, +E0, (40)
6yk = ak51+ﬁk,

~ Lico (WP — cl) =71

67 = — — ’
Y (h;ak - c{tpk) +A
5y = —1(n+Asy),

wherek=1,2,...,Kand

ro= TA-p,

T2 = so+ uVFi(x), N := Mal(CO—ZkKﬂBz%)

Tak = sk + UVFa(xy), u = I\Zal(ZfﬂBZ’ﬁk +72)

@ = (wozﬁalwg)'l(woﬁmo), Yo = MW@ -N,

T = ~M'Bgo + 7k, P = (VR0 (W — o),
Bo = —(WoM;'WI) ™ (Wold), o = My'WIgo-U,

B = —M;'Bigo + i, b = (VPR (0)) ™t (W] Bk = 7).
Mo = uVPFi(x0)+ Dy BIM{'B, G = M (WiluV2Fa(x)) " op + ),
My = We(uV*Fa() W], e = M WiV Fa() ")
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To discuss the convergence of the correction process, we present the following lemma
which demonstrates that the termination of this phase is quick.

Lemma 3. If 1 < 1/6, then the correction process (41) terminates in at most two steps.

Proof In the correction process, we start with z = z* and solve (39) for z = z*, then
we apply

z=2" = (B8, 77) = (¥ + adp, 5" + a0, § + A0y ) =2" + 40z, (41)

repeatedly until the condition [|iP(%, 5, u(2)ll; < nu(z) is fulfilled. Assuming that
lY(x,5, w2)llF < Bu(z), it is not hard to see that the following bounds for 6; and 0z
can indeed be obtained:

0:ll: < B and |6y < By (42)

In addition, by applying the correction process (41) twice and recursively using (42)
twice, we can also see that, for & < 1/84, v; + Kv, > 1 and < 2n < 1/3, the following
bound for ¢** := P(x**,5*, u(z**)) can be obtained:

++
o+l < = < e,

where p** := u(z**). This means that z** € N(n) after at most two steps. O

5. The homogeneous predictor-corrector algorithm and its com-
plexity

In this section, we present our algorithm for solving the SNSP problem and its
complexity result. We formally state a homogeneous predictor-corrector interior-
point algorithm for SNSP in Algorithm 1.



B. Alzalg, M. Alabedalhadi 551

Algorithm 1. Stochastic Nonsymmetric Predictor-Corrector Algorithm

begin algorithm

1 initialize LHSCB function F, initial point z := (xo,x, 7T, 50,5, A, Yo, Y), 1, B

ensure: z€ F NN(), 0<n<p<l

2 set £ = (x0,Y0,%57),Z = (5,0,50,14),% := (x0,x1),5 := (50,5,A), ¥ :=
(o, y), i := p(2)

s while a stopping criterion is not satisfied do

begin prediction

4 compute the predictor direction d, using (24), (27), (29) — (34)
5 choose largest a so that z + ad, € ¥ N N(B)

6 setz:=z + ad,

7 update 2,%,%,3, ¥, u

end prediction
begin correction

8 while z ¢ ¥ N N(n) do

9 compute the corrector direction 6, using (40)

10 choose & to approximately minimize |||} along 6,
1 setz :=z + &o,

12 update £,%,%,5, 7, u

13 end while

end correction
1 end while
end algorithm

Now, we state and prove the complexity result for Algorithm 1.

Theorem 1. Algorithm 1 terminates with a point z = (%, 5, i) that satisfies
G2 - 2|l < e||Ge® = 2°|| and p(z) < ep(2)

in no more than © ( Mma/e)) iterations.

Proof From the first equation in (35), we have GZ* — Z* = (1 — a)(GZ — Z). Now, we
can choose

st
. U1 + Ko,
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and see that the difference GZ — Z decreases geometrically with a rate of
(1-Q(1/ Vor + Koy)), which implies that [|G2 — 2| < €]|G2° - 2°]| in

0] ( Vo1 + Koy ln(%))

iterations.

Now, we show that the same result is true for p(z) as well. Following our notations
in Section 3, let z be the starting point and z* be the point after the prediction step.
Let also z**' be the point after applying the first correction step starting in z* and
z**2 be the point after applying the second correction step starting in z*.

Note that

Td7
pizt) < 1-a)u@E) +a(l -a) ¢+ Ko, (using the second equality in (35))
* d R
< (1-a)uz) +al - HIP“+ |Kv“ (using Cauchy-Schwarz inequality)
2
*
< (1-a)uz) +al- ”lp_ll Ko (using the second inequality in (36))
2
ks
< (1-a)uz)+al - a)& (using the inequality in (37))
v + Koy
< w1 — a1+ 220
< p@A-a) 1Ko )
Therefore
1
uz") = p) (1 - Q(—]] (43)
Vo1 + Ko,

After left-multiplying the first equation in (39) by (6,,65)", we have 616; = 0. As a
result, from the second equation in (39), we also have

T 65 = p(zHOIVERY) = 8Ty — 615+ (44)

It immediately follows that

(01 + Kop)p (z7*1) = (&* + adz)| (5+ + ads) (from the complementary gap (16))
= & 5 +aslyt +a2olss (using (44))
= &t asly* (using 6165 = 0)
< (v1 + Kop)u(z*) + 15432;1(2*2) (from the complementary gap (16))

(v1 + Kvp)u(z*) (1 + o L—:—ﬁsz )
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Hence, we have

A2
uE™) < p(") (1 + %) (45)

Consequently, we have that

A2 2

pzt+) < #(Z’r)(] + 0—:—KU ) (applying (45) recursively twice)
1 2

2

1 ap’ . . .
u(z) [1 -Q [m]] (1 + m) (using the inequality in (43))

1

\/ v1 + Koy

IA

#(Z)[l—Q[

This means that u(z) is decreased geometrically with rate of (1 -Q (1 /No1 + K?Jz)).
This implies that u(z) < eu(z°) in

9] ( Vo1 + Koy ln(é))

iterations. The proof is complete. O

6. Experimental implementation

In this section, we present computational experiments that demonstrate the effi-
ciency of Algorithm 1. We also prove the effectiveness of Algorithm 1 by comparing
its performance with that of the existing algorithm in [35]. To obtain our numerical
experiments, we used MATLAB Version R2013b on Windows 7 Ultimate, which
carried out on a PC with Intel(R) Core(TM) i5-4210U CPU at 2.40 GHz and 6 GB of
physical memory.

Test problems We implement Algorithm 1 to solve the SNSP problem (7). In the
test problem, we consider instances of the stochastic facility location problem which
was formulated as an SNSP problem in Subsection 1.1. We run Algorithm 1 on
random instances of K scenarios of the SNSP problem (7), where the dimension of
the problem takes the values n = 2,10, 20, the number of fixed facilities takes the
values f = 3,15,30, the number of random facilities takes the values r = 4, 20,40,
and the number of realizations takes the values K = 5,25,50, with an associated
probability py = % for each k = 1,2,...,K. The parameters of Algorithm 1 are
given as € = 1079, B = 080 and n = 0.50. For each quadruple (u, f,7,K), we
generated 20 instances each with a4; and b™ chosen at random from the standard
normal distribution. In the implementation, we choose f different p;’s as the
maximum of 1.0 and a sample from a normal distribution with mean 2.0 and
variance 0.25. Similarly, we also choose r different g;’s as the maximum of 1.0
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and a sample from a normal distribution with mean 2.0 and variance 0.25. We
choose the distance weights &; and Cj,k) randomly from a uniform distribution on [0, 1].

Table 2. Numerical results for the stochastic facility location problem (7).

Problem size and number of realizations Results form SNPCA  Results form DNPCA
n f r p q K v Iter CPU(s) Iter CPU(s)

2 3 4 107 1.04 5 184 14.3 0.25041 15.1 0.29835

2 3 4 094 1.06 25 824 18.1 1.01985 26.7 2.21643

2 3 4 1.07 098 50 1624 279  6.32981 51.3 8.11162

2 15 20 1.07 1.01 5 920 30.3 1.76529 28.2  1.71271

2 15 20 1.05 1.07 25 4120 37.8 9.88731 459 14.62010
2 15 20 096 1.03 50 8120 48.8 13.11827 68.5 19.90165
2 30 40 1.01 1.09 5 1840 44,6 9.05843 47.0 12.41687
2 30 40 092 099 25 8240 545 17.44904 59.8 22.15439
2 30 40 1.09 1.00 50 16240 61.0 28.10194 904 40.80400
10 3 4 1.00 092 5 736 422 1555627 429 17.52498
10 3 4 1.06 1.09 25 3296 62.4 31.84620 73.1 37.14924
10 3 4 1.03 1.04 50 6496 68.6 43.13579 943 58.66244
10 15 20 091 1.05 5 3680 63.4 37.02110 66.7 43.58121
10 15 20 1.06 1.08 25 16480 76.6 46.18438 83.8 51.74138
10 15 20 1.06 1.02 50 32480 87.6 55.04640 1124 72.31422
10 30 40 1.03 097 5 7360 81.9 5234811 873 56.42374
10 30 40 1.00 1.08 25 32960 91.1 60.51378 103.1 68.74881
10 30 40 097 1.01 50 64960 91.0 71.65248 1225 83.41410
20 3 4 098 093 5 1426 93.5 57.00981 914 55.98791
20 3 4 1.07 1.00 25 6386 104.8 66.78106 109.5 72.21410
20 3 4 1.09 1.07 50 12586 109.5 72.21497 137.1 86.32811
20 15 20 091 1.03 5 7130 99.3 6498124 107.3 69.15060
20 15 20 1.00 1.09 25 31930 111.3 73.66091 124.6 84.12749
20 15 20 1.04 1.05 50 62930 128.1 81.31459 154.9 96.20021
20 30 40 0.99 1.00 5 14260 119.4 66.08199 124.0 72.81074
20 30 40 1.09 1.03 25 63860 126.5 89.64892 142.3 109.62481
20 30 40 0.97 1.01 50 125860 144.5 103.7713 217.7 149.02400

Presentation of numerical results The numerical results of Algorithm 1 are summa-
rized in Table 2. In our numerical results, “Iter” denotes the number of iterations
taken to obtain the optimal solution, and “CPU(s)” denotes the CPU time (in seconds)
required to obtain the optimal solution. Note that the values of “Iter” and “CPU(s)”

are the average of 20 runs for each quadruple (1, f,#,K). The column labeled “p

“"=1

shows the number (1/f) Z{Zl pi averaged over the 20 instances, and the column la-
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Figure 1. The numerical results for the stochastic facility location problem (when K = 25,50) are translated into
three-dimensional bar charts for comparison purposes.

beled “7” shows the number (1/r) Y.i_; q; averaged over the 20 instances. So, all the
numbers in the columns labeled “#” and “§” should be close to 1.0. The column
labeled “Results from SNPCA” shows the numerical results obtained by Algorithm
1, namely, the stochastic nonsymmetric predictor-corrector algorithm.

We point out that similar, but simpler, numerical examples have been reported in [35,
Section 5] and [14, Chapter 4] to test the performance of deterministic nonsymmetric
primal-dual predictor- corrector methods in [35, Algorithm 2] and [14, Algorithm 5]
respectively. Because Problem (7) can be viewed as a large (one-stage) deterministic
problem containing all constraints and all scenarios, for comparison purpose, we
also implement the existing algorithm in [35] for solving Problem (7). The column
labeled “Results from DNPCA” shows the numerical results by the deterministic
nonsymmetric predictor-corrector algorithm proposed in [35]. The optimal solutions
are reached by using Algorithm 1 because all problem instances are feasible by
construction.

Discussion of numerical results The computational results in Table 2 show that
Algorithm 1 is efficient overall. In our results, over all instances, we found that
Algorithm 1 uses in the region 11-65 iterations and the CPU time never exceeds 29
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when n = 2, it uses in the region 38-93 iterations and the CPU time never exceeds 73
when 7 = 10, and that it uses in the region 90-152 iterations and the CPU time never
exceeds 108 when n = 20.

Using the methods described in Sections 3 and 4 for computing the predictor and
corrector directions, we are overall able to produce computational results in Table 2
that affirm that Algorithm 1 is more effective than the existing algorithm in [35] in a
stochastic environment with a large number of realizations K, which is typically the
case in practice. This can be explicitly seen when K = 25 and K = 50. To be cautious,
except for a few of problems, we can say that for the facility location problems,
Algorithm 1 compares somewhat unfavorably to the existing algorithm in [35] when
K is small, but it compares favorably to the existing algorithm in [35] when K is large,
typically greater than 20. In Figure 1, we show the numerical results in Table 2 for
K =25,50.

It is obvious from Figure 1 that Algorithm 1 has superiority over the existing
algorithm in [35] in the stochastic environments, and both in terms of iterations and
CPU time. This is despite of the data sparsity is exploited in [35] by successfully
employing quasi-Newton updating and Runge-Kutta type second-order search
direction to reduce the number of factorization steps needed. The main reason for the
superiority of Algorithm 1 is that the factorization step is the most computationally
expensive step while computing the predictor and corrector directions in [35]. On
the other hand, the methods described in Sections 3 and 4 decompose into K smaller
computations that are performed in parallel.

Summary of numerical results To conclude and sum up, after working on the stochas-
tic facility location problem with K scenarios that we described, modeled, and imple-
mented above as our SNSP test problem, the obtained computational results indicate
that, overall, Algorithm 1 performs very well in practice.

7. Concluding remarks

In this paper, we have studied and solved two-stage stochastic convex optimization
problems where both the first- and second-stage problems are nonsymmetric conic
optimization problems. The problem that we tackled in this work is interesting,
and, to the best of our knowledge, there are no previous studies in the literature
addressing this important class of stochastic conic optimization problems. We have
presented a homogeneous predictor-corrector primal-dual interior-point algorithm
for this optimization problem with finite event space. The algorithm consists of
efficient methods for computing the predictor and corrector directions which are
established by exploiting the special structure of the resulting extensive formulation.
We have also presented the complexity of the proposed algorithm and have shown
its convergence. Concerning the implementation issues for the proposed algorithm,
we have seen from our computational results that the algorithm is efficiently
implemented for instances of the stochastic facility location problem formulated
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as SNSP problems. As we exploit special structures while computing predictor
and corrector directions, computational results demonstrate also the superiority of
the proposed algorithm for stochastic environments over the existing one in [35].
Another point that worths noting (not shown in our numerical results, but can be
known by inspection) is that Algorithm 1 is generic in the sense that its performance
depends a lot on the type of the underlying problem. For instance, the choice of the
parameters of our algorithm, such as €, §, and 7, depends a lot on the type of the
underlying nonsymmetric cone. Future work is devoted to develop interior-point
methods for solving linearly constrained stochastic convex programming over
nonsymmetric cones.

Conflict of interest. The authors declare that they have no conflict of interest.
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