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Abstract: A local antimagic edge labeling of a graph G = (V,E) is a bijection
f : E → {1, 2, . . . , |E|} such that the induced vertex labeling f+ : V → Z given by

f+(u) =
∑
f(e), where the summation runs over all edges e incident to u, has the

property that any two adjacent vertices have distinct labels. A graph G is said to

be locally antimagic if it admits a local antimagic edge labeling. The local antimagic

chromatic number χla(G) is the minimum number of distinct induced vertex labels over
all local antimagic labelings of G. In this paper we obtain sufficient conditions under

which χla(G ∨H), where H is either a cycle or the empty graph On = Kn, satisfies a

sharp upper bound. Using this we determine the value of χla(G ∨H) for many wheel
related graphs G.
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1. Introduction

A connected graph G = (V,E) is said to be local antimagic if it admits a local an-

timagic edge labeling, i.e., a bijection f : E → {1, . . . , |E|} such that the induced
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vertex labeling f+ : V → Z given by f+(u) =
∑
f(e) (with e ranging over all the

edges incident to u) has the property that any two adjacent vertices have distinct

induced vertex labels (see [1, 12]). Thus, f+ is a coloring of G. Clearly, the order of

G must be at least 3. The vertex label f+(u) is called the induced color of u under f

(the color of u, for short, if no ambiguity occurs). The number of distinct induced col-

ors under f is denoted by c(f), and is called the color number of f . Such an f is also

called a local antimagic c(f)-coloring of G. The local antimagic chromatic number of

G, denoted by χla(G), is min{c(f) | f is a local antimagic labeling of G}. In [9] and

[15], further results on local antimagic chromatic number are given. Local antimagic

chromatic number of some join graphs and disconnected graphs are presented in [14]

and [2] respectively. A conjecture on local antimagic labeling was proposed in [1]

and Haslegrave [5] proved this conjecture. Local antimagic labeling is a relaxation

of antimagic labeling. Several types of antimagic labeling have been extensively in-

vestigated and in [6] the authors investigated the existence of one type of antimagic

labeling for the Cartesian product of a path and a wheel.

Throughout this paper, we let Pm be the path of order m ≥ 2, Cn be the cycle of order

n ≥ 3, and On = Kn be the null graph of order n ≥ 1 with vertices vj , 1 ≤ j ≤ n. For

any two graphs G and H, the join graph G∨H is defined by V (G∨H) = V (G)∪V (H)

and E(G ∨H) = E(G) ∪ E(H) ∪ {uv |u ∈ V (G), v ∈ V (H)}. For m ≥ 3, the wheel

graph of order m + 1 is Wm = Cm ∨K1 and the fan graph is Fm = Pm ∨K1. Note

that Fm is also the graph Wm with an edge of Cm deleted. For integers a < b, [a, b]

denotes the set of integers between a and b. For notations and concepts not defined

in this paper we refer to the book [3].

Let G be a graph of order m ≥ 3. In [8, Theorem 3], the authors gave sufficient

conditions for χla(G ∨On) = χla(G) + 1 in terms of m and n as follows.

Theorem 1. [8] Suppose G is of order m ≥ 3 with m ≡ n (mod 2) and χ(G) = χla(G).
If (i) n ≥ m, or (ii) m ≥ n2/2 and n ≥ 4, then χla(G ∨On) = χla(G) + 1.

Note that condition (ii) above is not applicable for sufficiently small m that is greater

than n. Motivated by this, in this paper, we obtained new sufficient conditions for

sharp upper bounds of χla(G ∨ On). This then allows us to determine the local

antimagic chromatic number of G∨On for m and n not satisfying condition (ii) above.

Further, we obtained sufficient conditions for sharp upper bounds of χla(G ∨Cn) for

n ≥ 3. Consequently, we obtained χla(G ∨H) for many wheel related graphs G and

H ∈ {On, Cn} where |V (G)| ≡ |V (H)| (mod 2). Interested readers may refer to [7]

for more results with |V (G)| 6≡ |V (H)| (mod 2).

If G is a graph with χla(G) = t ≥ 2 and f is a local antimagic labeling of G that

induced t distinct vertex colors, then Vf = {V1, . . . , Vt} is the partition of V (G) such

that every vertex in each Vi has the same induced color under f . For t ≥ 2, consider

the following conditions for a graph G:
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(i) χla(G) = t and f is a local antimagic labeling of G that induces a t-independent

partition
t⋃

i=1

Vi of V (G).

(ii) For each x ∈ Vk, 1 ≤ k ≤ t, deg(x) = dk satisfying f+(x) − da 6= f+(y) − db,
where x ∈ Va and y ∈ Vb for 1 ≤ a 6= b ≤ t.

(iii) There exist two non-adjacent vertices u, v with u ∈ Vi, v ∈ Vj for some 1 ≤ i 6=
j ≤ t such that

(a) |Vi| = |Vj | = 1 and deg(x) = dk for x ∈ Vk, 1 ≤ k ≤ t; or

(b) |Vi| = 1, |Vj | ≥ 2 and deg(x) = dk for x ∈ Vk, 1 ≤ k ≤ t except that

deg(v) = dj − 1; or

(c) |Vi| ≥ 2, |Vj | ≥ 2 and deg(x) = dk for x ∈ Vk, 1 ≤ k ≤ t except that

deg(u) = di − 1, deg(v) = dj − 1,

each satisfying f+(x) + da 6= f+(y) + db, where x ∈ Va and y ∈ Vb for 1 ≤ a 6=
b ≤ t.

Lemma 1. [11] Let e be an edge of G. If G satisfies Conditions (i) and (ii) and f(e) = 1,
then χla(G− e) ≤ t.

2. Graphs join with null graphs

The following lemma is obvious.

Lemma 2. Let A be a p× r magic rectangle using integers in [1, rp]. Let R and C be the
row sum and column sum of A, respectively. Then R− C = 1

2
(r − p)(rp+ 1).

It was shown in [4] that a p × r magic rectangle exists whenever p and r have the

same parity, except for the impossible cases where exactly one of p and r is 1, and for

p = r = 2.

Theorem 2. Let G be a connected graph of order p and size q. Suppose G admits a local
antimagic t-coloring f . Without loss of generality, let f+(x1) ≤ f+(x2) ≤ · · · ≤ f+(xp−1) ≤
f+(xp), where xi for i ∈ [1, p] are vertices of G. Let r ≥ 2 and p ≡ r (mod 2). Then
χla(G ∨Or) ≤ t+ 1 if either when r − p ≥ 0 or when p− r ≥ 2 and f satisfies the following
two conditions:

(a) f+(xp−1) ≤ 4p− 2, and

(b) 2f+(xp) 6= (p− r)(rp+ 2q + 1).

Proof. Let V (Or) = {vj | 1 ≤ j ≤ r}. Define g : E(G ∨Or)→ [1, rp+ q] by
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g(e) =

{
f(e) if e ∈ E(G);

aij + q if e = xivj , i ∈ [1, p], j ∈ [1, n],

where (aij) is a p×r magic rectangle with aij ∈ [1, rp] and whose row sum and column

sum are R and C, respectively. So, g+(xi) = f+(xi)+R+rq and g+(vj) = C+pq for

i ∈ [1, p] and j ∈ [1, r]. Thus g+(xi) = g+(x′i) if and only if f+(xi) = f+(x′i). From

Lemma 2 we have

g+(xi)− g+(vj) = f+(xi) + rq − pq +R− C

= f+(xi) +
1

2
(r − p)(rp+ 2q + 1). (1)

Suppose r − p ≥ 0. It is clear that g+(vj) < g+(x1) ≤ g+(x2) ≤ · · · ≤ g+(xp−1) ≤
g+(xp) for j ∈ [1, r].

Suppose p− r ≥ 2. Since G is connected, q ≥ p− 1. From (1) and condition (a),

g+(xp−1)− g+(vj) = f+(xp−1) +
1

2
(r − p)(rp+ 2q + 1)

≤ f+(xp−1)− rp− 2p+ 1 ≤ f+(xp−1)− 4p+ 1 < 0.

From (1) and condition (b), g+(xp) − g+(vj) = f+(xp) + 1
2 (r − p)(rp + 2q + 1) 6= 0.

So, g is a local antimagic labeling of G∨Or inducing t+ 1 colors. Hence we have the

theorem.

By a similar proof of Theorem 2 we have:

Theorem 3. Let G be a connected graph of order p and size q. Let r ≥ 2 and p ≡ r
(mod 2). Suppose G admits a local antimagic t-coloring f . Then χla(G∨Or) ≤ t+1 if either
when r − p ≥ 0 or when p− r ≥ 2 and 2f+(x) 6= (p− r)(rp+ 2q + 1) for each x ∈ V (G).

Corollary 1. For m ≥ 2 and n ≥ 1, χla(W2m ∨O2n−1) = 4.

Proof. When n = 1, then G = W2m ∨ O1 = C2m ∨K2 and the result follows from

Theorem 3.10 in [11]. Thus we only consider n ≥ 2.

Let V (W2m) = {v} ∪ {ui | 1 ≤ i ≤ 2m} and E(W2m) = {vui, uiui+1 | 1 ≤ i ≤ 2m},
where u2m+1 = u1.

Suppose m = 2k. Let f1 be the local antimagic 3-coloring of W4k defined in the proof

of [8, Theorem 5], in which f+1 (v) = 20, f+1 (u2l) = 15 and f+1 (u2l−1) = 11 for l = 1, 2

when k = 1; and f+1 (v) = 2k(12k + 1), f+1 (u2l) = 11k + 1 and f+1 (u2l−1) = 9k + 2

for 1 ≤ l ≤ 2k when k ≥ 2. For m ≥ 4, it is easy to check that W4k admits a local

antimagic 3-coloring h1 = 8k+ 1− f1 with induced vertex colors h+1 (v) = 2k(4k+ 1),

h+1 (u2l) = 13k+ 2 and h+1 (u2l−1) = 15k+ 1. Moreover, label 1 is assigned to a spoke

of W4k.
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Suppose m = 2k+ 1. Let f2 be the local antimagic 3-coloring of W4k+2 defined in the

proof of [1, Theorem 2.14], in which f+2 (v) = (2k + 1)(12k + 7) , f+2 (u2l) = 11k + 7

and f+2 (u2l−1) = 9k + 6 for 1 ≤ l ≤ 2k + 1. It is easy to check that W4k+2 admits

a local antimagic 3-coloring h2 = 8k + 5 − f2 with induced vertex colors h+2 (v) =

(2k + 1)(4k + 3), h+2 (u2l) = 13k + 8 and h+2 (u2l−1) = 15k + 9. Moreover, label 1 is

assigned to a spoke of W4k+2.

In order to show χla(W2m ∨ O2n−1) ≤ 4, by Theorem 2 we only need to consider

p− r = 2(m− n+ 1) ≥ 2, i.e., m ≥ n.

We denote f1 (of W4) or h1 or h2 by f . It is easy to check that f satisfies condition

(a) of Theorem 2. We are going to check the condition (b) of Theorem 2. It is easy

to see that f+(v) = m(2m+ 1) when m ≥ 3.

1

2
(p− r)(rp+ 2q + 1)− f+(v) = (m− n+ 1)(4mn+ 6m+ 2n)−m(2m+ 1)

= 4mn(m− n) + 4m2 + 5m− 2n2 + 2n > 0.

When m = 2, then f+(v) = 20 and n = 2. Thus 1
2 (p − r)(rp + 2q + 1) − f+(v) =

(4mn+ 6m+ 2n)− 20 = 12. Thus condition (b) holds.

By Theorem 2, χla(W2m ∨ O2n−1) ≤ 4. Since χ(W2m ∨ O2n−1) = 4, χla(W2m ∨
O2n−1) = 4.

In this paper, we shall keep the notation related to Ws defined above for s ≥ 3.

Example 1. The labeling matrix of W4 ∨O5 under g is given below.

u1 u2 u3 u4 v v1 v2 v3 v4 v5 f+(ui)

u1 ∗ 7 ∗ 3 1 31 13 15 22 24 116

u2 7 ∗ 2 ∗ 6 12 14 21 28 30 120

u3 ∗ 2 ∗ 4 5 18 20 27 29 11 116

u4 3 ∗ 4 ∗ 8 19 26 33 10 17 120

v 1 6 5 8 ∗ 25 32 9 16 23 125

f+(vj) ∗ ∗ ∗ ∗ ∗ 105 105 105 105 105

Note thatW2m∨O1 = C2m∨K2. Suppose e is an edge of theK2, then (W2m∨O1)−e =

C2m ∨O2. By Theorem 3.3 [11], we have χla((W2m ∨O1)− e) = 3. For n ≥ 2, if e is

an edge of the C2m subgraph of W2m, then (W2m ∨O2n−1)− e = F2m ∨O2n−1 as in

Corollaries 6 and 7.

Corollary 2. Suppose m,n ≥ 2. If e is a spoke of W2m, then χla((W2m∨O2n−1)−e) = 4.
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Proof. Note that (W2m∨O2n−1)−e = (W2m−e)∨O2n−1. Since χ((W2m∨O2n−1)−
e) = 4, we only need to show that χla((W2m ∨O2n−1)− e) ≤ 4.

From Corollary 1 we know that there is a local antimagic 3-coloring η for W2m such

that η(e) = 1. Let F = η − 1 be a labeling for W2m − e. Then F+(x) = η+(x) −
degW2m

(x), x ∈ V (W2m).

For this case, the labeling η is f1 or h1 or h2 corresponding to m = 2 or m = 2k ≥ 4

or m = 2k + 1 ≥ 3, which are described in the proof of Corollary 1. According to

Theorem 2, p = 2m + 1, q = 4m − 1, r = 2n − 1, A = (p − r)(rp + 2q + 1) =

2(m − n + 1)(4mn + 2n + 6m − 2) for the graph W2m − e. We only need to check

A 6= 2F+(xp) if F is a local antimagic labeling when p− r ≥ 2, i.e., m ≥ n. We have

the following cases:

1. m = 2, F+(v) = 16, F+(uje) = 12 and F+(ujo) = 8, where je is even and jo is

odd. So F is a local antimagic 3-coloring. Here p = 5, q = 7, 4p − 2 = 18 and

xp = v.

A− 2F+(v) = 2(3− n)(10n+ 10)− 32 = 20n(2− n) + 28 > 0.

2. m = 4. We cannot use F defined before, because it is not local antimagic. We use

the following labeling F for W8 − e given in Figure 1, which was defined in [11].
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Figure 1. Local antimagic 3-colorings for W3 − e, W5 − e, W7 − e and W8 − e.

Now, the F+-values are 17, 25, 72. Here p = 9, q = 15, 4p − 2 = 34 and xp = v.

A−2F+(v) = 2(5−n)(18n+22)−144 = 36n(4−n)−8n+76 > 0, since 2 ≤ n ≤ 4.

3. m = 2k ≥ 6. F+(v) = 2k(4k−1), F+(ue) = 13k−1 and F+(uo) = 15k−2. Clearly

F is a local antimagic 3-coloring. Here p = 4k + 1, q = 8k − 1, 4p − 2 = 16k + 2

and xp = v.

A− 2F+(v) = 32k2 + 32k2n+ 20k − 16kn2 − 4n2 + 8n− 4

= 4(4k2 − n2) + 16k2 + 20k + 16kn(2k − n) + 8n− 4 > 0.

4. m = 2k+1 ≥ 3. F+(v) = (2k+1)(4k+1), F+(ue) = 13k+5 and F+(uo) = 15k+6.

Here p = 4k + 3, q = 8k + 3, 4p− 2 = 16k + 10. Now xp = v if k ≥ 2 and xp = uo
if k = 1. Clearly F is a local antimagic 3-coloring.
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For k ≥ 2,

A− 2F+(v) = 32k2 + 32k2n+ 32kn+ 52k − 16kn2 − 12n2 + 16n+ 14

= 16kn(2k + 1− n) + 4(4k + 3n)(2k + 1− n)

+ 8kn+ 36k + 4n+ 14 > 0.

For k = 1, A − 2F+(uo) = 2(4 − n)(14n + 16) − 42 = 28n(3 − n) − 4n + 86 > 0

since n = 2, 3.

By Theorem 2 we have χla(W2m ∨O2n−1 − e) ≤ 4 and hence the corollary holds.

Corollary 3. For m,n ≥ 2, χla(W2m−1 ∨O2n) = 5.

Proof. In [1, Theorem 2.14], the authors provided a local antimagic 4-coloring f

of Wk for odd k (there is a typo on the induced vertex label in the original paper).

Namely,

when k ≡ 3 (mod 4): f+(ui) =


9k+9

4
if i is odd and i 6= 1;

11k+7
4

if i is even;

2k + 2 if i = 1.

and f+(v) = (3k+1)k
2 ,

when k ≡ 1 (mod 4): f+(ui) =


11k+17

4
if i is odd and i 6= 1;

9k+11
4

if i is even;
5k+11

4
if i = 1.

and f+(v) = 6k2+k+1
4 .

Let G = W2m−1. According to the notation in Theorem 2, p = 2m, q = 4m − 2

and r = 2n. We only need to consider when p − r ≥ 2, i.e., m − n ≥ 1. Clearly

condition (a) of Theorem 2 holds for both cases. For condition (b), we need to have

(p− r)(rp+ 2q + 1)− 2f+(xp) 6= 0 when m− n ≥ 1.

Suppose 2m− 1 ≡ 3 (mod 4).

(p− r)(rp+ 2q + 1)− 2f+(xp) = (2m− 2n)(4mn+ 8m− 3)− [3(2m− 1)2 + (2m− 1)]

= 4m2 + 8m2n+ 4m− 8mn2 − 16mn+ 6n− 2

= 8mn(m− n− 2) + 4m2 + 4m+ 6n− 2.

The last expression is greater than 0 when m− n ≥ 2. So we only need to consider

m−n = 1. For this case, 8mn(m−n−2)+4m2 +4m+6n−2 = −8m2 +18m−8 6= 0,

since the discriminant is not a perfect square.

Suppose 2m− 1 ≡ 1 (mod 4).

(p− r)(rp+ 2q + 1)− 2f+(xp) = (2m− 2n)(4mn+ 8m− 3)− [3(2m− 1)2 +m]

= 4m2 + 8m2n+ 5m− 8mn2 − 16mn+ 6n− 3

= 8mn(m− n− 2) + 4m2 + 5m+ 6n− 3.
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Same as the previous case, the last expression is greater than 0 when m − n ≥ 2.

When n = m− 1, the last expansion is −8m2 + 19m− 8 6= 0, since the discriminant

is not a perfect square.

By Theorem 2 we have χla(W2m−1 ∨ O2n) ≤ 5. Since χ(W2m−1) = 4, χ(W2m−1 ∨
O2n) = 5. Hence we have the corollary.

Corollary 4. For 2 ≤ m ≤ 4 and n ≥ 1, χla((W2m−1 ∨O2n)− e) = 4, where e is a spoke
of W2m−1.

Proof. Using the local antimagic 3-colorings of Wk − e for k = 3, 5, 7 (see Fig.1),

which were shown in the proof of [11, Theorem 3.7], we can easily show the conditions

of Theorem 2 are met.

Since χ((W2m−1 ∨O2n)− e) = 4, we have the corollary.

Corollary 5. Suppose m ≥ 5 and n ≥ 1. If e is a spoke of W2m−1, then

4 ≤ χla((W2m−1 ∨O2n)− e) ≤ 5.

Proof. Since χ((W2m−1∨O2n)−e) = 4, it suffices to show χla((W2m−1∨O2n)−e) ≤
5. We rewrite the f+ values of the local antimagic 4-coloring f of W2m−1 used in the

proof of Corollary 3 as:

when m = 2k: f+(ui) =


9k if i is odd and i 6= 1;

11k − 1 if i is even;

8k if i = 1.

and f+(v) = (6k − 1)(4k − 1),

when m = 2k+ 1: f+(ui) =


11k + 7 if i is odd and i 6= 1;

9k + 5 if i is even;

5k + 4 if i = 1.

and f+(v) = 24k2 + 13k+ 2.

When m = 2k ≥ 6. Let h1 = 8k − 1 − f . Then h1 is a local antimagic 4-coloring of

W4k−1 with induced vertex colors h+1 (v) = 2k(4k−1), h+1 (u2l) = 13k−2, h+1 (u2l−1) =

15k − 3, for l 6= 1 and h+1 (u1) = 16k − 3.

When m = 2k + 1 ≥ 5. Let h2 = 8k + 3− f . Then h2 is a local antimagic 4-coloring

of W4k+1 with induced vertex colors h+2 (v) = 8k2 + 15k + 1, h+2 (u2l) = 15k + 4,

h+2 (u2l−1) = 13k + 2, for l 6= 1 and h+2 (u1) = 19k + 5.

So we have a local antimagic 4-coloring η for W2m−1 such that η(e) = 1, here η is

h1 or h2 according to m = 2k or m = 2k + 1. Same as the proof of Corollary 2, let

F = η−1 be a labeling for W2m−e. Then F+(x) = η+(x)−degW2m
(x), x ∈ V (W2m).

According to Theorem 2, p = 2m, q = 4m − 3, r = 2n, A = (p − r)(rp + 2q + 1) =

2(m−n)(4mn+8m−5) for the graph W2m−1−e. We only need to check A 6= 2F+(xp)

when p− r ≥ 2, i.e., 2m ≥ 2n+ 1. We have the following two cases:

1. m = 2k, where k ≥ 3. Now F+(v) = (2k − 1)(4k − 1), F+(u2l) = 13k − 5,

F+(u2l−1) = 15k−6, for l 6= 1 and F+(u1) = 16k−6. Here p = 4k, 4p−2 = 16k−2
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and xp = v. Note that 4k ≥ 2n+ 1 implies 4k ≥ 2n+ 2, i.e., 2k ≥ n+ 1. Now

A− 2F+(v) = 2(2k − n)(8kn+ 16k − 5)− 2(2k − 1)(4k − 1)

= 48k2 + 32k2n− 8k − 16kn2 − 32kn+ 10n− 2

= 16kn(2k − n− 2) + 48k2 − 8k + 10n− 2 > 0.

2. m = 2k+1, where k ≥ 2. Now F+(v) = 8k2+11k, F+(u2l) = 15k+1, F+(u2l−1) =

13k − 1, for l 6= 1 and F+(u1) = 19k + 2. Here p = 4k + 2, 4p − 2 = 16k + 6 and

xp = v. Note that 4k + 1 ≥ 2n+ 1, i.e., 2k ≥ n. Now

A− 2F+(v) = 2(2k + 1− n)(8kn+ 4n+ 16k + 3)− 2(8k2 + 11k)

= 48k2 + 32k2n+ 22k + 2n− 16kn2 − 8n2 + 6

= 16kn(2k − n) + 48k2 − 8n2 + 22k + 2n+ 6 > 0.

By Theorem 2, we have the corollary.

Theorem 4. Suppose m ≥ 2, n ≥ 1 and either 8mn2−2m2+12mn−4n2+11m−6n−8 < 0
or −12n2 + 16n2m + 24nm − 20n − 2m2 + 15m − 14 < 0. If e is a spoke of W2m−1, then
χla((W2m−1 ∨O2n)− e) = 5.

Proof. Without loss of generality we may let e = vu1. Let W = (W2m−1 ∨O2n)− e.
Note that χla(W ) ≥ χ(W ) = 4. We are going to find a necessary condition for W
admitting a local antimagic 4-coloring, say f . Then we must have f+(v) = f+(u1).
Since deg(v) = 2m+ 2n− 2 and deg(u1) = 2n+ 2, we have

(m+ n− 1)(2m+ 2n− 1) =

2m+2n−2∑
i=1

i ≤ f+(v) = f+(u1) ≤
2n+2∑
j=1

(q− j + 1) = (n+ 1)(2q− 2n− 1),

where q = 4mn+ 4m− 3, the size of G. Thus

L1 = (m+ n− 1)(2m+ 2n− 1) ≤ f+(v) = f+(u1) ≤ (n+ 1)(8nm− 2n+ 8m− 7) = U1.

Since the edges incident to v are different from those to u1, (m+ 2n)(2m+ 4n+ 1) ≤
f+(v) + f+(u1). So

L2 =
1

2
(m+ 2n)(2m+ 4n+ 1) ≤ f+(v) = f+(u1).

By using U1 − L1, we have 8mn2 − 2m2 + 12mn− 4n2 + 11m− 6n− 8 ≥ 0.

By using 2(U1 −L2), we have −12n2 + 16n2m+ 24nm− 20n− 2m2 + 15m− 14 ≥ 0.

This means χla(W ) ≥ 5 if 8mn2 − 2m2 + 12mn − 4n2 + 11m − 6n − 8 < 0 or

−12n2 + 16n2m + 24nm− 20n− 2m2 + 15m− 14 < 0. Combining with Corollary 5

we have the theorem.
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Conjecture 5. Let m ≥ 5, n ≥ 1 and e be a spoke of W2m−1. Then
8mn2 − 2m2 + 12mn− 4n2 + 11m− 6n− 8 ≥ 0 and −12n2 + 16n2m+ 24nm− 20n− 2m2 +
15m− 14 ≥ 0 is a sufficient condition for χla((W2m−1 ∨O2n)− e) = 4.

Note that (W3 ∨O2n)− e = K1,1,2,2n. We also conjecture that

Conjecture 6. χla(Kp,q,r,s) = 4 for all p ≥ q ≥ r ≥ s ≥ 1.

More general, we propose

Conjecture 7. For any complete t-partite graph K, χla(K) = t, t ≥ 4.

Corollary 6. For m ≥ 3 and n ≥ 1, χla(F2m ∨O2n−1) = 4.

Proof. When n = 1, F2m ∨ O1
∼= P2m ∨K2. The result was proved by Yang al et.

[13, Theorem 2.2]. So we assume n ≥ 2.

Keep the local antimagic labeling of W2m in the proof of Corollary 1. Note that

the label 1 is assigned to u1u2 under f (see the proofs of [8, Theorem 5] and [1,

Theorem 2.14]). One may easily check that f satisfies the conditions of Lemma 1.

From the proof of Lemma 1 in [11, Lemma 2.4] we know that the restriction of

f − 1 on F2m, denoted by h, is a local antimagic 3-coloring of F2m, m ≥ 3. In

this case, p = 2m + 1, r = 2n − 1, q = 4m − 1. By Theorem 2 we only consider

p− r = 2m− 2n+ 2 ≥ 2, i.e., m ≥ n.

Now h+(ui) = f+(ui)− 3 and h+(v) = f+(v)− 2m = m(6m+ 1)− 2m. So h+(v) >

h+(u2l) > h+(u2l−1) for l ∈ [1,m]. It is easy to check that h satisfies Condition (a)

of Theorem 2.

For Condition (b),

1

2
(p− r)(rp+ 2q + 1)− h+(v) = (m− n+ 1)(4mn+ 6m+ 2n− 2)−m(6m+ 1) + 2m

= 4mn(m− n) + 5m− 2n2 + 4n− 2.

Similar to the proof of Corollary 1, the above expression is not zero. Hence by

Theorem 2 we have χla(F2m ∨ O2n−1) ≤ 4. Since χ(F2m ∨ O2n−1) = 4, χla(F2m ∨
O2n−1) = 4.

Corollary 7. For n ≥ 1, 4 ≤ χla(F4 ∨O2n−1) ≤ 5.

Proof. When n = 1, χla(F4 ∨ O1) = χla(P4 ∨ K2) = 4 was proved by Yang al et.

[13, Theorem 2.2]. So we assume n ≥ 2.

Since χ(F4 ∨ O2n−1) = 4. So 4 ≤ χla(F4 ∨ O2n−1). Let g be the corresponding local

antimagic 4-coloring of F4 defined in the proof of [10, Theorem 2.3 (b)]. We see that
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g+(v) = 20 and the other induced vertex weights are 8, 9, 11 from [10, Theorem 3.3].

By Theorem 3 we only need to consider p − r ≥ 2, i.e., p = 5 and r = 3. Now

(p − r)(rp + 2q + 1) = 60 which does not equal to 2g+(x) for any x ∈ V (F4). So by

Theorem 3, we have 4 ≤ χla(F4 ∨O2n−1) ≤ 5.

Corollary 8. For m ≥ 2 and n ≥ 2, χla(F2m−1 ∨O2n) = 4.

Proof. Now p = 2m, q = 4m−3 and r = 2n. From [10, Corollary 3.3] we know that
χla(F2m−1) = 3. Let g be the corresponding local antimagic 3-coloring defined in the
proof [10, Theorem 2.3 (b)]. From the proof of [10, Corollary 3.3] we have

g+(ujo ) =


10k + 1 if m = 2k + 1; k ≥ 2

11k + 7 if m = 2k + 2; k ≥ 1

10 if m = 3

6 if m = 2

=


5m− 4 for odd m ≥ 5
11m
2
− 4 for even m ≥ 4

10 if m = 3

6 if m = 2

g+(uje ) =


11k if m = 2k + 1; k ≥ 2

13k + 10 if m = 2k + 2; k ≥ 1

14 if m = 3

8 if m = 2

=


11(m−1)

2
for odd m ≥ 5

13m
2
− 3 for even m ≥ 4

14 if m = 3

8 if m = 2

g+(v) =


22k2 + 12k + 1 if m = 2k + 1; k ≥ 2

16k2 + 19k + 6 if m = 2k + 2; k ≥ 1

32 if m = 3

10 if m = 2

=


11m2+1

2
− 5m for odd m ≥ 5

4m2 − 13m
2

+ 3 for even m ≥ 4

32 if m = 3

10 if m = 2

(2)

where jo is odd and je is even. Thus g+(v) > g+(ue) > g+(uo) and g+(ue) < 4p−2 =

8m − 2 for even e. Similar to the proof of Corollary 1 we consider p − r ≥ 2, i.e.,

m − n ≥ 1. Clearly Condition (a) of Theorem 2 holds. Now we are going to look at

Condition (b) of Theorem 2.

Let B = (p− r)(rp+ 2q + 1)− 2g+(v) = 2(m− n)(4mn+ 8m− 5)− 2g+(v).

(1) m = 2. No case to check.

(2) m = 2k + 1. Thus 2k − n ≥ 0 and

B = 42k2 + 32k + 32k2n+ 2n− 16kn2 − 8n2 + 5

= 10k2 + 8(4k2 − n2) + 32k + 2n+ 16kn(2k − n) + 5 > 0.

(3) m = 2k + 2. Thus 2k − n+ 1 ≥ 0 and

B = 48k2 + 89k + 32k2n+ 32kn+ 10n− 16kn2 − 16n2 + 38

= 48k2 + 16kn− 16n2 + 89k + 10n+ 16kn(2k − n+ 1) + 38

≥ 48k2 + 16nk − 16n2 + 89k + 10n+ 38

≥ 48

(
(n− 1)2

4

)
+ 16n

(
n− 1

2

)
− 16n2 +

89(n− 1)

2
+ 10n+ 38

= 4n2 +
45n+ 11

2
> 0.

By Theorem 2 we have the corollary.
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3. Graphs join with cycles

We shall apply the following local antimagic labeling of Cr = v1v2 · · · vrv1 with r ≥ 3,

which was provided in [1], to prove Theorem 8. Let ei = vivi+1, 1 ≤ i ≤ r − 1 and

er = vrv1. Define φ : E(Cr)→ [1, r] by

φ(ei) =

{
r − i−1

2 if i is odd;
i
2 if i is even

(3)

so that

φ+(vi) =


r if i is odd; i 6= 1;

r + 1 if i is even;

2r − b r2c if i = 1.

Theorem 8. Let G be a connected graph of order p and size q. Suppose G admits a local
magic t-coloring f . Without loss of generality, let f+(x1) ≤ f+(x2) ≤ · · · ≤ f+(xp−1) ≤
f+(xp), where xi for i ∈ [1, p] are vertices of G. Let r ≥ 3, p ≥ 3 and p ≡ r (mod 2). Then
χla(G ∨ Cr) ≤ t+ 3 if one of the following condition holds:

(a) r − p ≥ 6;

(b) r − p = 4 and f+(x1) ≥ 6;

(c) r − p ≤ 2, f+(xp−1) ≤ 6p and

2f+(xp) + (r − p)(rp+ 2q + 1)− 4rp− 4q − 2r /∈ {2r − 2
⌊ r

2

⌋
, 2, 0}. (*)

Proof. Keeping all notation defined in the proof of Theorem 2. Let H = G ∨Cr be

obtained from G ∨Or by adding the edges vjvj+1 for 1 ≤ j ≤ r where vr+1 = v1.

Now |E(H)| = rp + q + r. We define a bijection ψ : E(H) → [1, rp + q + r] by
ψ(e) = g(e) if e ∈ E(G ∨Or) and ψ(vjvj+1) = φ(vjvj+1) + rp+ q. Thus,

ψ+(xi) = g+(xi) = f+(xi) +R+ rq for i ∈ [1, p];

ψ+(v1) = g+(v1) + 2r −
⌊ r

2

⌋
+ 2rp+ 2q = C + pq + 2r −

⌊ r
2

⌋
+ 2rp+ 2q;

ψ+(vje ) = g+(vje ) + r + 1 + 2rp+ 2q = C + pq + r + 1 + 2rp+ 2q for even je ∈ [2, r];

ψ+(vjo ) = g+(vjo ) + r + 2rp+ 2q = C + pq + r + 2rp+ 2q for odd jo ∈ [2, r].

Clearly ψ+(xi) is a constant translation of f+(xi), and ψ+(v1) > ψ+(vje) > ψ+(vjo)

for even je ∈ [2, r] and odd jo ∈ [3, r].

For i ∈ [1, p], we have

ψ+(xi)− ψ+(v1) = f+(xi) +R− C + rq − pq − 2rp− 2q − 2r +
⌊ r

2

⌋
= f+(xi) +

1

2
(r − p)(rp+ 2q + 1)− 2rp− 2q − 2r +

⌊ r
2

⌋
= f+(xi) +

1

2
(r − p− 4)(rp+ 2q + 1) + 2q + 2− 2r +

⌊ r
2

⌋
. (4)
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(a) Suppose r − p ≥ 6. From (4) we have

ψ+(x1)− ψ+(v1) > (rp+ 2q + 1) + 2q + 2− 2r +
⌊ r

2

⌋
> rp− 2r +

⌊ r
2

⌋
> 0.

Thus, ψ+(xp) ≥ · · · ≥ ψ+(x1) > ψ+(v1) > ψ+(vje) > ψ+(vjo).

(b) When r − p = 4, we have r = p+ 4 ≥ 7. From (4) we have

ψ+(x1)− ψ+(v1) = f+(x1) + 2q + 2− 2r +
⌊ r

2

⌋
≥ f+(x1) + 2(p− 1) + 2− 2r +

⌊ r
2

⌋
= f+(x1) + 2(r − 5) + 2− 2r +

⌊ r
2

⌋
= f+(x1)− 8 +

⌊ r
2

⌋
≥ f+(x1)− 5 > 0. (by assumption)

Thus, ψ+(vjo ) < ψ+(vje ) < ψ+(v1) < ψ+(x1) ≤ ψ+(x2) ≤ · · · ≤ ψ+(xp−1) ≤ ψ+(xp).

(c) Suppose r − p ≤ 2. By assumption p ≡ r(mod 2) and hence r − p 6= 1.

When r − p ≤ 0, similar to (4), we have

ψ+(xp−1)− ψ+(vjo ) = f+(xp−1) +
1

2
(r − p)(rp+ 2q + 1)− 2rp− 2q − r

≤ f+(xp−1)− 2rp− 2q − r

≤ f+(xp−1)− 6p− 2q − 3 < 0. (by assumption)

When r − p = 2, then

ψ+(xp−1)− ψ+(vjo ) = f+(xp−1)− rp+ 1− r = f+(xp−1)− p2 − 3p− 1

≤ f+(xp−1)− 6p− 1 < 0. (by assumption)

Thus, ψ+(x1) ≤ ψ+(x2) ≤ · · · ≤ ψ+(xp−1) < ψ+(vjo) < ψ+(vje) < ψ+(v1) when

r − p ≤ 2.

(*) guarantees that ψ+(xp) is different from ψ+(vjo), ψ+(vje) and ψ+(v1).

Thus, for each case, ψ is a local antimagic (t + 3)-coloring. This completes the

proof.

Corollary 9. For n,m ≥ 2, χla(W2m ∨ C2n−1) = 6.

Proof. Use the same notation in the proof of Theorem 2 and Corollary 1. Now

p = 2m+ 1, r = 2n− 1. It is easy to see that 6 ≤ f+(x1) and f+(xp−1) ≤ 6p. So we

only need to check (*) as follows:
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Now, f+(v) = m(2m+ 1), 2r− 2
⌊
r
2

⌋
= 2n and r− p ≤ 2 implies that n−m ≤ 2. We

have

2f+(v) + (r − p)(rp+ 2q + 1)− 4rp− 4q − 2r

= 2m(2m+ 1) + (2n− 2m− 2)(4mn+ 2n− 2m− 1 + 8m+ 1)

− 4(4mn+ 2n− 2m− 1)− 16m− (4n− 2)

= 8mn(n−m− 2) + 4n2 − 16n− 8m2 − 18m+ 6

≤ 4(m2 + 4m+ 4)− 16n− 8m2 − 18m+ 6 < 0.

By Theorem 8, we have χla(W2m∨C2n−1) ≤ 6. Since χ(W2m∨C2n−1) = 6, χ(W2m∨
C2n−1) = 6.

Corollary 10. Suppose m,n ≥ 2. If e is a spoke of W2m, then χla((W2m∨C2n−1)−e) = 6.

Proof. Keep the local antimagic 3-coloring F of W2m − e defined in the proof of

Corollary 2. Clearly, 6 ≤ F+(x1) and F+(xp−1) ≤ 6p. So we only need to check (*)

under the condition n ≤ m + 2. Let D = (r − p)(rp + 2q + 1) − 4rp − 4q − 2r =

2(n−m− 1)(4mn+ 2n+ 6m− 2)− 16mn− 12n− 8m+ 10.

1. m = 2. F+(xp) = 16. Note that n ≤ 4.

2F+(xp) +D = 32 + (20n2 − 84n− 66) = 20n2 − 84n− 34 = 4(5n− 1)(n− 4)− 50 < 0.

2. m = 4. F+(xp) = 72. Note that n ≤ 6.

2F+(xp) +D = 144 + (36n2 − 212n− 242) = 36n2 − 212n− 98 = 4(9n+ 1)(n− 6)− 74 < 0.

3. m = 2k ≥ 6. F+(xp) = 2k(4k − 1). Now n− 2k ≤ 2.

2F+(xp) +D = 4k(4k − 1) + 4n2 + 16n2k − 20n− 32nk2 − 48k2 − 32k − 32nk + 14

= −32k2 − 36k + 4n2 + 16kn2 − 20n− 32k2n− 32kn+ 14

= 16nk(n− 2k − 2) + 4(n− 2)2 − 4n− 32k2 − 36k − 2 < 0.

4. m = 2k + 1 ≥ 3. Now n ≤ 2k + 3.

When k = 1. F+(xp) = 21. Then n ≤ 5.

2F+(xp) +D = 42 + (28n2 − 140n− 142) = 28n2 − 140n− 100 = 28n(n− 5)− 100 < 0.

When k ≥ 2. F+(xp) = (2k + 1)(4k + 1).
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Suppose n ≤ 2k + 2.

2F+(xp) +D = 2(2k + 1)(4k + 1) + 12n2 + 16n2k − 64nk − 44n− 32nk2 − 48k2 − 80k − 14

= 12n2 + 16n2k − 64nk − 44n− 32nk2 − 32k2 − 68k − 12

= 16nk(n− 2k − 3)− 16nk + 12n2 − 44n− 32k2 − 68k − 12

≤ −32nk + 12n2 − 44n− 32k2 − 68k − 12

= 12n(n− 2k − 2)− 8nk − 20n− 68k − 32k2 − 12 < 0.

When n = 2k + 3, 2F+(xp) +D = −16k2 − 60k − 36 < 0.

For each case, 2F+(xp) + D /∈ {2n, 2, 0}. Since χ((W2m ∨ C2n−1) − e) = 6, we have

the corollary by Theorem 8.

Corollary 11. For n ≥ 2 and m ≥ 3, χla(F2m ∨ C2n−1) = 6.

Proof. Keep the notation used in the proof of Corollary 6. Now p = 2m + 1,
q = 4m− 1 and r = 2n− 1. We have h+(v) = (6m+ 1)m− 2m, h+(ue) = 11m+3

2 − 3,

h+(uo) = 9m+3
2 − 3 for odd m; and h+(v) = (6m+ 1)m− 2m, h+(ue) = 11m+2

2 − 3,

h+(uo) = 9m+4
2 − 3 for even m, where e is even and o is odd. Clearly, h(uo) ≥ 6

and h+(ue) ≤ 6p. By Theorem 8, we shall need to check (*) under the condition
n ≤ m+ 2. Now

2h+(v) + (r − p)(rp+ 2q + 1)− 4rp− 4q − 2r

= 2[(6m+ 1)m− 2m] + (2n− 2m− 2)[(2n− 1)(2m+ 1) + 2(4m− 1) + 1]

− 4(2n− 1)(2m+ 1)− 4(4m− 1)− 2(2n− 1)

= −18m+ 8mn2 + 4n2 − 20n− 8m2n− 16mn+ 14

= 8mn(n−m− 2) + 4n2 − 20n− 18m+ 14.

Suppose n−m ≤ 1. It is easy to see that 8mn(n−m− 2) + 4n2− 20n− 18m+ 14 <

−8mn+ 4n2 − 20n− 18m+ 14 = 4n(n−m− 5)− 4mn− 18m+ 14 < 0.

Suppose n−m = 2. Then 8mn(n−m−2)+4n2−20n−18m+14 = 4n2−38n+50 =

4(n − 1)(n − 9) + 2n + 14 > 2n if n ≥ 9. For 5 ≤ n ≤ 7, 4n2 − 38n + 50 =

2(2n− 3)(n− 8) + 2 ≤ −2(2n− 3) + 2 < 0. So the condition (*) of Theorem 8 holds

when n = m+ 2 ≥ 5 except n = 8. When n = 8 i.e., m = 6. Condition (*) does not

holds. So we need to provide an ad hoc labeling for F12 ∨ C15.

Let V (F12) = {xi | i ∈ [1, 13]} as shown in Figure 2 and V (O15) = {vj | j ∈ [1, 15]}.
We define a labeling f for F12 using labels in [1, 11] ∪ [207, 218] as follows:

Let L = F12 ∨O15. Now p = 13, q = 23, r = 15. Define g : E(L)→ [1, 218] by

g(e) =

{
f(e) if e ∈ E(F12);

aij + 11 if e = xivj ,
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Figure 2. A labeling f for F12.

where (aij) is a 13 × 15 magic rectangle with aij ∈ [1, 195]. Note that the row sum
and the column sum of this magic rectangle are R = 1470 and C = 1274, respectively.
It is easy to see that g is a local antimagic 4-coloring for L. Namely,

g+(xi) = f+(xi) +R+ 11r = f+(xi) + 1635 =


1861 i is odd, i ∈ [1, 12];

1856 i is even, i ∈ [1, 12];

4185 i = 13,

g+(vj) = C + 11p = 1417.

We use the labeling ψ defined in the proof of Theorem 8. Then we have

ψ+(xi) = g+(xi) =


1861 i is odd, i ∈ [1, 12];

1856 i is even, i ∈ [1, 12];

4185 i = 13,

ψ+(v1) = g+(v1) + 2r −
⌊ r

2

⌋
+ 2rp+ 2q = 1876,

ψ+(ve) = g+(ve) + r + 1 + 2rp+ 2q = 1869 for even e ∈ [2, 15],

ψ+(vo) = g+(vo) + r + 2rp+ 2q = 1868 for odd o ∈ [2, 15].

Clearly ψ is a local antimagic 6-coloring for F12 ∨ C15.

Thus, by Theorem 8 or above χla(F2m ∨ C2n−1) ≤ 6. Since χ(F2m ∨ C2n−1) = 6,

χla(F2m ∨ C2n−1) = 6.

By the proof of [11, Theorem 3.3] we have the following theorem which can be used

to improve Theorem 8 when p = 2m.

Corollary 12. For n ≥ 2, 6 ≤ χla(F4 ∨ C2n−1) ≤ 7.

Proof. Use the local antimagic 4-coloring g for F4 in Corollary 7. Recall that g+

values are 8, 9, 11, 20. Clearly, we only need to check (*) of Theorem 8 for 3 ≤ r =

2n − 1 ≤ p + 2 = 7. One may easily check that 2f+(xp) + (r − p)(rp + 2q + 1) −
4rp − 4q − 2r = 5r2 − 32r − 63 < 0 when 3 ≤ r ≤ 7. Hence the corollary holds by

χ(F4 ∨ C2n−1) = 6 and Theorem 8.
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Theorem 9. [11, Theorem 3.2] Let C2n = v1v2 · · · v2nv1 and O2m with V (O2m) =
{xk | k ∈ [1, 2m]}, n ≥ 2, m ≥ 1. There is a local antimagic 3-coloring g of O2m ∨C2n such
that g+(xk) = 4mn2 + 4n2 + n, g+(v2i−1) = 4m2n − 4mn + 2m + 10n − 1 and g+(v2i) =
4m2n+ 12mn− 6n+ 3, k ∈ [1, 2m] and i ∈ [1, n].

Theorem 10. Let G be a connected graph of order 2m and size q admitting a local
antimagic t-coloring f . Then χla(G ∨ C2n) ≤ t + 2 if one of the following condition holds,
where m,n ≥ 2.

(a) n ≥ m+ 2;

(b) n = m+ 1 and f+(xk) 6= 4m2 − 7m− 8 for k ∈ [1, 2m];

(c) n = m = 2;

(d) n = m ≥ 3, and f+(xk) 6= 8m2 − 7m+ 3 + 2q for k ∈ [1, 2m];

(e) n = m− 1 and f+(xk) /∈ {−4m2 + 19m− 14 + 4q, 12m2 − 15m+ 6 + 4q} for each k;

(f) n ≤ m − 2, f+(x2m−1) ≤ 2m + 6q and f+(x2m) + (4mn + 4n + 2q)(m − n) /∈ {8mn −
7n+ 3 + 2q,−8mn+ 9n+ 2m− 1 + 2q}.

Proof. Keep the notation described in Theorem 9. Let V (G) = {xk | k ∈ [1, 2m]}.
Without loss of generality, we assume f+(x1) ≤ f+(x2) ≤ · · · ≤ f+(x2m). Thus

G∨C2n = G∪ (O2m∨C2n), the union of G with O2m∨C2n. Define h : E(G∨C2n)→
[1, q + 4mn+ 2n] by

h(e) =

{
f(e) if e ∈ E(G);

g(e) + q if e ∈ E(O2m ∨ C2n).

Thus, h+(xk) = f+(xk) + g+(xk) + 2nq, h+(v1) = h+(v2i−1) = g+(v2i−1) + (2m+ 2)q

and h+(v2) = h+(v2i) = g+(v2i)+(2m+2)q. Therefore, h+(xk) = h+(xk′) if and only

if g+(xk) = g+(xk′). Also h+(v2)−h+(v1) = g+(v2)−g+(v1) = 16mn−2m−16n+4 =

16(n− 1)(m− 1) + 14m− 12 > 0.
Now, for each k ∈ [1, 2m],

h+(xk)− h+(v2) = [f+(xk) + g+(xk) + 2nq]− [g+(v2) + (2m+ 2)q]

= [f+(xk) + 4mn2 + 4n2 + n+ 2nq]− [4m2n+ 12mn− 6n+ 3 + (2m+ 2)q]

= f+(xk)− 8mn+ 7n− 3− 2q + (4mn+ 4n+ 2q)(n−m). (5)

Similar to (5) and q ≤ m(2m− 1) we have

h+(xk)− h+(v1) = [f+(xk) + g+(xk) + 2nq]− [g+(v1) + (2m+ 2)q]

= f+(xk) + 4mn+ 4n2 − 9n− 2m+ 1− 2q + (4mn+ 2q)(n−m)

= f+(xk) + 8mn− 9n− 2m+ 1− 2q + (4mn+ 4n+ 2q)(n−m) (6)

≥ f+(xk) + 8mn− 9n− 2m+ 1− 2m(2m− 1) + (4mn+ 4n+ 2q)(n−m)

= f+(xk) + (4m− 8)n+ (4mn+ 4n+ 4m+ 2q)(n−m)− n+ 1. (7)



710 On local antimagic chromatic number of various join graphs

(a) Suppose n ≥ m + 2. Then (5) ≥ f+(xk) + 15n − 3 + 2q > 0. Thus, h+(v1) <

h+(v2) < h+(x1) ≤ h+(x2) ≤ · · · ≤ h+(x2m). Thus h induces t+ 2 vertex labels.

(b) Suppose n = m + 1. (7) implies that h+(xk) > h+(v1). Now (5) becomes

f+(xk)− 4m2 + 7m+ 8. So f+(xk) 6= 4m2 − 7m− 8 ensures that h induces t+ 2

vertex labels.

(c) Suppose n = m = 2. Since G is a subgraph of K4, f+(xk) ≤ 6 + 5 + 4 = 15. Now

(5) becomes f+(xk)− 21− 2q < 0. That is, h+(xk) < h+(v2) for k ∈ [1, 4].

Next, (6) becomes f+(xk) + 11 − 2q. If G = K4, then f+(xk) ≥ 6. Hence

f+(xk) + 11− 2q > 0. If G 6= K4, then q ≤ 5. Hence f+(xk) + 11− 2q > 0. Thus,

h+(xk) > h+(v1) for k ∈ [1, 4].

So, h induces t+ 2 vertex labels.

(d) Suppose n = m ≥ 3. Then (7) becomes f+(xk) + (4n− 8)n− n+ 1 > 0. Now (5)

becomes f+(xk)− 8m2 + 7m− 3− 2q. So f+(xk) 6= 8m2 − 7m+ 3 + 2q ensures

that h induces t+ 2 vertex labels.

(e) Suppose n = m− 1. From (5) and (6), we have

h+(xk)− h+(v2) = f+(xk)− 12mn+ 3n− 3− 4q = f+(xk)− 12m2 + 15m− 6− 4q,

h+(xk)− h+(v1) = f+(xk) + 4mn− 2m− 13n+ 1− 4q = f+(xk) + 4m2 − 19m+ 14− 4q,

for k ∈ [1, 2m]. The assumption ensures that h+(xk), h+(v1) and h+(v2) are

distinct for k ∈ [1, 2m].

(f) Suppose n ≤ m− 2. From (5) and (6), we have

h+(xk)− h+(v2) ≤ f+(xk)− 16mn− n− 3− 6q

h+(xk)− h+(v1) ≤ f+(xk)− 2m− 17n+ 1− 6q.

for k ∈ [1, 2m]. Since f+(x2m−1) ≤ 2m + 6q, h+(x2m−1) − h+(v1) < 0. By (5),

(6) and the requirement of f+(x2m) imply that h+(x2m), h+(v1) and h+(v2) are

distinct.

Thus we have χla(G ∨ C2n) ≤ t+ 2.

Corollary 13. For m ≥ 2 and n ≥ 2, χla(W2m−1 ∨ C2n) = 6.

Proof. Now p = 2m and q = 4m − 2. Keep the local antimagic 4-coloring f of

W2m−1 described in Corollary 3. Then x2m = v, x1 = u1. To show this corollary, we

only need to check the conditions (b), (d), (e) and (f) of Theorem 10.

(1) Consider m is even so that k = 2m − 1 ≡ 3 (mod 4). The 4 induced vertex

labels are f+(x1) = 4m, f+(x2) = 9m
2 , f+(x2m−1) = 11m−2

2 and f+(x2m) =

6m2 − 5m+ 1.
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(b) Suppose n = m + 1. Clearly f+(xk) < 4m2 − 7m − 8 for 1 ≤ k ≤ 2m − 1

and f+(x2m)− (4m2 − 7m− 8) = 2m2 + 2m+ 9 > 0. So the condition (b) of

Theorem 10 holds.

(d) Suppose n = m. Clearly f+(x2m) < 8m2− 7m+ 3 + 2q. The condition (d) of

Theorem 10 holds.

(e) Suppose n = m− 1. Clearly 12m2 − 15m+ 6 + 4q = 12m2 +m− 2 > f+(xk)

for all k. Next −4m2 + 19m− 14 + 4q = −4m2 + 35m− 22.

4m− (−4m2 + 35m− 22) = 4m2 − 31m+ 22; 4 = 609,

9m

2
− (−4m2 + 35m− 22) =

1

2
(8m2 − 61m+ 44); 44 = 2313,

11m− 2

2
− (−4m2 + 35m− 22) =

1

2
(8m2 − 59m+ 42); 44 = 2137,

(6m2 − 5m+ 1)− (−4m2 + 35m− 22) = 10m2 − 40m+ 23; 4 = 680.

Since all discriminants 4 are not perfect squares, the condition (e) of Theo-

rem 10 holds.

(f) Suppose n ≤ m− 2, then f+(x2m−1) ≤ 2m+ 6q is clear.

α = f+(x2m) + (4mn+ 4n+ 2q)(m− n)

= 14m2 − 9m+ 4m2n− 4mn2 − 4mn− 4n2 + 4n+ 1,

β = 8mn− 7n+ 3 + 2q = 8mn+ 8m− 7n− 1,

γ = −8mn+ 9n+ 2m− 1 + 2q = −8mn+ 10m+ 9n− 5

α− β = 14m2 − 17m+ 4m2n− 4mn2 − 12mn− 4n2 + 11n+ 2

≥ 14m(n+ 2)− 17m+ 4m2n− 4mn2 − 12mn− 4n2 + 11n+ 2

= 2mn+ 11m+ 4mn(m− n)− 4n2 + 11n+ 2

≥ 11m+ 10mn− 4n2 + 11n+ 2 > 0. (by m ≥ n+ 2)

α− γ = 14m2 − 19m+ 4m2n− 4mn2 + 4mn− 4n2 − 5n+ 6

≥ 14m(n+ 2)− 19m+ 4mn(m− n) + 4mn− 4n2 − 5n+ 6

= 18mn− 4n2 + 9m− 5n+ 4mn(m− n) + 6 > 0. (by m > n)

Thus the condition (f) of Theorem 10 holds.

(2) Suppose m is odd, then k = 2m − 1 ≡ 1 (mod 4). The 4 induced vertex labels

are f+(x1) = 5m+3
2 , f+(x2) = 9m+1

2 , f+(x2m−1) = 11m+3
2 and f+(x2m) = 6m2−

6m+ m+3
2 .

(b) Suppose n = m+ 1. Clearly f+(xk) < 4m2 − 7m− 8 for 1 ≤ k ≤ 2m− 1 and

f+(x2m)− (4m2 − 7m− 8) = 1
2 (4m2 + 3m+ 19) > 0. So the condition (b) of

Theorem 10 holds.
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(d) Suppose n = m. Clearly f+(x2m) < 8m2− 7m+ 3 + 2q. The condition (d) of

Theorem 10 holds.

(e) Suppose n = m− 1. Clearly 12m2 − 15m+ 6 + 4q = 12m2 +m− 2 > f+(xk)

for all k. Next −4m2 + 19m − 14 + 4q = −4m2 + 35m − 22. Similar to the

subcase (e) of case (1), we can check that the condition (e) of Theorem 10

holds.

(f) Suppose n ≤ m− 2. f+(x2m−1) ≤ 2m+ 6q is clear.

Now, f+(x2m) + (4mn + 4n + 2q)(m − n) = 14m2 − 9m + 4m2n − 4mn2 −
4mn − 4n2 + 4n + 1 + −m+1

2 . Similar to the subcase (f) of case (1), we can

check that the condition (f) of Theorem 10 holds.

Since χ(W2m−1 ∨ C2n) = 6, by Theorem 10 we have χla(W2m−1 ∨ C2n) = 6.

Corollary 14. For n ≥ 2 and m ≥ 2, χla(F2m−1 ∨ C2n) = 5.

Proof. Now p = 2m and q = 4m− 3. We keep the notation and the local antimagic

3-coloring g of F2m−1 used in Corollary 8. Thus, x2m = v, x2m−1 = u2 and x1 = u1.

Same as the proof of Corollary 13 we only need to check the conditions (b), (d), (e)

and (f) of Theorem 10 by using (2).

(b) Suppose n = m+ 1. Clearly g+(xi) < 4m2 − 7m− 8 for i ∈ [1, 2m− 1].

When m is odd. g+(x2m) − (4m2 − 7m − 8) = 1
2 (3m2 + 4m + 17) > 0 if m ≥ 5

and g+(x2m)− (4m2 − 7m− 8) = 57 if m = 3.

When m is even. g+(x2m)− (4m2−7m−8) = 1
2 (m+22) if m ≥ 4 and g+(x2m)−

(4m2 − 7m− 8) = 16 if m = 2.

It is easy to see that both cases are not zero. So the condition (b) of Theorem 10

holds.

(d) Suppose n = m. Clearly g+(x2m) < 8m2 − 7m + 3 + 2q. The condition (d) of

Theorem 10 holds.

(e) Suppose n = m − 1. Since n ≥ 2, m ≥ 3, clearly 12m2 − 15m + 6 + 4q =

12m2 +m−6 > g+(xi) for all i. Next −4m2 +19m−14+4q = −4m2 +35m−26.

(1) If m = 2k + 1 for k ≥ 2, then −4m2 + 35m− 26 = −16k2 + 54k + 5.

(10k + 1)− (−16k2 + 54k + 5) = 16k2 − 44k − 4; 4 = 2192,

11k − (−16k2 + 54k + 5) = 16k2 − 43k − 5; 4 = 2169,

(22k2 + 12k + 1)− (−16k2 + 54k + 5) = 38k2 − 42k − 4 > 0.

(2) If m = 2k + 2 for k ≥ 1, then −4m2 + 35m− 26 = −16k2 + 38k + 28.

(11k + 7)− (−16k2 + 38k + 28) = 16k2 − 27k − 21; 4 = 2073,

(13k + 10)− (−16k2 + 38k + 28) = 16k2 − 25k − 18; 4 = 1777,

(16k2 + 19k + 6)− (−16k2 + 38k + 28) = 32k2 − 19k − 22 4 = 3177.
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(3) If m = 3, then −4m2 + 35m− 26 = 43.

So the condition (e) of Theorem 10 holds for each cases.

(f) Suppose n ≤ m− 2. Since n ≥ 2, m ≥ 4, f+(x2m−1) ≤ 2m+ 6q is clear.

Now, (4mn+ 4n+ 2q)(m− n) = 8m2 + 4m2n− 4mn2 − 4mn− 6m− 4n2 + 6n.

(1) Consider m = 2k + 1, for k ≥ 2. Note that 2k ≥ n+ 1.

α = f+(x2m) + (4mn+ 4n+ 2q)(m− n)

= 54k2 + 32k + 16k2n+ 8kn+ 6n− 8kn2 − 8n2 + 3,

β = 8mn− 7n+ 3 + 2q = 8mn+ 8m− 7n− 3 = 16kn+ 16k + n+ 5,

γ = −8mn+ 9n+ 2m− 1 + 2q = −8mn+ 10m+ 9n− 7 = −16kn+ 20k + n+ 3.

α− β = 54k2 + 16k + 16k2n− 8kn+ 5n− 8kn2 − 8n2 − 2

= 54k2 − 8n2 + 16k + 8kn(2k − n− 1) + 5n− 2 > 0,

α− γ = 54k2 + 12k + 16k2n+ 24kn+ 5n− 8kn2 − 8n2

= 54k2 − 8n2 + 12k + 8kn(2k − n) + 24kn+ 5n > 0.

Thus the condition (f) of Theorem 10 holds.

(2) Consider m = 2k + 2, for k ≥ 1. Note that 2k ≥ n. Similar to the above, we

can check that the condition (f) of Theorem 10 holds.

Since χ(F2m−1 ∨ C2n) = 5, by Theorem 10 we have χla(F2m−1 ∨ C2n) = 5.

4. Conclusion

In this paper, we successfully obtained sufficient conditions for the upper bounds of

χla(G ∨ H) that depends on the existence of a suitable local antimagic labeling of

G for H ∈ {On, Cn}. Consequently, the local antimagic chromatic number of many

join graphs are obtained. Sufficient conditions that give the exact value of the local

antimagic chromatic number of the join of circulant graphs with null graph will be

reported in a subsequent paper.
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antimagic vertex coloring of a graph, Graphs Combin. 33 (2017), no. 2, 275–285.



714 On local antimagic chromatic number of various join graphs
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