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Abstract: Let G be a graph with vertex set V (G). A Roman dominating function

(RDF) on a graph G is a function f : V (G) −→ {0, 1, 2} such that every vertex v with

f(v) = 0 is adjacent to a vertex u with f(u) = 2. If f is an RDF on G, then let
Vi = {v ∈ V (G) : f(v) = i} for i ∈ {0, 1, 2}. An RDF f is called a restrained (total)

Roman dominating function if the subgraph induced by V0 (induced by V1∪V2) has no

isolated vertex. A total and restrained Roman dominating function is a total restrained
Roman dominating function. The total restrained Roman domination number γtrR(G)

on a graph G is the minimum weight of a total restrained Roman dominating function

on the graph G.

We initiate the study of total restrained Roman domination number and present several
sharp bounds on γtrR(G). In addition, we determine this parameter for some classes

of graphs.

Keywords: Total restrained domination, total restrained Roman domination, total
restrained Roman domination number

AMS Subject classification: 05C69

1. Introduction

For definitions and notations not given here we refer to [11]. We consider simple and

finite graphs G with vertex set V = V (G) and edge set E = E(G). The order of

G is n = n(G) = |V |. The neighborhood of a vertex v is the set N(v) = NG(v) =

{u ∈ V (G) | uv ∈ E}. The degree of vertex v ∈ V is d(v) = dG(v) = |N(v)|. The

maximum degree and minimum degree of G are denoted by ∆ = ∆(G) and δ = δ(G),

respectively. The complement of a graph G is denoted by G. For a subset D of
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vertices in a graph G, we denote by G[D] the subgraph of G induced by D. A leaf is

a vertex of degree one, and its neighbor is called a support vertex. An edge incident

with a leaf is called a pendant edge. We denoted the sets of all leaves and all support

vertices of G by L(G) and S(G), respectively. Let Kn1,n2,...,np denote the complete

p-partite graph with vertex set S1 ∪ S2 ∪ . . . ∪ Sp where |Si| = ni for 1 ≤ i ≤ p.
A set S ⊆ V (G) is called a dominating set if every vertex is either an element of

S or is adjacent to an element of S. The domination number γ(G) of a graph G

is the minimum cardinality of a dominating set of G. A total restrained dominating

set of a graph G without isolated vertices is defined in [14] as a dominating set D

with the property that the subgraphs induced by D and V (G) \ D do not contain

isolated vertices. The cardinality of a minimum total restrained dominating set in

G is the total restrained domination number, denoted by γtr(G). A total restrained

dominating set of G of cardinality γtr(G) is called a γtr(G)-set.

In this paper we continue the study of Roman dominating functions in graphs (see,

for example, the survey articles [7–9]). A Roman dominating function (RDF) on a

graph G is defined in [10] as a function f : V (G) −→ {0, 1, 2} such that every vertex

v with f(v) = 0 is adjacent to a vertex u with f(u) = 2. The weight of an RDF

f is the value f(V (G)) =
∑
u∈V (G) f(u). The Roman domination number γR(G)

is the minimum weight of an RDF on G. Moreover, if f is an RDF on G, we let

V fi = {v ∈ V | f(v) = i} for every i ∈ {0, 1, 2}. Consequently, any RDF f can be

represented by f = (V f0 , V
f
1 , V

f
2 ), where the superscript f can be deleted in V fi when

no confusion arises.

A total Roman dominating function (TRDF) on a graph G without isolated vertices

is defined in [13] as a Roman dominating function f with the property that the

subgraph induced by V1 ∪ V2 has no isolated vertex. The total Roman domination

number γtR(G) is the minimum weight of a TRDF on G. A TRDF on G with weight

γtR(G) is called a γtR(G)-function. Total Roman domination has been studied by

several authors [1–3, 5, 6].

A restrained Roman dominating function (RRDF) on a graph G is defined in [15]

as a Roman dominating function f with the property that the subgraph induced by

V0 has no isolated vertex. The restrained Roman domination number γrR(G) is the

minimum weight of an RRDF on G. An RRDF on G with weight γrR(G) is called

a γrR(G)-function. The restrained Roman domination number has also been studied

in [4, 16].

A total and restrained Roman dominating function on a graph without isolated ver-

tices is a total restrained Roman dominating function (TRRDF). The total restrained

Roman domination number γtrR(G) on a graph G is the minimum weight of a TRRDF

on G. A TRRDF on G with weight γtrR(G) is called a γtrR(G)-function.

If G is a graph without isolated vertices, then the definitions lead to

γR(G) ≤ γtR(G) ≤ γtrR(G) (1)

and

γR(G) ≤ γrR(G) ≤ γtrR(G). (2)
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We initiate the study of total restrained Roman domination and present several

sharp bounds on γtrR(G). In addition, we determine this parameter for some classes

of graphs. Furthermore, if T is a tree of order n ≥ 6, then we prove the sharp lower

bound γtrR(T ) ≥ 3(n+2)
4 .

We make use of the following results.

Proposition 1. [3] If G is a nontrivial path or a cycle of order n, then γtR(G) = n.

Proposition 2. [15] If p, q ≥ 2 are integers, then γrR(Kp,q) = 4.

Proposition 3. [14] If Cn is a cycle of order n, then γtr(Cn) = n− 2bn
4
c.

Proposition 4. [3] If G is a graph with no isolated vertex, then 2γ(G) ≤ γtR(G).

Proposition 5. [1] If G is a connected graph of order n ≥ 3, then γtR(G) ≥ d 2n
∆(G)

e.

2. Complexity of total restrained Roman domination number

Our aim in this section is to show that the decision problem associated with the to-

tal restrained Roman domination is NP-hard even when restricted to bipartite graphs.

Total restrained Roman domination number problem (TRRDN)

Instance: A bipartite graph G with no isolated vertices and a positive integer k.

Question: Is γtrR(G) ≤ k?

We show the NP-hardness of TRRDN problem by transforming the 3-SAT problem

to it in polynomial time. Recall that the 3-SAT problem specified below was proven

to be NP-complete in [12].

3-SAT problem

Instance: A collection C = {C1, C2, . . . , Cm} of clauses over a finite set U of variables

such that |Cj | = 3 for j = 1, 2, . . . ,m.

Question: Is there a truth assignment for U that satisfies all the clauses in C?
Now, we show that the problem above is NP-hard, even when restricted to bipartite

graphs.

Theorem 1. Problem TRRDN is NP-complete for bipartite graphs.

Proof. The problem clearly belongs to NP since checking that a given function is

indeed a TRRDF, on a bipartite graph, of weight at most k can be done in polynomial

time. Now let us show how to transform any instance of 3-SAT into an instance G of

TRRD so that one of them has a solution if and only if the other one has a solution.



578 Total restrained Roman domination

Let U = {u1, u2, . . . , un} and C = {C1, C2, . . . , Cm} be an arbitrary instance of 3-

SAT. We will construct a bipartite graph G and a positive integer k such that C

is satisfiable if and only if γtrR(G) ≤ k. We construct such a graph G as follows.

For each i = 1, 2, . . . , n, corresponding to the variable ui ∈ U , associate a complete

s1

s2

s3

s4s5

s6

F

Figure 1. The graph F

bipartite graph Hi = K3,4 with bipartite sets X = {xi, yi, zi, wi} and Y = {ui, ti, ui}.
For each j = 1, 2, . . . ,m, corresponding to the clause Cj = {pj , qj , rj} ∈ C , associate

a single vertex cj and add edge-set Ej = {cjpj , cjqj , cjrj}. Finally, add the graph

F depicted in Figure 1 and connect s1 to every vertex cj with 1 ≤ j ≤ m. Set

k = 4n+ 4. Clearly, G is a bipartite graph of order 7n+m+ 6. The graph obtained

when U = {u1, u2, u3, u4} and C = {C1, C2, C3}, where C1 = {u1, u2, u3}, C2 =

{u1, u2, u4}, C3 = {u2, u3, u4} is illustrated in Figure 2. Now, we only need to prove

that γtrR(G) = 4n+ 4 if and only if there is a truth assignment for U satisfying each

clause in C . This goal can be established by proving the next two claims.

Claim 1. γtrR(G) ≥ 4n + 4. Moreover, if γtrR(G) = 4n + 4, then for any γtrR(G)-

function f = (V0, V1, V2), f(V (Hi)) = 4, at most one of f(ui) and f(ui) is 2 for each

i, f(s2) = f(s6) = 2 or f(s2) = f(s3) = 2, f(s) = 0 for the remaining vertices of F

and f(cj) = 0 for each j.

Proof of Claim 1. Let f = (V0, V1, V2) be a γtrR(G)-function. It is easily verified that

f(V (Hi)) ≥ 3 for each i ∈ {1, 2, . . . , n}. Define Q = {i | f(V (Hi)) = 3 and 1 ≤ i ≤ n}
and let i ∈ Q. It is easy to see that f(ti) = 2, f(pi) = 1 for only one vertex

pi ∈ {xi, yi, zi, wi}, and f(v) = 0 for the other vertices of Hi. Since f is a TRRDF of

G, there exist some vertices cj , with f(cj) = 2, adjacent to the vertices ui and ui. Let

Q′ be the set of such vertices cj . We moreover observe that 2|Q| ≤ |[Q,Q′]| ≤ 3|Q′|.
On the other hand, it is a routine matter to see that f(V (F )) ≥ 4. Therefore,

γtrR(G) = f(V (G)) ≥ 3|Q|+ 2|Q′|+ 4(n− |Q|) + 4 = 4n− |Q|+ 2|Q′|+ 4 ≥ 4n+ 4.

Note that if |Q| > 0, then we have γtrR(G) > 4n+ 4.

Suppose that γtrR(G) = 4n + 4. Then f(V (Hi)) = 4 for each i = 1, 2, . . . , n. If

f(s1) 6= 0, then for totally restrained Roman dominating the vertices s3, s4, s5 and s6
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x1 y1 z1 w1

u1 t1 u1

x2 y2 z2 w2

u2 t2 u2
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u3 t3 u3
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s3
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Figure 2. The graph G

we must have f(N [s3]) ∪ {s6}) ≥ 4 which leads to a contradiction. Hence f(s1) = 0

and similar as above, it is clear to see that f(s2) = f(s3) = 2 or f(s2) = f(s6) = 2.

Therefore f(s) = 0 for the remaining vertices of F , and
∑m
j=1 f(cj) = 0. Now we

show that at most one of f(ui) and f(ui) is 2. Let f(ui) = f(ui) = 2 for some

1 ≤ i ≤ n. Since f(V (Hi)) = 4, it follows that f(x) = 0 for each x ∈ V (Hi) \ {ui, ui}.
This implies that f(ti) = f(N [ti]) = 0, a contradiction. Therefore, at most of one

f(ui) and f(ui) equals two. �

Claim 2. γtrR(G) = 4n+ 4 if and only if C is satisfiable.

Proof of Claim 2. Suppose that γtrR(G) = 4n + 4 and let f be a γtrR(G)-function.

By Claim 2, at most one of f(ui) and f(ui) is 2 for each i = 1, 2, . . . , n. Define a

mapping t : U −→ {T, F} by

t(ui) =

{
T if f(ui) = 2,

F otherwise.
(i = 1, . . . , n) (3)

We now show that t is a satisfying truth assignment for C . It is sufficient to show

that every clause in C is satisfied by t. To this end, we arbitrarily choose a clause

Cj ∈ C with 1 ≤ j ≤ m. By Claim 2, f(s1) = f(cj) = 0. Hence, there exists some

i with 1 ≤ i ≤ n such that f(ui) = 2 or f(ui) = 2 where cj is adjacent to ui or ui.

Suppose that cj is adjacent to ui where f(ui) = 2. Since ui is adjacent to cj in G,

the literal ui is in the clause Cj by the construction of G. Since f(ui) = 2, it follows



580 Total restrained Roman domination

that t(ui) = T by (3), which implies that the clause Cj is satisfied by t. Suppose that

cj is adjacent to ui where f(ui) = 2. Since ui is adjacent to cj in G, the literal ui is

in the clause Cj . Since f(ui) = 2, it follows that t(ui) = F by (3). Thus, t assigns

ui the truth value T , that is, t satisfies the clause Cj . By the arbitrariness of j with

1 ≤ j ≤ m, we have shown that t satisfies all the clauses in C , that is, C is satisfiable.

Conversely, suppose that C is satisfiable, and let t : U → {T, F} be a satisfying truth

assignment for C . We construct a subset D of vertices of G as follows. If t(ui) = T ,

then put the vertices ui and xi in D; if t(ui) = F , then put the vertices ui and xi
in D. Hence |D| = 2n. Define the function g : V (G) −→ {0, 1, 2} by g(x) = 2 for

every x ∈ D, g(s2) = g(s3) = 2 and g(y) = 0 for the remaining vertices. Since t is a

satisfying truth assignment for C , the corresponding vertex cj in G is adjacent to at

least one vertex in D. One can easily check that g is a TRRDF on G of weight 4n+ 4

and so γtrR(G) ≤ 4n+4. By Claim 2, γtrR(G) ≥ 4n+4. Therefore, γtrR(G) = 4n+4.

�
This completes the proof.

3. Properties and bounds

In this section we present basic properties and bounds on the total restrained Roman

domination number. Since the function f with f(x) = 1 for each vertex x ∈ V (G) is

a TRRDF on a graph G without isolated vertices, we obtain our first bound.

Observation 2. If G is a graph of order n without isolated vertices, then γtrR(G) ≤ n.

The next result follows from the inequality γtR(G) ≤ γtrR(G), Proposition 1 and

Observation 2.

Observation 3. If G is a nontrivial path or a cycle of order n, then γtrR(G) = n.

Proposition 6. For any connected graph G of order n with minimum degree at least
three, γtrR(G) ≤ n− 1.

Proof. Let G be a graph with δ(G) ≥ 3. If G has a triangle uvwu, then the function

f defined by f(v) = 2, f(u) = f(w) = 0 and f(x) = 1 otherwise, is a TRRDF

on G of weight n − 1 and we are done. Hence, we assume that G is triangle-free.

Let v be a vertex of G with minimum degree and let u1, u2 be two neighbors of v.

Assume that wi ∈ N(ui) \ {v} for i = 1, 2. If w1 = w2, then let w ∈ N(w1) \ {u1, u2}
and define the function g on G by g(v) = g(w) = 2, g(u1) = g(u2) = g(w1) = 0

and g(x) = 1 for the remaining vertices. Clearly, g is a TRRDF on G of weight

n − 1 and hence γtrR(G) ≤ n − 1. Therefore we assume that w1 6= w2. Since G is

triangle-free, w1 has a neighbor z1 not in {u1, u2, w2} and w2 has a neighbors z2 not

in {u2, u1, w1}. If z1 = z2, then the function g defined on G by g(v) = g(z1) = 2,
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g(u1) = g(u2) = g(w1) = g(w2) = 0 and g(x) = 1 for the remaining vertices, is a

TRRDF on G of weight n − 2 as desired. Let z1 6= z2 and define the function g on

G by g(v) = g(z1) = g(z2) = 2, g(u1) = g(u2) = g(w1) = g(w2) = 0 and g(x) = 1

for the remaining vertices. Clearly, g is a TRRDF of G of weight n − 1 and hence

γtrR(G) ≤ n− 1. This completes the proof.

s1

s4 s9

s7

s8

s6s2

s3
s5

s10

Figure 3. A graph G of order 10 with girth 6 and γtrR(G) = 10

Proposition 7. For any connected graph G of order n with minimum degree at least two
and girth at least seven different from cycles, γtrR(G) ≤ n− 1.

Proof. Let G be a connected graph of order n with δ(G) ≥ 2 and g = g(G) ≥ 7.

Let C = x1x2 . . . xgx1 be a cycle of G on g(G) vertices. Since G is a connected graph

different from a cycle and because C has length g(G), we may assume that x1 has a

neighbor w1 ∈ V (G) \ V (C). Let w2 ∈ N(w1) \ {x1}. Notice that since g(G) ≥ 7,

each vertex in V (G) \ V (C) has at most one neighbor in V (C). Define the function

g on G by g(x1) = g(x4) = g(xg−2) = 2, g(x2) = g(x3) = g(xg) = g(xg−1) = 0 and

g(x) = 1 for the remaining vertices. It is easy to verify that g is a TRRDF on G and

consequently γtrR(G) ≤ n− 1.

The graph illustrated in Figure 3 shows that the assumption of g(G) ≥ 7 in Proposi-

tion 7 is necessary.

Observation 4. If p, q ≥ 2 are integers, then γtrR(Kp,q) = 4.

Proof. Proposition 2 leads to γtrR(Kp,q) ≥ γrR(Kp,q) = 4. Now let X,Y be a

bipartition of Kp.q. If x ∈ X and y ∈ Y , then define f by f(x) = f(y) = 2 and f(u) =

0 for u ∈ V (Kp,q) \ {x, y}. Then f is a TRRDF on Kp,q and thus γtrR(Kp,q) ≤ 4

and so γtrR(Kp,q) = 4.
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The inequality γtR(G) ≤ γtrR(G) and Proposition 5 yield the following lower bound.

Corollary 1. If G is a connected graph of order n ≥ 3, then γtrR(G) ≥ d 2n
∆(G)

e.

Using Observations 3 and 4, we observe that we have equality for paths, cycles and

the complete bipartite graphs Kp,p in the inequality of Corollary 1.

Observation 5. Let G be a graph of order n ≥ 2 without isolated vertices, and let
f be a TRRDF of G. Then f(x) ≥ 1 for every leaf and every support vertex and thus
γtrR(G) ≥ |L(G)|+ |S(G)|.

Let H be the graph consisting of a path x1x2 . . . x3t for an integer t ≥ 2, further

vertices v1, v2, . . . , vt such that vi is adjacent with x3i−2, x3i−1 and x3i for 1 ≤ i ≤ t.

Then γrR(H) = 2t and γtrR(H) = 3t. Hence we have

Proposition 8. There exists a graph H for which γtrR(H) − γrR(H) can be made
arbitrarily large.

If Sp,q is a double star of order n with p, q ≥ 2, then γtrR(Sp,q) = n by Observation

5 and γtR(Sp,q) = 4 and thus

Proposition 9. There exists a graph H for which γtrR(H) − γtR(H) can be made
arbitrarily large.

Using the inequality γtR(G) ≤ γtrR(G) and Proposition 4, we obtain the next lower

bound.

Corollary 2. If G is a graph with no isolated vertex, then 2γ(G) ≤ γtR(G) ≤ γtrR(G).

The corona H ◦K1 of a graph H is the graph obtained from H by adding a pendant

edge to each vertex of H. If G = H ◦K1 with a connected graph H, then γ(G) = n
2 ,

and γtrR(G) = n by Observations 2 and 5. Hence γtrR(H ◦K1) = 2γ(H ◦K1) and

thus Corollary 2 is sharp.

Theorem 6. If G is a graph of order n ≥ 4 without isolated vertices, then γtrR(G) ≥ 3,
with equality if and only if ∆(G) = n − 1, and G contains a vertex w of maximum degree
such that G[NG(w)] has exactly one isolated vertex or no isolated vertex and at least one
component of order at least three.

Proof. Let f be a γtrR(G)-function. If f(x) ≥ 1 for all x ∈ V (G), then γtrR(G) ≥
n > 3. If there exists a vertex u with f(u) = 0, then u has a neighbor v with

f(v) = 2. Since f is a TRRDF, the vertex v is adjacent to a vertex z such that

f(z) ≥ 1. Therefore, γtrR(G) ≥ 3.
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If ∆(G) = n− 1 and G contains a vertex w of maximum degree such that G[NG(w)]

has exactly one isolated vertex u, then the function f with f(w) = 2, f(u) = 1 and

f(x) = 0 for x ∈ V (G)\{u,w} is a TRRDF on G and thus γtrR(G) = 3. Assume next

that ∆(G) = n−1 and G contains a vertex w of maximum degree such that G[NG(w)]

has no isolated vertex and at least one component H of order at least three. Let T be

a spanning tree of H and let v be a leaf of T . Then G[V (T ) \ {v}] is connected, and

hence the function f with f(w) = 2, f(v) = 1 and f(x) = 0 for x ∈ V (G) \ {v, w} is

a TRRDF on G and thus γtrR(G) = 3.

Conversely, assume that γtrR(G) = 3, and let f be a γtrR(G)-function. Since n ≥ 4,

we note that there exist two vertices w and u with f(w) = 2, f(u) = 1 and f(x) = 0 for

x ∈ V (G)\{u,w}. Therefore all vertices x 6= w are adjacent to w and G[NG(w)\{u}]
does not contain an isolated vertex. So ∆(G) = n− 1 and G[NG(w)] has exatly one

isolated vertex u or u is adjacent to a vertex of NG(w) \ {u}, and then G[NG(w)] has

no isolated vertex and at least one component of order at least three.

Since γtrR(K3) = 3, Theorem 6 leads to the next special case immediately.

Corollary 3. If n ≥ 3, then γtrR(Kn) = 3.

Corollary 4. If G and G are graphs of order n ≥ 4 without isolated vertices, then
γtrR(G) + γtrR(G) ≥ 8.

Proof. Since G and G are without isolated vertices, we observe that ∆(G) ≤ n− 2

and ∆(G) ≤ n− 2. Hence Theorem 6 implies γtrR(G), γtrR(G) ≥ 4 and so γtrR(G) +

γtrR(G) ≥ 8.

Example 1. Let X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yq} be a bipartition of the
complete bipartite graph Kp.q for p, q ≥ 3, and let B = Kp,q − e with e = x1y1. We note
that ∆(B) ≤ n(B)− 2 and ∆(B) ≤ n(B)− 2. Define f by f(xp) = f(yq) = 2 and f(x) = 0
otherwise. Then f is a TRRDF on B and therefore γtrR(B) = 4 according to Theorem 6.
Next define g by g(x1) = g(y1) = 2 and g(x) = 0 otherwise. Then g is a TRRDF on B and
thus γtrR(B) = 4. Consequently, γtrR(B) + γtrR(B) = 8.

Example 1 demonstrates that Corollary 4 is sharp.

Observation 7. Let G = Kn1,n2,...,np be a complete p-partite graph with p ≥ 3 and
n1 ≤ n2 ≤ . . . ≤ np. If n = n1 + n2 + . . . + np ≥ 4, then γtrR(G) = 3 when n1 = 1 and
γtrR(G) = 4 when n1 ≥ 2.

Proof. If n1 = 1, then Theorem 6 leads to γtrR(G) = 3. If n1 ≥ 2, then ∆(G) ≤ n−2

and therefore γtrR(G) ≥ 4 by Theorem 6. Now let u ∈ S1 and v ∈ S2, where S1 and

S2 are two different partite sets of G. Then the function f defined by f(u) = f(v) = 2

and f(x) = 0 for x ∈ V (G)\{u, v} is a TRRDF on G of weight 4 and so γtrR(G) ≤ 4.

Consequently, γtrR(G) = 4 when n1 ≥ 2.
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Theorem 8. If G is a graph of order n ≥ 4 without isolated vertices, then

γtr(G) ≤ γtrR(G) ≤ 2γtr(G).

In addition, γtr(G) = γtrR(G) if and only if γtr(G) = γtrR(G) = n.

Proof. Let f = (V0, V1, V2) be an arbitrary γtrR(G)-function. Then V1∪V2 is a total

restrained dominating set of G, and hence it follows that

γtr(G) ≤ |V1|+ |V2| ≤ |V1|+ 2|V2| = γtrR(G).

This establishes the lower bound in the statement of the theorem. In particular, if

γtr(G) = γtrR(G), then V2 = ∅, implying V (G) = V1 and so γtr(G) = γtrR(G) = n.

Clearly, if γtr(G) = γtrR(G) = n, then γtr(G) = γtrR(G).

For the upper bound, let D be a γtr(G) set. Define f by f(x) = 2 for x ∈ D and

f(x) = 0 for x ∈ V (G) \D. Then f is a TRRDF on G of weight 2|D| = 2γtr(G) and

thus γtrR(G) ≤ 2γtr(G).

If Cn is a cycle of order n = 4t, then we deduce from Proposition 3 that γtr(C4t) = 2t,

and Observation 3 implies γtrR(C4t) = 4t. This example shows that the upper bound

in Theorem 8 is sharp.

4. Trees

In this section we first characterize all trees T with γtrR(T ) = n(T ), and then we

present a lower bound for the total restrained Roman domination number of trees.

Theorem 9. Let T be a tree of order n. Then γtrR(T ) = n if and only if there is no
path v1v2v3v4v5 in T such that d(v3) ≥ 3 and vi is not a leaf or a support vertex for each
i ∈ {1, 2, 4, 5}.

Proof. Let γtrR(T ) = n. We assume, by contradiction, that there is a path

v1v2v3v4v5 in T such that d(v3) ≥ 3 and vi is not a leaf or support vertex for each

i ∈ {1, 2, 4, 5}. Root T at v3, and let ui be a child of vi for i ∈ {1, 5}. Define the

function f by f(v3) = f(u1) = f(u5) = 2, f(vi) = 0 for i ∈ {1, 2, 4, 5} and f(x) = 1

for the remaining vertices. One can easily see that f is a TRRDF on T of weight

n− 1 which leads to the contradiction γtrR(T ) < n.

Conversely, suppose there is no path v1v2v3v4v5 in T such that d(v3) ≥ 3 and vi is

not a leaf or a support vertex for each i ∈ {1, 2, 4, 5}. We assume, by contradiction,

that γtrR(T ) < n and let f = (V0, V1, V2) be a γtrR(T )-function. We deduce from

γtrR(T ) < n that |V0| > |V2|. Therefore there is a vertex v ∈ V2 such that |N(v) ∩
V0| ≥ 2. Let u1, u2 ∈ N(v) ∩ V0. Since f is a TRRDF, we must have d(v) ≥ 3 and

that u1, u2 have neighbors in V0. Assume that w1 ∈ N(u1)∩V0 and w2 ∈ N(u2)∩V0.

It follows from Observation 5 that no vertex in {u1, u2, w1, w2} is a leaf or support

vertex, which is a contradiction.
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Theorem 10. If T is a tree of order n ≥ 6, then γtrR(T ) ≥ 3(n+2)
4

.

Proof. We proceed by induction on n ≥ 6. If diam(T ) ≤ 4, then Observations 2

and 5 easily show that γtrR(T ) = n ≥ 3(n+2)
4 . Let now diam(T ) ≥ 5. If n = 6, then

T ∼= P6 and we have the equality in the lower bound. Assume that n ≥ 7 and let the

lower bound hold for all trees T ′ of order 6 ≤ n′ < n. Let T be a tree of order n and

let f be a γtrR(T )-function. By the above, it suffices to assume that diam(T ) ≥ 5.

If T has a strong support vertex v with leaf neighbors u1, u2, then by Observation 5

we have f(v), f(u1), f(u2) ≥ 1 and hence f |V (T−u1) is a TRRDF on the tree T − u1.

The induction hypothesis implies

γtrR(T ) ≥ 1 +
∑

x∈V (T−u1)

f(x) ≥ 1 +
3((n− 1) + 2)

4
>

3(n+ 2)

4
.

Thus we assume that T has no strong support vertex. Let v1v2 . . . vp be a diametral

path and root T at vp. By our earlier assumption we have d(v2) = 2, and according

to Observation 5, we have f(v1), f(v2) ≥ 1.

If f(v3) ≥ 1, then f |V (T−v1) is a TRRDF on T − v1, and the induction hypothesis

yields γtrR(T ) > 3(n+2)
4 as above. Let now f(v3) = 0.

Assume that d(v3) ≥ 3. Since f(v3) = 0, we deduce from Observation 5 that v3 is

not adjacent to a leaf. Let u2 6= v2 be a support vertex adjacent to v3, and let u1
be a leaf adjacent to u2. Since T has no strong support vertex, we have d(u2) = 2.

Since f is a TRRDF on T , we observe from Observation 5 that f(v4) = 0 and

f(u1) +f(u2) ≥ 2. To Roman dominate v3, we assume without loss of generality that

f(v2) = 2. Therefore we note that f |V (T−{u1,u2}) is a TRRDF on T − {u1, u2}, and

the induction hypothesis implies

γtrR(T ) ≥ 2 +
∑

x∈V (T−{u1,u2})

f(x) ≥ 2 +
3((n− 2) + 2)

4
>

3(n+ 2)

4
.

Next we assume that d(v3) = 2. Since f(v3) = 0, it follows from Observation 5 and

the fact f is a TRRDF on T that f(v2) = 2 and f(v4) = 0.

Assume now that d(v4) ≥ 3. Since f(v4) = 0, the vertex v4 is not adjacent to a leaf.

Considering above arguments we may assume that for each path v4z3z2z1 in T where

z3 /∈ {v3, v5}, we have d(z3) = d(z2) = 2. Next we distinguish three cases.

Case 1. Let f(v5) = 2.

Assume that u3 /∈ {v3, v5} is a support vertex adjacent to v4 and u2 a leaf adjacent

to u3. Since T has no strong support vertex, we have d(u3) = 2. Since f(v5) = 2, we

observe that f(u3)+f(u2) = 2. Then f |V (T−{u3,u2}) is a TRRDF on T−{u3, u2}, and

we obtain the desired bound as above. Now let u3 /∈ {v3, v5} be adjacent to v4, u2 a

support vertex adjacent to u3 and u1 a leaf adjacent to u2. Without loss of generality,

we can assume that d(u3) = d(u2) = 2. We note that f(u3) + f(u2) + f(u1) = 3, and
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the function f restricted to T − {u1, u2, u3} is a TRRDF on T − {u1, u2, u3}. The

induction hypothesis leads to the desired bound as above.

Case 2. Let f(v5) = 1.

Then v4 has a neighbor u3 /∈ {v3, v5} with f(u3) = 2, and u3 has a neighbor u2 6= v4
with f(u2) = 1. Now define the function g by g(v5) = 2, g(u3) = 1 and g(x) = f(x)

otherwise. Then g is a TRRDF on T of the same weight as f , and we are in the

position of Case 1.

Case 3. Let f(v5) = 0. Then v4 has a neighbor u3 /∈ {v3, v5} with f(u3) = 2, and

u3 has a neighbor u2 6= v4 with f(u2) = 1. Similarly, v5 has a neighbor w 6= v4 with

f(w) = 2, and w has a neighbor w′ 6= v5 with f(w′) ≥ 1. It follows that p ≥ 7. In

this case we observe that the function f restricted to T −{v1, v2, v3}, is a TRRDF on

T − {v1, v2, v3}, and since p ≥ 7, the induction hypothesis implies

γtrR(T ) = 3 +
∑

x∈V (T−{v1,v2,v3})

f(x) ≥ 3 +
3((n− 3) + 2)

4
>

3(n+ 2)

4
.

Finally, we assume that d(v4) = 2. Since f(v4) = 0, we conclude that f(v5) = 2. If

7 ≤ n ≤ 9, then it is straightforward to verify that γtrR(T ) ≥ 3(n+2)
4 . If n ≥ 10, then

the function f restricted to T − {v1, v2, v3, v4} is a TRRDF on T − {v1, v2, v3, v4},
and the induction hypothesis leads to

γtrR(T ) = 3 +
∑

x∈V (T−{v1,v2,v3,v4})

f(x) ≥ 3 +
3((n− 4) + 2)

4
=

3(n+ 2)

4
.

Example 2. Let H be the tree consisting of the vertices w and z and the paths v1
i v

2
i v

3
i v

4
i

for 1 ≤ 1 ≤ p such that w is adjacent to z and v1
i for 1 ≤ i ≤ p. Then n(H) = 4p+2, and the

function f with f(z) = f(v4
i ) = 1, f(w) = f(v3

i ) = 2 and f(v1
i ) = f(v2

i ) = 0 for 1 ≤ i ≤ p is

a TRRDF on H of weight 3p+ 3. Therefore γtrR(H) ≤ 3p+ 3 = 3(n(H)+2)
4

. Using Theorem

10, we note that γtrR(H) = 3p + 3 = 3(n(H)+2)
4

. This example demonstrates that Theorem
10 is sharp.

We conclude this section with an open problem.

Problem. Characterize all connected graphs G with γtrR(G) = n(G).
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