Total restrained Roman domination

Jafar Amjadi ${ }^{1}$, Babak Samadi ${ }^{2}$, Lutz Volkmann ${ }^{3}$
${ }^{1}$ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran j-amjadi@azaruniv.ac.ir
${ }^{2}$ Department of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran b.samadi@alzahra.ac.ir
${ }^{3}$ Lehrstuhl II fur Mathematik, RWTH Aachen University, 52056 Aachen, Germany, volkm@math2.rwth-aachen.de

Received: 14 January 2022; Accepted: 12 August 2022

Published Online: 15 August 2022

Abstract

Let G be a graph with vertex set $V(G)$. A Roman dominating function (RDF) on a graph G is a function $f: V(G) \longrightarrow\{0,1,2\}$ such that every vertex v with $f(v)=0$ is adjacent to a vertex u with $f(u)=2$. If f is an RDF on G, then let $V_{i}=\{v \in V(G): f(v)=i\}$ for $i \in\{0,1,2\}$. An RDF f is called a restrained (total) Roman dominating function if the subgraph induced by V_{0} (induced by $V_{1} \cup V_{2}$) has no isolated vertex. A total and restrained Roman dominating function is a total restrained Roman dominating function. The total restrained Roman domination number $\gamma_{t r R}(G)$ on a graph G is the minimum weight of a total restrained Roman dominating function on the graph G. We initiate the study of total restrained Roman domination number and present several sharp bounds on $\gamma_{t r R}(G)$. In addition, we determine this parameter for some classes of graphs.

Keywords: Total restrained domination, total restrained Roman domination, total restrained Roman domination number

AMS Subject classification: 05C69

1. Introduction

For definitions and notations not given here we refer to [11]. We consider simple and finite graphs G with vertex set $V=V(G)$ and edge set $E=E(G)$. The order of G is $n=n(G)=|V|$. The neighborhood of a vertex v is the set $N(v)=N_{G}(v)=$ $\{u \in V(G) \mid u v \in E\}$. The degree of vertex $v \in V$ is $d(v)=d_{G}(v)=|N(v)|$. The maximum degree and minimum degree of G are denoted by $\Delta=\Delta(G)$ and $\delta=\delta(G)$, respectively. The complement of a graph G is denoted by \bar{G}. For a subset D of (C) 2023 Azarbaijan Shahid Madani University
vertices in a graph G, we denote by $G[D]$ the subgraph of G induced by D. A leaf is a vertex of degree one, and its neighbor is called a support vertex. An edge incident with a leaf is called a pendant edge. We denoted the sets of all leaves and all support vertices of G by $L(G)$ and $S(G)$, respectively. Let $K_{n_{1}, n_{2}, \ldots, n_{p}}$ denote the complete p-partite graph with vertex set $S_{1} \cup S_{2} \cup \ldots \cup S_{p}$ where $\left|S_{i}\right|=n_{i}$ for $1 \leq i \leq p$.
A set $S \subseteq V(G)$ is called a dominating set if every vertex is either an element of S or is adjacent to an element of S. The domination number $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set of G. A total restrained dominating set of a graph G without isolated vertices is defined in [14] as a dominating set D with the property that the subgraphs induced by D and $V(G) \backslash D$ do not contain isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number, denoted by $\gamma_{t r}(G)$. A total restrained dominating set of G of cardinality $\gamma_{t r}(G)$ is called a $\gamma_{t r}(G)$-set.
In this paper we continue the study of Roman dominating functions in graphs (see, for example, the survey articles [7-9]). A Roman dominating function (RDF) on a graph G is defined in [10] as a function $f: V(G) \longrightarrow\{0,1,2\}$ such that every vertex v with $f(v)=0$ is adjacent to a vertex u with $f(u)=2$. The weight of an RDF f is the value $f(V(G))=\sum_{u \in V(G)} f(u)$. The Roman domination number $\gamma_{R}(G)$ is the minimum weight of an RDF on G. Moreover, if f is an RDF on G, we let $V_{i}^{f}=\{v \in V \mid f(v)=i\}$ for every $i \in\{0,1,2\}$. Consequently, any RDF f can be represented by $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$, where the superscript f can be deleted in V_{i}^{f} when no confusion arises.
A total Roman dominating function (TRDF) on a graph G without isolated vertices is defined in [13] as a Roman dominating function f with the property that the subgraph induced by $V_{1} \cup V_{2}$ has no isolated vertex. The total Roman domination number $\gamma_{t R}(G)$ is the minimum weight of a TRDF on G. A TRDF on G with weight $\gamma_{t R}(G)$ is called a $\gamma_{t R}(G)$-function. Total Roman domination has been studied by several authors $[1-3,5,6]$.
A restrained Roman dominating function (RRDF) on a graph G is defined in [15] as a Roman dominating function f with the property that the subgraph induced by V_{0} has no isolated vertex. The restrained Roman domination number $\gamma_{r R}(G)$ is the minimum weight of an RRDF on G. An RRDF on G with weight $\gamma_{r R}(G)$ is called a $\gamma_{r R}(G)$-function. The restrained Roman domination number has also been studied in $[4,16]$.
A total and restrained Roman dominating function on a graph without isolated vertices is a total restrained Roman dominating function (TRRDF). The total restrained Roman domination number $\gamma_{t r R}(G)$ on a graph G is the minimum weight of a TRRDF on G. A TRRDF on G with weight $\gamma_{t r R}(G)$ is called a $\gamma_{t r R}(G)$-function.
If G is a graph without isolated vertices, then the definitions lead to

$$
\begin{equation*}
\gamma_{R}(G) \leq \gamma_{t R}(G) \leq \gamma_{t r R}(G) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{R}(G) \leq \gamma_{r R}(G) \leq \gamma_{t r R}(G) \tag{2}
\end{equation*}
$$

We initiate the study of total restrained Roman domination and present several sharp bounds on $\gamma_{t r R}(G)$. In addition, we determine this parameter for some classes of graphs. Furthermore, if T is a tree of order $n \geq 6$, then we prove the sharp lower bound $\gamma_{t r R}(T) \geq \frac{3(n+2)}{4}$.

We make use of the following results.

Proposition 1. [3] If G is a nontrivial path or a cycle of order n, then $\gamma_{t R}(G)=n$.

Proposition 2. [15] If $p, q \geq 2$ are integers, then $\gamma_{r R}\left(K_{p, q}\right)=4$.

Proposition 3. [14] If C_{n} is a cycle of order n, then $\gamma_{t r}\left(C_{n}\right)=n-2\left\lfloor\frac{n}{4}\right\rfloor$.
Proposition 4. [3] If G is a graph with no isolated vertex, then $2 \gamma(G) \leq \gamma_{t R}(G)$.
Proposition 5. [1] If G is a connected graph of order $n \geq 3$, then $\gamma_{t R}(G) \geq\left\lceil\frac{2 n}{\Delta(G)}\right\rceil$.

2. Complexity of total restrained Roman domination number

Our aim in this section is to show that the decision problem associated with the total restrained Roman domination is NP-hard even when restricted to bipartite graphs.

Total restrained Roman domination number problem (TRRDN)

Instance: A bipartite graph G with no isolated vertices and a positive integer k.
Question: Is $\gamma_{t r R}(G) \leq k$?
We show the NP-hardness of TRRDN problem by transforming the 3-SAT problem to it in polynomial time. Recall that the 3-SAT problem specified below was proven to be NP-complete in [12].

3-SAT problem

Instance: A collection $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ of clauses over a finite set U of variables such that $\left|C_{j}\right|=3$ for $j=1,2, \ldots, m$.
Question: Is there a truth assignment for U that satisfies all the clauses in \mathcal{C} ?
Now, we show that the problem above is NP-hard, even when restricted to bipartite graphs.

Theorem 1. Problem TRRDN is NP-complete for bipartite graphs.

Proof. The problem clearly belongs to NP since checking that a given function is indeed a TRRDF, on a bipartite graph, of weight at most k can be done in polynomial time. Now let us show how to transform any instance of 3-SAT into an instance G of TRRD so that one of them has a solution if and only if the other one has a solution.

Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\mathscr{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be an arbitrary instance of 3 SAT. We will construct a bipartite graph G and a positive integer k such that \mathscr{C} is satisfiable if and only if $\gamma_{t r R}(G) \leq k$. We construct such a graph G as follows. For each $i=1,2, \ldots, n$, corresponding to the variable $u_{i} \in U$, associate a complete

Figure 1. The graph F
bipartite graph $H_{i}=K_{3,4}$ with bipartite sets $X=\left\{x_{i}, y_{i}, z_{i}, w_{i}\right\}$ and $Y=\left\{u_{i}, t_{i}, \overline{u_{i}}\right\}$. For each $j=1,2, \ldots, m$, corresponding to the clause $C_{j}=\left\{p_{j}, q_{j}, r_{j}\right\} \in \mathscr{C}$, associate a single vertex c_{j} and add edge-set $E_{j}=\left\{c_{j} p_{j}, c_{j} q_{j}, c_{j} r_{j}\right\}$. Finally, add the graph F depicted in Figure 1 and connect s_{1} to every vertex c_{j} with $1 \leq j \leq m$. Set $k=4 n+4$. Clearly, G is a bipartite graph of order $7 n+m+6$. The graph obtained when $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $\mathscr{C}=\left\{C_{1}, C_{2}, C_{3}\right\}$, where $C_{1}=\left\{u_{1}, u_{2}, \overline{u_{3}}\right\}, C_{2}=$ $\left\{\overline{u_{1}}, u_{2}, u_{4}\right\}, C_{3}=\left\{\overline{u_{2}}, u_{3}, u_{4}\right\}$ is illustrated in Figure 2. Now, we only need to prove that $\gamma_{t r R}(G)=4 n+4$ if and only if there is a truth assignment for U satisfying each clause in \mathscr{C}. This goal can be established by proving the next two claims.
Claim 1. $\gamma_{t r R}(G) \geq 4 n+4$. Moreover, if $\gamma_{t r R}(G)=4 n+4$, then for any $\gamma_{t r R}(G)$ function $f=\left(V_{0}, V_{1}, V_{2}\right), f\left(V\left(H_{i}\right)\right)=4$, at most one of $f\left(u_{i}\right)$ and $f\left(\overline{u_{i}}\right)$ is 2 for each $i, f\left(s_{2}\right)=f\left(s_{6}\right)=2$ or $f\left(s_{2}\right)=f\left(s_{3}\right)=2, f(s)=0$ for the remaining vertices of F and $f\left(c_{j}\right)=0$ for each j.
Proof of Claim 1. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t r R}(G)$-function. It is easily verified that $f\left(V\left(H_{i}\right)\right) \geq 3$ for each $i \in\{1,2, \ldots, n\}$. Define $Q=\left\{i \mid f\left(V\left(H_{i}\right)\right)=3\right.$ and $\left.1 \leq i \leq n\right\}$ and let $i \in Q$. It is easy to see that $f\left(t_{i}\right)=2, f\left(p_{i}\right)=1$ for only one vertex $p_{i} \in\left\{x_{i}, y_{i}, z_{i}, w_{i}\right\}$, and $f(v)=0$ for the other vertices of H_{i}. Since f is a TRRDF of G, there exist some vertices c_{j}, with $f\left(c_{j}\right)=2$, adjacent to the vertices u_{i} and $\overline{u_{i}}$. Let Q^{\prime} be the set of such vertices c_{j}. We moreover observe that $2|Q| \leq\left|\left[Q, Q^{\prime}\right]\right| \leq 3\left|Q^{\prime}\right|$. On the other hand, it is a routine matter to see that $f(V(F)) \geq 4$. Therefore,
$\gamma_{t r R}(G)=f(V(G)) \geq 3|Q|+2\left|Q^{\prime}\right|+4(n-|Q|)+4=4 n-|Q|+2\left|Q^{\prime}\right|+4 \geq 4 n+4$.
Note that if $|Q|>0$, then we have $\gamma_{t r R}(G)>4 n+4$.
Suppose that $\gamma_{t r R}(G)=4 n+4$. Then $f\left(V\left(H_{i}\right)\right)=4$ for each $i=1,2, \ldots, n$. If $f\left(s_{1}\right) \neq 0$, then for totally restrained Roman dominating the vertices s_{3}, s_{4}, s_{5} and s_{6}

Figure 2. The graph G
we must have $\left.f\left(N\left[s_{3}\right]\right) \cup\left\{s_{6}\right\}\right) \geq 4$ which leads to a contradiction. Hence $f\left(s_{1}\right)=0$ and similar as above, it is clear to see that $f\left(s_{2}\right)=f\left(s_{3}\right)=2$ or $f\left(s_{2}\right)=f\left(s_{6}\right)=2$. Therefore $f(s)=0$ for the remaining vertices of F, and $\sum_{j=1}^{m} f\left(c_{j}\right)=0$. Now we show that at most one of $f\left(u_{i}\right)$ and $f\left(\overline{u_{i}}\right)$ is 2 . Let $f\left(u_{i}\right)=f\left(\overline{u_{i}}\right)=2$ for some $1 \leq i \leq n$. Since $f\left(V\left(H_{i}\right)\right)=4$, it follows that $f(x)=0$ for each $x \in V\left(H_{i}\right) \backslash\left\{u_{i}, \overline{u_{i}}\right\}$. This implies that $f\left(t_{i}\right)=f\left(N\left[t_{i}\right]\right)=0$, a contradiction. Therefore, at most of one $f\left(u_{i}\right)$ and $f\left(\overline{u_{i}}\right)$ equals two.
Claim 2. $\gamma_{t r R}(G)=4 n+4$ if and only if \mathscr{C} is satisfiable.
Proof of Claim 2. Suppose that $\gamma_{t r R}(G)=4 n+4$ and let f be a $\gamma_{t r R}(G)$-function. By Claim 2, at most one of $f\left(u_{i}\right)$ and $f\left(\overline{u_{i}}\right)$ is 2 for each $i=1,2, \ldots, n$. Define a mapping $t: U \longrightarrow\{T, F\}$ by

$$
t\left(u_{i}\right)=\left\{\begin{array}{ll}
T & \text { if } \quad f\left(u_{i}\right)=2, \tag{3}\\
F & \text { otherwise }
\end{array} \quad(i=1, \ldots, n)\right.
$$

We now show that t is a satisfying truth assignment for \mathscr{C}. It is sufficient to show that every clause in \mathscr{C} is satisfied by t. To this end, we arbitrarily choose a clause $C_{j} \in \mathscr{C}$ with $1 \leq j \leq m$. By Claim 2, $f\left(s_{1}\right)=f\left(c_{j}\right)=0$. Hence, there exists some i with $1 \leq i \leq n$ such that $f\left(u_{i}\right)=2$ or $f\left(\overline{u_{i}}\right)=2$ where c_{j} is adjacent to u_{i} or $\overline{u_{i}}$. Suppose that c_{j} is adjacent to u_{i} where $f\left(u_{i}\right)=2$. Since u_{i} is adjacent to c_{j} in G, the literal u_{i} is in the clause C_{j} by the construction of G. Since $f\left(u_{i}\right)=2$, it follows
that $t\left(u_{i}\right)=T$ by (3), which implies that the clause C_{j} is satisfied by t. Suppose that c_{j} is adjacent to $\overline{u_{i}}$ where $f\left(\overline{u_{i}}\right)=2$. Since $\overline{u_{i}}$ is adjacent to c_{j} in G, the literal $\overline{u_{i}}$ is in the clause C_{j}. Since $f\left(\overline{u_{i}}\right)=2$, it follows that $t\left(u_{i}\right)=F$ by (3). Thus, t assigns $\overline{u_{i}}$ the truth value T, that is, t satisfies the clause C_{j}. By the arbitrariness of j with $1 \leq j \leq m$, we have shown that t satisfies all the clauses in \mathscr{C}, that is, \mathscr{C} is satisfiable. Conversely, suppose that \mathscr{C} is satisfiable, and let $t: U \rightarrow\{T, F\}$ be a satisfying truth assignment for \mathscr{C}. We construct a subset D of vertices of G as follows. If $t\left(u_{i}\right)=T$, then put the vertices u_{i} and x_{i} in D; if $t\left(u_{i}\right)=F$, then put the vertices $\overline{u_{i}}$ and x_{i} in D. Hence $|D|=2 n$. Define the function $g: V(G) \longrightarrow\{0,1,2\}$ by $g(x)=2$ for every $x \in D, g\left(s_{2}\right)=g\left(s_{3}\right)=2$ and $g(y)=0$ for the remaining vertices. Since t is a satisfying truth assignment for \mathscr{C}, the corresponding vertex c_{j} in G is adjacent to at least one vertex in D. One can easily check that g is a TRRDF on G of weight $4 n+4$ and so $\gamma_{t r R}(G) \leq 4 n+4$. By Claim $2, \gamma_{t r R}(G) \geq 4 n+4$. Therefore, $\gamma_{t r R}(G)=4 n+4$.

This completes the proof.

3. Properties and bounds

In this section we present basic properties and bounds on the total restrained Roman domination number. Since the function f with $f(x)=1$ for each vertex $x \in V(G)$ is a TRRDF on a graph G without isolated vertices, we obtain our first bound.

Observation 2. If G is a graph of order n without isolated vertices, then $\gamma_{t r R}(G) \leq n$.

The next result follows from the inequality $\gamma_{t R}(G) \leq \gamma_{t r R}(G)$, Proposition 1 and Observation 2.

Observation 3. If G is a nontrivial path or a cycle of order n, then $\gamma_{t r R}(G)=n$.
Proposition 6. For any connected graph G of order n with minimum degree at least three, $\gamma_{t r R}(G) \leq n-1$.

Proof. Let G be a graph with $\delta(G) \geq 3$. If G has a triangle $u v w u$, then the function f defined by $f(v)=2, f(u)=f(w)=0$ and $f(x)=1$ otherwise, is a TRRDF on G of weight $n-1$ and we are done. Hence, we assume that G is triangle-free. Let v be a vertex of G with minimum degree and let u_{1}, u_{2} be two neighbors of v. Assume that $w_{i} \in N\left(u_{i}\right) \backslash\{v\}$ for $i=1,2$. If $w_{1}=w_{2}$, then let $w \in N\left(w_{1}\right) \backslash\left\{u_{1}, u_{2}\right\}$ and define the function g on G by $g(v)=g(w)=2, g\left(u_{1}\right)=g\left(u_{2}\right)=g\left(w_{1}\right)=0$ and $g(x)=1$ for the remaining vertices. Clearly, g is a TRRDF on G of weight $n-1$ and hence $\gamma_{t r R}(G) \leq n-1$. Therefore we assume that $w_{1} \neq w_{2}$. Since G is triangle-free, w_{1} has a neighbor z_{1} not in $\left\{u_{1}, u_{2}, w_{2}\right\}$ and w_{2} has a neighbors z_{2} not in $\left\{u_{2}, u_{1}, w_{1}\right\}$. If $z_{1}=z_{2}$, then the function g defined on G by $g(v)=g\left(z_{1}\right)=2$,
$g\left(u_{1}\right)=g\left(u_{2}\right)=g\left(w_{1}\right)=g\left(w_{2}\right)=0$ and $g(x)=1$ for the remaining vertices, is a TRRDF on G of weight $n-2$ as desired. Let $z_{1} \neq z_{2}$ and define the function g on G by $g(v)=g\left(z_{1}\right)=g\left(z_{2}\right)=2, g\left(u_{1}\right)=g\left(u_{2}\right)=g\left(w_{1}\right)=g\left(w_{2}\right)=0$ and $g(x)=1$ for the remaining vertices. Clearly, g is a TRRDF of G of weight $n-1$ and hence $\gamma_{t r R}(G) \leq n-1$. This completes the proof.

Figure 3. A graph G of order 10 with girth 6 and $\gamma_{t r R}(G)=10$

Proposition 7. For any connected graph G of order n with minimum degree at least two and girth at least seven different from cycles, $\gamma_{t r R}(G) \leq n-1$.

Proof. Let G be a connected graph of order n with $\delta(G) \geq 2$ and $g=g(G) \geq 7$. Let $C=x_{1} x_{2} \ldots x_{g} x_{1}$ be a cycle of G on $g(G)$ vertices. Since G is a connected graph different from a cycle and because C has length $g(G)$, we may assume that x_{1} has a neighbor $w_{1} \in V(G) \backslash V(C)$. Let $w_{2} \in N\left(w_{1}\right) \backslash\left\{x_{1}\right\}$. Notice that since $g(G) \geq 7$, each vertex in $V(G) \backslash V(C)$ has at most one neighbor in $V(C)$. Define the function g on G by $g\left(x_{1}\right)=g\left(x_{4}\right)=g\left(x_{g-2}\right)=2, \quad g\left(x_{2}\right)=g\left(x_{3}\right)=g\left(x_{g}\right)=g\left(x_{g-1}\right)=0$ and $g(x)=1$ for the remaining vertices. It is easy to verify that g is a TRRDF on G and consequently $\gamma_{t r R}(G) \leq n-1$.

The graph illustrated in Figure 3 shows that the assumption of $g(G) \geq 7$ in Proposition 7 is necessary.

Observation 4. If $p, q \geq 2$ are integers, then $\gamma_{t r R}\left(K_{p, q}\right)=4$.
Proof. Proposition 2 leads to $\gamma_{t r R}\left(K_{p, q}\right) \geq \gamma_{r R}\left(K_{p, q}\right)=4$. Now let X, Y be a bipartition of $K_{p . q}$. If $x \in X$ and $y \in Y$, then define f by $f(x)=f(y)=2$ and $f(u)=$ 0 for $u \in V\left(K_{p, q}\right) \backslash\{x, y\}$. Then f is a TRRDF on $K_{p, q}$ and thus $\gamma_{t r R}\left(K_{p, q}\right) \leq 4$ and so $\gamma_{t r R}\left(K_{p, q}\right)=4$.

The inequality $\gamma_{t R}(G) \leq \gamma_{t r R}(G)$ and Proposition 5 yield the following lower bound.
Corollary 1. If G is a connected graph of order $n \geq 3$, then $\gamma_{\text {trR }}(G) \geq\left\lceil\frac{2 n}{\Delta(G)}\right\rceil$.

Using Observations 3 and 4, we observe that we have equality for paths, cycles and the complete bipartite graphs $K_{p, p}$ in the inequality of Corollary 1.

Observation 5. Let G be a graph of order $n \geq 2$ without isolated vertices, and let f be a TRRDF of G. Then $f(x) \geq 1$ for every leaf and every support vertex and thus $\gamma_{t r R}(G) \geq|L(G)|+|S(G)|$.

Let H be the graph consisting of a path $x_{1} x_{2} \ldots x_{3 t}$ for an integer $t \geq 2$, further vertices $v_{1}, v_{2}, \ldots, v_{t}$ such that v_{i} is adjacent with $x_{3 i-2}, x_{3 i-1}$ and $x_{3 i}$ for $1 \leq i \leq t$. Then $\gamma_{r R}(H)=2 t$ and $\gamma_{t r R}(H)=3 t$. Hence we have

Proposition 8. There exists a graph H for which $\gamma_{t r R}(H)-\gamma_{r R}(H)$ can be made arbitrarily large.

If $S_{p, q}$ is a double star of order n with $p, q \geq 2$, then $\gamma_{t r R}\left(S_{p, q}\right)=n$ by Observation 5 and $\gamma_{t R}\left(S_{p, q}\right)=4$ and thus

Proposition 9. There exists a graph H for which $\gamma_{t r R}(H)-\gamma_{t R}(H)$ can be made arbitrarily large.

Using the inequality $\gamma_{t R}(G) \leq \gamma_{t r R}(G)$ and Proposition 4, we obtain the next lower bound.

Corollary 2. If G is a graph with no isolated vertex, then $2 \gamma(G) \leq \gamma_{t R}(G) \leq \gamma_{t r R}(G)$.

The corona $H \circ K_{1}$ of a graph H is the graph obtained from H by adding a pendant edge to each vertex of H. If $G=H \circ K_{1}$ with a connected graph H, then $\gamma(G)=\frac{n}{2}$, and $\gamma_{t r R}(G)=n$ by Observations 2 and 5. Hence $\gamma_{t r R}\left(H \circ K_{1}\right)=2 \gamma\left(H \circ K_{1}\right)$ and thus Corollary 2 is sharp.

Theorem 6. If G is a graph of order $n \geq 4$ without isolated vertices, then $\gamma_{t r R}(G) \geq 3$, with equality if and only if $\Delta(G)=n-1$, and G contains a vertex w of maximum degree such that $G\left[N_{G}(w)\right]$ has exactly one isolated vertex or no isolated vertex and at least one component of order at least three.

Proof. Let f be a $\gamma_{t r R}(G)$-function. If $f(x) \geq 1$ for all $x \in V(G)$, then $\gamma_{t r R}(G) \geq$ $n>3$. If there exists a vertex u with $f(u)=0$, then u has a neighbor v with $f(v)=2$. Since f is a TRRDF, the vertex v is adjacent to a vertex z such that $f(z) \geq 1$. Therefore, $\gamma_{t r R}(G) \geq 3$.

If $\Delta(G)=n-1$ and G contains a vertex w of maximum degree such that $G\left[N_{G}(w)\right]$ has exactly one isolated vertex u, then the function f with $f(w)=2, f(u)=1$ and $f(x)=0$ for $x \in V(G) \backslash\{u, w\}$ is a TRRDF on G and thus $\gamma_{t r R}(G)=3$. Assume next that $\Delta(G)=n-1$ and G contains a vertex w of maximum degree such that $G\left[N_{G}(w)\right]$ has no isolated vertex and at least one component H of order at least three. Let T be a spanning tree of H and let v be a leaf of T. Then $G[V(T) \backslash\{v\}]$ is connected, and hence the function f with $f(w)=2, f(v)=1$ and $f(x)=0$ for $x \in V(G) \backslash\{v, w\}$ is a TRRDF on G and thus $\gamma_{t r R}(G)=3$.
Conversely, assume that $\gamma_{t r R}(G)=3$, and let f be a $\gamma_{t r R}(G)$-function. Since $n \geq 4$, we note that there exist two vertices w and u with $f(w)=2, f(u)=1$ and $f(x)=0$ for $x \in V(G) \backslash\{u, w\}$. Therefore all vertices $x \neq w$ are adjacent to w and $G\left[N_{G}(w) \backslash\{u\}\right]$ does not contain an isolated vertex. So $\Delta(G)=n-1$ and $G\left[N_{G}(w)\right]$ has exatly one isolated vertex u or u is adjacent to a vertex of $N_{G}(w) \backslash\{u\}$, and then $G\left[N_{G}(w)\right]$ has no isolated vertex and at least one component of order at least three.

Since $\gamma_{t r R}\left(K_{3}\right)=3$, Theorem 6 leads to the next special case immediately.

Corollary 3. If $n \geq 3$, then $\gamma_{t r R}\left(K_{n}\right)=3$.
Corollary 4. If G and \bar{G} are graphs of order $n \geq 4$ without isolated vertices, then $\gamma_{t r R}(G)+\gamma_{t r R}(\bar{G}) \geq 8$.

Proof. Since G and \bar{G} are without isolated vertices, we observe that $\Delta(G) \leq n-2$ and $\Delta(\bar{G}) \leq n-2$. Hence Theorem 6 implies $\gamma_{t r R}(G), \gamma_{t r R}(\bar{G}) \geq 4$ and so $\gamma_{t r R}(G)+$ $\gamma_{t r R}(\bar{G}) \geq 8$.

Example 1. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{q}\right\}$ be a bipartition of the complete bipartite graph $K_{p . q}$ for $p, q \geq 3$, and let $B=K_{p, q}-e$ with $e=x_{1} y_{1}$. We note that $\Delta(B) \leq n(B)-2$ and $\Delta(\bar{B}) \leq n(B)-2$. Define f by $f\left(x_{p}\right)=f\left(y_{q}\right)=2$ and $f(x)=0$ otherwise. Then f is a TRRDF on B and therefore $\gamma_{\operatorname{trR}}(B)=4$ according to Theorem 6 . Next define g by $g\left(x_{1}\right)=g\left(y_{1}\right)=2$ and $g(x)=0$ otherwise. Then g is a TRRDF on \bar{B} and thus $\gamma_{t r R}(\bar{B})=4$. Consequently, $\gamma_{t r R}(B)+\gamma_{t r R}(\bar{B})=8$.

Example 1 demonstrates that Corollary 4 is sharp.
Observation 7. Let $G=K_{n_{1}, n_{2}, \ldots, n_{p}}$ be a complete p-partite graph with $p \geq 3$ and $n_{1} \leq n_{2} \leq \ldots \leq n_{p}$. If $n=n_{1}+n_{2}+\ldots+n_{p} \geq 4$, then $\gamma_{t r R}(G)=3$ when $n_{1}=1$ and $\gamma_{t r R}(G)=4$ when $n_{1} \geq 2$.

Proof. If $n_{1}=1$, then Theorem 6 leads to $\gamma_{t r R}(G)=3$. If $n_{1} \geq 2$, then $\Delta(G) \leq n-2$ and therefore $\gamma_{t r R}(G) \geq 4$ by Theorem 6 . Now let $u \in S_{1}$ and $v \in S_{2}$, where S_{1} and S_{2} are two different partite sets of G. Then the function f defined by $f(u)=f(v)=2$ and $f(x)=0$ for $x \in V(G) \backslash\{u, v\}$ is a TRRDF on G of weight 4 and so $\gamma_{t r R}(G) \leq 4$. Consequently, $\gamma_{t r R}(G)=4$ when $n_{1} \geq 2$.

Theorem 8. If G is a graph of order $n \geq 4$ without isolated vertices, then

$$
\gamma_{t r}(G) \leq \gamma_{t r R}(G) \leq 2 \gamma_{t r}(G)
$$

In addition, $\gamma_{t r}(G)=\gamma_{t r R}(G)$ if and only if $\gamma_{t r}(G)=\gamma_{t r R}(G)=n$.

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be an arbitrary $\gamma_{t r R}(G)$-function. Then $V_{1} \cup V_{2}$ is a total restrained dominating set of G, and hence it follows that

$$
\gamma_{t r}(G) \leq\left|V_{1}\right|+\left|V_{2}\right| \leq\left|V_{1}\right|+2\left|V_{2}\right|=\gamma_{t r R}(G) .
$$

This establishes the lower bound in the statement of the theorem. In particular, if $\gamma_{t r}(G)=\gamma_{t r R}(G)$, then $V_{2}=\emptyset$, implying $V(G)=V_{1}$ and so $\gamma_{t r}(G)=\gamma_{t r R}(G)=n$. Clearly, if $\gamma_{t r}(G)=\gamma_{t r R}(G)=n$, then $\gamma_{t r}(G)=\gamma_{t r R}(G)$.
For the upper bound, let D be a $\gamma_{t r}(G)$ set. Define f by $f(x)=2$ for $x \in D$ and $f(x)=0$ for $x \in V(G) \backslash D$. Then f is a TRRDF on G of weight $2|D|=2 \gamma_{t r}(G)$ and thus $\gamma_{t r R}(G) \leq 2 \gamma_{t r}(G)$.

If C_{n} is a cycle of order $n=4 t$, then we deduce from Proposition 3 that $\gamma_{t r}\left(C_{4 t}\right)=2 t$, and Observation 3 implies $\gamma_{t r R}\left(C_{4 t}\right)=4 t$. This example shows that the upper bound in Theorem 8 is sharp.

4. Trees

In this section we first characterize all trees T with $\gamma_{t r R}(T)=n(T)$, and then we present a lower bound for the total restrained Roman domination number of trees.

Theorem 9. Let T be a tree of order n. Then $\gamma_{t r R}(T)=n$ if and only if there is no path $v_{1} v_{2} v_{3} v_{4} v_{5}$ in T such that $d\left(v_{3}\right) \geq 3$ and v_{i} is not a leaf or a support vertex for each $i \in\{1,2,4,5\}$.

Proof. Let $\gamma_{t r R}(T)=n$. We assume, by contradiction, that there is a path $v_{1} v_{2} v_{3} v_{4} v_{5}$ in T such that $d\left(v_{3}\right) \geq 3$ and v_{i} is not a leaf or support vertex for each $i \in\{1,2,4,5\}$. Root T at v_{3}, and let u_{i} be a child of v_{i} for $i \in\{1,5\}$. Define the function f by $f\left(v_{3}\right)=f\left(u_{1}\right)=f\left(u_{5}\right)=2, f\left(v_{i}\right)=0$ for $i \in\{1,2,4,5\}$ and $f(x)=1$ for the remaining vertices. One can easily see that f is a TRRDF on T of weight $n-1$ which leads to the contradiction $\gamma_{t r R}(T)<n$.
Conversely, suppose there is no path $v_{1} v_{2} v_{3} v_{4} v_{5}$ in T such that $d\left(v_{3}\right) \geq 3$ and v_{i} is not a leaf or a support vertex for each $i \in\{1,2,4,5\}$. We assume, by contradiction, that $\gamma_{t r R}(T)<n$ and let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t r R}(T)$-function. We deduce from $\gamma_{\operatorname{trR}}(T)<n$ that $\left|V_{0}\right|>\left|V_{2}\right|$. Therefore there is a vertex $v \in V_{2}$ such that $\mid N(v) \cap$ $V_{0} \mid \geq 2$. Let $u_{1}, u_{2} \in N(v) \cap V_{0}$. Since f is a TRRDF, we must have $d(v) \geq 3$ and that u_{1}, u_{2} have neighbors in V_{0}. Assume that $w_{1} \in N\left(u_{1}\right) \cap V_{0}$ and $w_{2} \in N\left(u_{2}\right) \cap V_{0}$. It follows from Observation 5 that no vertex in $\left\{u_{1}, u_{2}, w_{1}, w_{2}\right\}$ is a leaf or support vertex, which is a contradiction.

Theorem 10. If T is a tree of order $n \geq 6$, then $\gamma_{t r R}(T) \geq \frac{3(n+2)}{4}$.

Proof. We proceed by induction on $n \geq 6$. If $\operatorname{diam}(T) \leq 4$, then Observations 2 and 5 easily show that $\gamma_{\operatorname{tr} R}(T)=n \geq \frac{3(n+2)}{4}$. Let now $\operatorname{diam}(T) \geq 5$. If $n=6$, then $T \cong P_{6}$ and we have the equality in the lower bound. Assume that $n \geq 7$ and let the lower bound hold for all trees T^{\prime} of order $6 \leq n^{\prime}<n$. Let T be a tree of order n and let f be a $\gamma_{t r R}(T)$-function. By the above, it suffices to assume that $\operatorname{diam}(T) \geq 5$. If T has a strong support vertex v with leaf neighbors u_{1}, u_{2}, then by Observation 5 we have $f(v), f\left(u_{1}\right), f\left(u_{2}\right) \geq 1$ and hence $\left.f\right|_{V\left(T-u_{1}\right)}$ is a TRRDF on the tree $T-u_{1}$. The induction hypothesis implies

$$
\gamma_{t r R}(T) \geq 1+\sum_{x \in V\left(T-u_{1}\right)} f(x) \geq 1+\frac{3((n-1)+2)}{4}>\frac{3(n+2)}{4}
$$

Thus we assume that T has no strong support vertex. Let $v_{1} v_{2} \ldots v_{p}$ be a diametral path and root T at v_{p}. By our earlier assumption we have $d\left(v_{2}\right)=2$, and according to Observation 5, we have $f\left(v_{1}\right), f\left(v_{2}\right) \geq 1$.
If $f\left(v_{3}\right) \geq 1$, then $\left.f\right|_{V\left(T-v_{1}\right)}$ is a TRRDF on $T-v_{1}$, and the induction hypothesis yields $\gamma_{t r R}(T)>\frac{3(n+2)}{4}$ as above. Let now $f\left(v_{3}\right)=0$.
Assume that $d\left(v_{3}\right) \geq 3$. Since $f\left(v_{3}\right)=0$, we deduce from Observation 5 that v_{3} is not adjacent to a leaf. Let $u_{2} \neq v_{2}$ be a support vertex adjacent to v_{3}, and let u_{1} be a leaf adjacent to u_{2}. Since T has no strong support vertex, we have $d\left(u_{2}\right)=2$. Since f is a TRRDF on T, we observe from Observation 5 that $f\left(v_{4}\right)=0$ and $f\left(u_{1}\right)+f\left(u_{2}\right) \geq 2$. To Roman dominate v_{3}, we assume without loss of generality that $f\left(v_{2}\right)=2$. Therefore we note that $\left.f\right|_{V\left(T-\left\{u_{1}, u_{2}\right\}\right)}$ is a TRRDF on $T-\left\{u_{1}, u_{2}\right\}$, and the induction hypothesis implies

$$
\gamma_{t r R}(T) \geq 2+\sum_{x \in V\left(T-\left\{u_{1}, u_{2}\right\}\right)} f(x) \geq 2+\frac{3((n-2)+2)}{4}>\frac{3(n+2)}{4}
$$

Next we assume that $d\left(v_{3}\right)=2$. Since $f\left(v_{3}\right)=0$, it follows from Observation 5 and the fact f is a TRRDF on T that $f\left(v_{2}\right)=2$ and $f\left(v_{4}\right)=0$.
Assume now that $d\left(v_{4}\right) \geq 3$. Since $f\left(v_{4}\right)=0$, the vertex v_{4} is not adjacent to a leaf. Considering above arguments we may assume that for each path $v_{4} z_{3} z_{2} z_{1}$ in T where $z_{3} \notin\left\{v_{3}, v_{5}\right\}$, we have $d\left(z_{3}\right)=d\left(z_{2}\right)=2$. Next we distinguish three cases.
Case 1. Let $f\left(v_{5}\right)=2$.
Assume that $u_{3} \notin\left\{v_{3}, v_{5}\right\}$ is a support vertex adjacent to v_{4} and u_{2} a leaf adjacent to u_{3}. Since T has no strong support vertex, we have $d\left(u_{3}\right)=2$. Since $f\left(v_{5}\right)=2$, we observe that $f\left(u_{3}\right)+f\left(u_{2}\right)=2$. Then $\left.f\right|_{V\left(T-\left\{u_{3}, u_{2}\right\}\right)}$ is a TRRDF on $T-\left\{u_{3}, u_{2}\right\}$, and we obtain the desired bound as above. Now let $u_{3} \notin\left\{v_{3}, v_{5}\right\}$ be adjacent to v_{4}, u_{2} a support vertex adjacent to u_{3} and u_{1} a leaf adjacent to u_{2}. Without loss of generality, we can assume that $d\left(u_{3}\right)=d\left(u_{2}\right)=2$. We note that $f\left(u_{3}\right)+f\left(u_{2}\right)+f\left(u_{1}\right)=3$, and
the function f restricted to $T-\left\{u_{1}, u_{2}, u_{3}\right\}$ is a TRRDF on $T-\left\{u_{1}, u_{2}, u_{3}\right\}$. The induction hypothesis leads to the desired bound as above.
Case 2. Let $f\left(v_{5}\right)=1$.
Then v_{4} has a neighbor $u_{3} \notin\left\{v_{3}, v_{5}\right\}$ with $f\left(u_{3}\right)=2$, and u_{3} has a neighbor $u_{2} \neq v_{4}$ with $f\left(u_{2}\right)=1$. Now define the function g by $g\left(v_{5}\right)=2, g\left(u_{3}\right)=1$ and $g(x)=f(x)$ otherwise. Then g is a TRRDF on T of the same weight as f, and we are in the position of Case 1.
Case 3. Let $f\left(v_{5}\right)=0$. Then v_{4} has a neighbor $u_{3} \notin\left\{v_{3}, v_{5}\right\}$ with $f\left(u_{3}\right)=2$, and u_{3} has a neighbor $u_{2} \neq v_{4}$ with $f\left(u_{2}\right)=1$. Similarly, v_{5} has a neighbor $w \neq v_{4}$ with $f(w)=2$, and w has a neighbor $w^{\prime} \neq v_{5}$ with $f\left(w^{\prime}\right) \geq 1$. It follows that $p \geq 7$. In this case we observe that the function f restricted to $T-\left\{v_{1}, v_{2}, v_{3}\right\}$, is a TRRDF on $T-\left\{v_{1}, v_{2}, v_{3}\right\}$, and since $p \geq 7$, the induction hypothesis implies

$$
\gamma_{t r R}(T)=3+\sum_{x \in V\left(T-\left\{v_{1}, v_{2}, v_{3}\right\}\right)} f(x) \geq 3+\frac{3((n-3)+2)}{4}>\frac{3(n+2)}{4}
$$

Finally, we assume that $d\left(v_{4}\right)=2$. Since $f\left(v_{4}\right)=0$, we conclude that $f\left(v_{5}\right)=2$. If $7 \leq n \leq 9$, then it is straightforward to verify that $\gamma_{t r R}(T) \geq \frac{3(n+2)}{4}$. If $n \geq 10$, then the function f restricted to $T-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a TRRDF on $T-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, and the induction hypothesis leads to

$$
\gamma_{t r R}(T)=3+\sum_{x \in V\left(T-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right)} f(x) \geq 3+\frac{3((n-4)+2)}{4}=\frac{3(n+2)}{4}
$$

Example 2. Let H be the tree consisting of the vertices w and z and the paths $v_{i}^{1} v_{i}^{2} v_{i}^{3} v_{i}^{4}$ for $1 \leq 1 \leq p$ such that w is adjacent to z and v_{i}^{1} for $1 \leq i \leq p$. Then $n(H)=4 p+2$, and the function f with $f(z)=f\left(v_{i}^{4}\right)=1, f(w)=f\left(v_{i}^{3}\right)=2$ and $f\left(v_{i}^{1}\right)=f\left(v_{i}^{2}\right)=0$ for $1 \leq i \leq p$ is a TRRDF on H of weight $3 p+3$. Therefore $\gamma_{t r R}(H) \leq 3 p+3=\frac{3(n(H)+2)}{4}$. Using Theorem 10, we note that $\gamma_{t r R}(H)=3 p+3=\frac{3(n(H)+2)}{4}$. This example demonstrates that Theorem 10 is sharp.

We conclude this section with an open problem.
Problem. Characterize all connected graphs G with $\gamma_{t r R}(G)=n(G)$.

References

[1] H. Abdollahzadeh Ahangar, J. Amjadi, S.M. Sheikholeslami, and M. Soroudi, On the total Roman domination number of graphs, Ars Combin. 150 (2020), 225-240.
[2] H. Abdollahzadeh Ahangar, M. Chellali, S.M. Sheikholeslami, and J.C. Valenzuela-Tripodoro, Total Roman \{2\}-dominating functions in graphs, Discuss. Math. Graph Theory 42 (2022), no. 3, 937 - 958.
[3] H. Abdollahzadeh Ahangar, M.A. Henning, V. Samodivkin, and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016), no. 2, 501517.
[4] H. Abdollahzadeh Ahangar and S.R. Mirmehdipour, Bounds on the restrained Roman domination number of a graph, Commun. Comb. Optim. 1 (2016), no. 1, 75-82.
[5] A. Cabrera Martínez, S. Cabrera García, and A. Carríon García, Further results on the total Roman domination in graphs, Mathematics 8 (2020), no. 3, ID: 349.
[6] A. Cabrera Martínez, A. Martínez Arias, and M. Menendez Castillo, A characterization relating domination, semitotal domination and total Roman domination in trees, Commun. Comb. Optim. 6 (2021), no. 2, 197-209.
[7] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Roman domination in graphs, Topics in Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2020, pp. 365-409.
[8] , Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17 (2020), no. 3, 966-984.
[9] _, Varieties of Roman domination, Structures of Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2021, pp. 273-307.
[10] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11-22.
[11] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[12] D.S. Johnson and M.R. Garey, Computers and intractability: A guide to the theory of NP-completeness, WH Freeman, San Francisco, 1979.
[13] C.-H. Liu and G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013), no. 3, 608-619.
[14] D.-X. Ma, X.-G. Chen, and L. Sun, On total restrained domination in graphs, Czechoslovak Math. J. 55 (2005), no. 1, 165-173.
[15] R.L. Pushpam and S. Padmapriea, Restrained Roman domination in graphs, Trans. Comb. 4 (2015), no. 1, 1-17.
[16] F. Siahpour, H. Abdollahzadeh Ahangar, and S.M. Sheikholeslami, Some progress on the restrained Roman domination, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 2, 733-751.

