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Abstract: Let G be a graph with vertex set V(G). A Roman dominating function
(RDF) on a graph G is a function f : V(G) — {0,1,2} such that every vertex v with
f(v) = 0 is adjacent to a vertex w with f(u) = 2. If f is an RDF on G, then let
Vi={veV(QG): f(v) =i} for i € {0,1,2}. An RDF f is called a restrained (total)
Roman dominating function if the subgraph induced by Vj (induced by V1 UV3) has no
isolated vertex. A total and restrained Roman dominating function is a total restrained
Roman dominating function. The total restrained Roman domination number ¢,z (G)
on a graph G is the minimum weight of a total restrained Roman dominating function
on the graph G.

We initiate the study of total restrained Roman domination number and present several
sharp bounds on 7:-g(G). In addition, we determine this parameter for some classes
of graphs.

Keywords: Total restrained domination, total restrained Roman domination, total
restrained Roman domination number

AMS Subject classification: 05C69

1. Introduction

For definitions and notations not given here we refer to [11]. We consider simple and
finite graphs G with vertex set V = V(G) and edge set E = E(G). The order of
G is n = n(G) = |V|. The neighborhood of a vertex v is the set N(v) = Ng(v) =
{u € V(G) | wv € E}. The degree of vertex v € V is d(v) = dg(v) = |N(v)|. The
mazimum degree and minimum degree of G are denoted by A = A(G) and § = 6(G),
respectively. The complement of a graph G is denoted by G. For a subset D of
© 2023 Azarbaijan Shahid Madani University



576 Total restrained Roman domination

vertices in a graph G, we denote by G[D] the subgraph of G induced by D. A leaf is
a vertex of degree one, and its neighbor is called a support vertex. An edge incident
with a leaf is called a pendant edge. We denoted the sets of all leaves and all support
vertices of G by L(G) and S(G), respectively. Let Ky, n,, .. n, denote the complete
p-partite graph with vertex set S; U Sz U...U S, where |S;| =n; for 1 <i <p.

A set S C V(G) is called a dominating set if every vertex is either an element of
S or is adjacent to an element of S. The domination number v(G) of a graph G
is the minimum cardinality of a dominating set of G. A total restrained dominating
set of a graph G without isolated vertices is defined in [14] as a dominating set D
with the property that the subgraphs induced by D and V(G) \ D do not contain
isolated vertices. The cardinality of a minimum total restrained dominating set in
G is the total restrained domination number, denoted by ~4-(G). A total restrained
dominating set of G of cardinality 7:-(G) is called a 7, (G)-set.

In this paper we continue the study of Roman dominating functions in graphs (see,
for example, the survey articles [7-9]). A Roman dominating function (RDF) on a
graph G is defined in [10] as a function f : V(G) — {0, 1,2} such that every vertex
v with f(v) = 0 is adjacent to a vertex u with f(u) = 2. The weight of an RDF
f is the value f(V(G)) = > ,cv(q) f(v). The Roman domination number yr(G)
is the minimum weight of an RDF on G. Moreover, if f is an RDF on G, we let
Vif ={v e V| f(v) =i} for every i € {0,1,2}. Consequently, any RDF f can be
represented by f = (Vof , Vlf7 V2f ), where the superscript f can be deleted in Vif when
no confusion arises.

A total Roman dominating function (TRDF) on a graph G without isolated vertices
is defined in [13] as a Roman dominating function f with the property that the
subgraph induced by V; U Vs has no isolated vertex. The total Roman domination
number v;z(G) is the minimum weight of a TRDF on G. A TRDF on G with weight
Yr(G) is called a v;r(G)-function. Total Roman domination has been studied by
several authors [1-3, 5, 6].

A restrained Roman dominating function (RRDF) on a graph G is defined in [15]
as a Roman dominating function f with the property that the subgraph induced by
Vo has no isolated vertex. The restrained Roman domination number ~,.r(G) is the
minimum weight of an RRDF on G. An RRDF on G with weight v,r(G) is called
a v-r(G)-function. The restrained Roman domination number has also been studied
in [4, 16].

A total and restrained Roman dominating function on a graph without isolated ver-
tices is a total restrained Roman dominating function (TRRDF). The total restrained
Roman domination number v, zr(G) on a graph G is the minimum weight of a TRRDF
on G. A TRRDF on G with weight v;-r(G) is called a ;g (G)-function.

If G is a graph without isolated vertices, then the definitions lead to

Yr(G) < 1r(G) < 1rr(G) (1)

and
Yr(G) < 7r(G) < Yrr(G). (2)
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We initiate the study of total restrained Roman domination and present several
sharp bounds on ;. zg(G). In addition, we determine this parameter for some classes
of graphs. Furthermore, if T is a tree of order n > 6, then we prove the sharp lower
bound v,z (T") > W.

We make use of the following results.
Proposition 1. [3] If G is a nontrivial path or a cycle of order n, then v:r(G) = n.
Proposition 2. [15] If p,q > 2 are integers, then vrr(Kp,q) = 4.

Proposition 3. [14] If C is a cycle of order n, then v (Cn) =n — 2| %],

Proposition 4. [3] If G is a graph with no isolated vertex, then 2v(G) < vr(G).

Proposition 5. [1] If G is a connected graph of order n > 3, then vir(G) > [AQ(Z)]

2. Complexity of total restrained Roman domination number

Our aim in this section is to show that the decision problem associated with the to-
tal restrained Roman domination is NP-hard even when restricted to bipartite graphs.

Total restrained Roman domination number problem (TRRDN)
Instance: A bipartite graph G with no isolated vertices and a positive integer k.
Question: Is v,z(G) < k?

We show the NP-hardness of TRRDN problem by transforming the 3-SAT problem
to it in polynomial time. Recall that the 3-SAT problem specified below was proven
to be NP-complete in [12].

3-SAT problem

Instance: A collection C = {C1,Cs,...,C,,} of clauses over a finite set U of variables
such that |C;| =3 for j =1,2,...,m.

Question: Is there a truth assignment for U that satisfies all the clauses in C7
Now, we show that the problem above is NP-hard, even when restricted to bipartite
graphs.

Theorem 1. Problem TRRDN is NP-complete for bipartite graphs.

Proof. The problem clearly belongs to NP since checking that a given function is
indeed a TRRDF, on a bipartite graph, of weight at most k can be done in polynomial
time. Now let us show how to transform any instance of 3-SAT into an instance G of
TRRD so that one of them has a solution if and only if the other one has a solution.
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Let U = {uj,us,...,u,} and € = {C1,Cs,...,Cp,} be an arbitrary instance of 3-
SAT. We will construct a bipartite graph G and a positive integer k£ such that &
is satisfiable if and only if v4.zr(G) < k. We construct such a graph G as follows.
For each ¢ = 1,2,...,n, corresponding to the variable u; € U, associate a complete

s1

52

53
S4

56

Figure 1. The graph F

bipartite graph H; = K3 4 with bipartite sets X = {z;,y;, z;,w; } and Y = {u;, t;,7; }.
For each j = 1,2,...,m, corresponding to the clause C; = {p;,q;,7;} € €, associate
a single vertex ¢; and add edge-set E; = {c¢;p;,c;q;,c;r;}. Finally, add the graph
F' depicted in Figure 1 and connect s; to every vertex c¢; with 1 < j < m. Set
k = 4n + 4. Clearly, G is a bipartite graph of order 7n 4+ m + 6. The graph obtained
when U = {Ul,UQ,Ug,U4} and € = {01,02,03}7 where Cl = {’LL17UQ,U73},CQ =
{@1,u2,us}, Cs = {uz, us, us} is illustrated in Figure 2. Now, we only need to prove
that v4-r(G) = 4n + 4 if and only if there is a truth assignment for U satisfying each
clause in %. This goal can be established by proving the next two claims.

Claim 1. v,r(G) > 4n + 4. Moreover, if v4.z(G) = 4n + 4, then for any v r(G)-
function f = (Vp, Vi, V2), f(V(H;)) = 4, at most one of f(u;) and f(u;) is 2 for each
i, f(s2) = f(se) =2 or f(s2) = f(s3) = 2, f(s) = 0 for the remaining vertices of F'
and f(c;) = 0 for each j.

Proof of Claim 1. Let f = (Vy, V1, Va) be a y4,-r(G)-function. It is easily verified that
f(V(H;)) > 3foreachi € {1,2,...,n}. Define @ = {i| f(V(H;)) =3and 1 <i<n}
and let i« € Q. It is easy to see that f(¢;) = 2, f(p;) = 1 for only one vertex
pi € {xs,yi, zi,wi }, and f(v) = 0 for the other vertices of H;. Since f is a TRRDF of
G, there exist some vertices ¢;, with f(c¢;) = 2, adjacent to the vertices u; and @;. Let
Q' be the set of such vertices ¢;. We moreover observe that 2|Q| < |[Q, Q']| < 3]|Q’|.
On the other hand, it is a routine matter to see that f(V(F')) > 4. Therefore,

rr(G) = f(V(G)) 2 3|QI +2(Q"| + 4(n — Q) + 4 =4n — [Q| + 2/Q'| +4 = 4n + 4.
Note that if |Q| > 0, then we have y4,zr(G) > 4n + 4.

Suppose that v, r(G) = 4n + 4. Then f(V(H;)) = 4 for each i = 1,2,...,n. If
f(s1) # 0, then for totally restrained Roman dominating the vertices s3, s4, s5 and sg
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Figure 2. The graph G

we must have f(N[s3]) U {ss}) > 4 which leads to a contradiction. Hence f(s1) =0
and similar as above, it is clear to see that f(s2) = f(s3) = 2 or f(s2) = f(s¢) = 2.
Therefore f(s) = 0 for the remaining vertices of F', and Z;"Zl f(cj) = 0. Now we
show that at most one of f(u;) and f(u;) is 2. Let f(uw;) = f(u;) = 2 for some
1 <i<mn. Since f(V(H;)) =4, it follows that f(z) = 0 for each x € V(H;) \ {u;, U3}
This implies that f(¢;) = f(N[t;]) = 0, a contradiction. Therefore, at most of one
f(u;) and f(w;) equals two. 4

Claim 2. 7v4,z(G) = 4n + 4 if and only if ¥ is satisfiable.

Proof of Claim 2. Suppose that v, zr(G) = 4n + 4 and let f be a v4,.zr(G)-function.
By Claim 2, at most one of f(u;) and f(u;) is 2 for each ¢ = 1,2,...,n. Define a
mapping ¢t : U — {T, F'} by

=1,...,n 3
F otherwise. ) ®)

Hus) = {T it flu;) =2, (
We now show that t is a satisfying truth assignment for €. It is sufficient to show
that every clause in % is satisfied by ¢. To this end, we arbitrarily choose a clause
C; € € with 1 < j < m. By Claim 2, f(s1) = f(¢;) = 0. Hence, there exists some
i with 1 <4 < n such that f(u;) = 2 or f(@;) = 2 where ¢; is adjacent to u; or u,.
Suppose that ¢; is adjacent to u; where f(u;) = 2. Since w; is adjacent to ¢; in G,
the literal u; is in the clause C; by the construction of G. Since f(u;) = 2, it follows
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that ¢(u;) = T by (3), which implies that the clause C; is satisfied by t. Suppose that
¢; is adjacent to w; where f(@;) = 2. Since %; is adjacent to ¢; in G, the literal u; is
in the clause C;. Since f(u;) = 2, it follows that t(u;) = F by (3). Thus, ¢ assigns
w; the truth value T, that is, ¢ satisfies the clause C; . By the arbitrariness of j with
1 < j < m, we have shown that ¢ satisfies all the clauses in ¥, that is, % is satisfiable.
Conversely, suppose that € is satisfiable, and let ¢ : U — {T, F'} be a satisfying truth
assignment for 4. We construct a subset D of vertices of G as follows. If t(u;) = T,
then put the vertices u; and z; in D; if ¢(u;) = F, then put the vertices u; and z;
in D. Hence |D| = 2n. Define the function g : V(G) — {0,1,2} by g(z) = 2 for
every © € D, g(s2) = g(s3) = 2 and g(y) = 0 for the remaining vertices. Since ¢ is a
satisfying truth assignment for ¢, the corresponding vertex c; in G is adjacent to at
least one vertex in D. One can easily check that g is a TRRDF on G of weight 4n+4
and so V4, g(G) < 4n+4. By Claim 2, v4-r(G) > 4n+4. Therefore, vz (G) = 4n+4.
¢

This completes the proof. O

3. Properties and bounds

In this section we present basic properties and bounds on the total restrained Roman
domination number. Since the function f with f(z) =1 for each vertex x € V(G) is
a TRRDF on a graph G without isolated vertices, we obtain our first bound.

Observation 2. If G is a graph of order n without isolated vertices, then v¢»r(G) < n.

The next result follows from the inequality 1:r(G) < 74-r(G), Proposition 1 and
Observation 2.

Observation 3. If G is a nontrivial path or a cycle of order n, then vz (G) = n.

Proposition 6. For any connected graph G of order n with minimum degree at least
three, yirr(G) <n — 1.

Proof. Let G be a graph with §(G) > 3. If G has a triangle uvwu, then the function
f defined by f(v) = 2, f(u) = f(w) = 0 and f(xz) = 1 otherwise, is a TRRDF
on G of weight n — 1 and we are done. Hence, we assume that G is triangle-free.
Let v be a vertex of G with minimum degree and let u1,us be two neighbors of v.
Assume that w; € N(u;) \ {v} for i = 1,2. If wy = wo, then let w € N(wq) \ {u1,us}
and define the function g on G by g(v) = g(w) = 2, g(u1) = g(uz) = g(wy) = 0
and g(z) = 1 for the remaining vertices. Clearly, g is a TRRDF on G of weight
n — 1 and hence v;r(G) < n — 1. Therefore we assume that wy # ws. Since G is
triangle-free, w; has a neighbor z; not in {uy, u2, w2} and wy has a neighbors zs not
in {us,ur,wi}. If 21 = 25, then the function g defined on G by g(v) = g(z1) = 2,
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g(ur) = g(uz) = glw1) = g(wz) = 0 and g(x) = 1 for the remaining vertices, is a
TRRDF on G of weight n — 2 as desired. Let z; # z3 and define the function g on
G by g(v) = g(z1) = g(22) = 2, g(u1) = g(u2) = g(w1) = g(w2) = 0 and g(z) =1
for the remaining vertices. Clearly, g is a TRRDF of G of weight n — 1 and hence

Ytrr(G) < n — 1. This completes the proof. O
81
S2 O 0 S7
s3 S8
510

Figure 3. A graph G of order 10 with girth 6 and ~.,r(G) = 10

Proposition 7. For any connected graph G of order n with minimum degree at least two
and girth at least seven different from cycles, virr(G) <n — 1.

Proof. Let G be a connected graph of order n with 6(G) > 2 and g = g(G) > 7.
Let C = z122 ... x421 be a cycle of G on g(G) vertices. Since G is a connected graph
different from a cycle and because C has length ¢(G), we may assume that x; has a
neighbor w; € V(G) \ V(C). Let wy € N(ws) \ {z1}. Notice that since g(G) > 7,
each vertex in V(G) \ V(C) has at most one neighbor in V(C). Define the function
g on G by g(z1) = g(z4) = 9(zy2) =2, g(r2) = g(z3) = g(z,) = glg_1) = 0 and
g(x) =1 for the remaining vertices. It is easy to verify that g is a TRRDF on G and
consequently v, r(G) <n — 1. O

The graph illustrated in Figure 3 shows that the assumption of g(G) > 7 in Proposi-
tion 7 is necessary.

Observation 4. If p,q > 2 are integers, then v, r(Kp,q) = 4.

Proof.  Proposition 2 leads to vurr(Kpq) > vr(Kpq) = 4. Now let X|Y be a
bipartition of K, 4. If z € X and y € Y, then define f by f(z) = f(y) = 2 and f(u)

0 for u € V(Kp4) \ {z,y}. Then f is a TRRDF on K, , and thus v, r(Kp4) <
and so y,rr(Kp,q) = 4.

O |
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The inequality vr(G) < Y4-r(G) and Proposition 5 yield the following lower bound.

Corollary 1. If G is a connected graph of order n > 3, then virr(G) > (ﬁ{é)].
Using Observations 3 and 4, we observe that we have equality for paths, cycles and
the complete bipartite graphs K, , in the inequality of Corollary 1.

Observation 5. Let G be a graph of order n > 2 without isolated vertices, and let
f be a TRRDF of G. Then f(z) > 1 for every leaf and every support vertex and thus
Yerr(G) 2 |L(G)] + |S(G)]-

Let H be the graph consisting of a path z1x5...x3; for an integer ¢ > 2, further
vertices vy, va, ..., v; such that v; is adjacent with x3;_o, 3,1 and xz3; for 1 <1 < t.
Then ~,r(H) = 2t and 7;,-r(H) = 3t. Hence we have

Proposition 8. There exists a graph H for which virr(H) — vrr(H) can be made
arbitrarily large.

If S, 4 is a double star of order n with p,q > 2, then vr(Sp,q) = n by Observation
5 and ¥ r(Sp,q) = 4 and thus

Proposition 9. There exists a graph H for which vyrr(H) — ver(H) can be made
arbitrarily large.

Using the inequality v:z(G) < v4-r(G) and Proposition 4, we obtain the next lower
bound.

Corollary 2. If G is a graph with no isolated vertez, then 2v(G) < vr(G) < yrr(G).

The corona H o K7 of a graph H is the graph obtained from H by adding a pendant
edge to each vertex of H. If G = H o K with a connected graph H, then v(G) = 3,
and v4-r(G) = n by Observations 2 and 5. Hence vy-p(H o K1) = 2v(H o K1) and
thus Corollary 2 is sharp.

Theorem 6. If G is a graph of order n > 4 without isolated vertices, then v, r(G) > 3,
with equality if and only if A(G) = n — 1, and G contains a vertex w of mazimum degree
such that G[Na(w)] has ezactly one isolated vertex or no isolated verter and at least one
component of order at least three.

Proof. Let f be a y,r(G)-function. If f(x) > 1 for all x € V(G), then v, r(G) >
n > 3. If there exists a vertex w with f(u) = 0, then w has a neighbor v with
f(v) = 2. Since f is a TRRDF, the vertex v is adjacent to a vertex z such that
f(2) > 1. Therefore, v,r(G) > 3.
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If A(G) =n—1 and G contains a vertex w of maximum degree such that G[Ng(w)]
has exactly one isolated vertex u, then the function f with f(w) =2, f(u) =1 and
f(x)=0for z € V(G)\ {u,w} is a TRRDF on G and thus v,g(G) = 3. Assume next
that A(G) = n—1 and G contains a vertex w of maximum degree such that G[Ng(w)]
has no isolated vertex and at least one component H of order at least three. Let T be
a spanning tree of H and let v be a leaf of T. Then G[V(T') \ {v}] is connected, and
hence the function f with f(w) =2, f(v) =1 and f(x) =0 for x € V(G) \ {v,w} is
a TRRDF on G and thus v4,-r(G) = 3.

Conversely, assume that v4.zg(G) = 3, and let f be a y4.z(G)-function. Since n > 4,
we note that there exist two vertices w and u with f(w) = 2, f(u) = 1 and f(x) = 0 for
x € V(G)\ {u,w}. Therefore all vertices x # w are adjacent to w and G[Ng(w) \ {u}]
does not contain an isolated vertex. So A(G) = n — 1 and G[Ng(w)] has exatly one
isolated vertex u or w is adjacent to a vertex of Ng(w) \ {u}, and then G[Ng(w)] has
no isolated vertex and at least one component of order at least three. O

Since y4-r(K3) = 3, Theorem 6 leads to the next special case immediately.
Corollary 3. Ifn > 3, then virr(Kn) = 3.

Corollary 4. If G and G are graphs of order n > 4 without isolated vertices, then
’YtrR(G) + "YtrR(G) > 8.

Proof. Since G and G are without isolated vertices, we observe that A(G) < n — 2

and A(G) < n — 2. Hence Theorem 6 implies vi-r(G), yrr(G) > 4 and so v4-r(G) +

’ytrR(G) > 8. O

Example 1. Let X = {z1,22,...,2p} and Y = {y1,92,...,y4} be a bipartition of the
complete bipartite graph K, 4 for p,q > 3, and let B = K, 4 — e with e = z1y1. We note
that A(B) < n(B) — 2 and A(B) < n(B) — 2. Define f by f(z,) = f(yq) =2 and f(z) =0
otherwise. Then f is a TRRDF on B and therefore v:r(B) = 4 according to Theorem 6.
Next define g by g(z1) = g(y1) = 2 and g(x) = 0 otherwise. Then g is a TRRDF on B and
thus yerr (E) = 4. Consequently, v¢rr(B) + fytTR(E) = 8.

Example 1 demonstrates that Corollary 4 is sharp.

3 and
1 and

Observation 7. Let G = Ku, n,,...n, be a complete p-partite graph with p
n <ny<...<mp. fn=mn14+n2+...+np, >4, then vrr(G) = 3 when ny
Y¢rr(G) = 4 when n1 > 2.

v

Proof. If ny =1, then Theorem 6 leads to v-r(G) = 3. If ny > 2, then A(G) < n—2
and therefore v4,-g(G) > 4 by Theorem 6. Now let u € S; and v € Sy, where S; and
Ss are two different partite sets of G. Then the function f defined by f(u) = f(v) =2
and f(z) =0for x € V(G)\{u,v} is a TRRDF on G of weight 4 and so v, r(G) < 4.
Consequently, v4-r(G) = 4 when ny > 2. O
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Theorem 8. If G is a graph of order n > 4 without isolated vertices, then
Yer (G) < Yrr(G) < 2960 (G).

In addition, v¢r(G) = verr(Q) if and only if v (G) = Yerr(G) = n.

Proof. Let f = (Vp, V1, Va) be an arbitrary 7-r(G)-function. Then V3 UV; is a total
restrained dominating set of G, and hence it follows that

Y (G) < V1| + [Va| < [Vi] 4 2|Va| = vrr(G).

This establishes the lower bound in the statement of the theorem. In particular, if
Yir(G) = Yrr(G), then Vo = @, implying V(G) = V; and so 74 (G) = Y4-r(G) = n.
Clearly, if 74 (G) = y4»r(G) = n, then v-(G) = 4-r(G).

For the upper bound, let D be a 7 (G) set. Define f by f(x) = 2 for x € D and
f(z) =0for x € V(G)\ D. Then f is a TRRDF on G of weight 2|D| = 2v;,.(G) and
thus 41 (G) < 279 (G). O

If C, is a cycle of order n = 4t, then we deduce from Proposition 3 that v, (Cyt) = 2¢,
and Observation 3 implies v,z (Cy;) = 4t. This example shows that the upper bound
in Theorem 8 is sharp.

4. Trees

In this section we first characterize all trees T with ~4-g(T) = n(T), and then we
present a lower bound for the total restrained Roman domination number of trees.

Theorem 9. Let T be a tree of order n. Then v-r(T) = n if and only if there is no
path vivevsvavs in T such that d(vs) > 3 and v; is not a leaf or a support vertex for each
i€{1,2,4,5}.

Proof. Let v,.r(T) = n. We assume, by contradiction, that there is a path
v1v2v3v4v5 in T such that d(vs) > 3 and v; is not a leaf or support vertex for each
i € {1,2,4,5}. Root T at vs, and let u; be a child of v; for ¢ € {1,5}. Define the
function f by f(vs) = f(u1) = f(us) =2, f(v;) =0for i € {1,2,4,5} and f(z) =1
for the remaining vertices. One can easily see that f is a TRRDF on T of weight
n — 1 which leads to the contradiction . g(T) < n.

Conversely, suppose there is no path vivavsvsvs in T such that d(vs) > 3 and v; is
not a leaf or a support vertex for each i € {1,2,4,5}. We assume, by contradiction,
that v4-r(T) < n and let f = (Vy, Vi, Va) be a v4-g(T)-function. We deduce from
Yrr(T) < n that [Vp| > [Va|. Therefore there is a vertex v € Vs such that |N(v) N
Vol > 2. Let uj,us € N(v) N Vy. Since f is a TRRDF, we must have d(v) > 3 and
that w1, us have neighbors in V. Assume that wy € N(uq)NVy and we € N(uz) N V.
It follows from Observation 5 that no vertex in {u,ug, w1, ws} is a leaf or support
vertex, which is a contradiction. O]
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Theorem 10. If T is a tree of order n > 6, then yu-r(T) > 3(n4+2>.

Proof. We proceed by induction on n > 6. If diam(7) < 4, then Observations 2
and 5 easily show that v4,.r(T) =n > W. Let now diam(7T) > 5. If n = 6, then
T = Ps and we have the equality in the lower bound. Assume that n > 7 and let the
lower bound hold for all trees T” of order 6 < n’ < n. Let T be a tree of order n and
let f be a v, r(T)-function. By the above, it suffices to assume that diam(7) > 5.
If T has a strong support vertex v with leaf neighbors uy, us, then by Observation 5
we have f(v), f(u1), f(uz) > 1 and hence f|y(r—_y,) is a TRRDF on the tree T — u;.

The induction hypothesis implies

(n-1)+2) _3(n+2)

Yrr(T) =14+ > fla) =1+ 1 1

2EV(T—uy)

Thus we assume that 7" has no strong support vertex. Let vivs...v, be a diametral
path and root T at v,. By our earlier assumption we have d(vs) = 2, and according
to Observation 5, we have f(v1), f(v2) > 1.

If f(vs) > 1, then fly(r_,,) is a TRRDF on T — vy, and the induction hypothesis
yields v, r(T) > W as above. Let now f(v3) =0.

Assume that d(vs) > 3. Since f(vs) = 0, we deduce from Observation 5 that vs is
not adjacent to a leaf. Let us # vy be a support vertex adjacent to vs, and let uy
be a leaf adjacent to us. Since T' has no strong support vertex, we have d(uz) = 2.
Since f is a TRRDF on T, we observe from Observation 5 that f(v4) = 0 and
f(u1) + f(u2) > 2. To Roman dominate vs, we assume without loss of generality that
f(v2) = 2. Therefore we note that f|y(r—{u, u,}) is @ TRRDF on T' — {u1,us}, and
the induction hypothesis implies

3(n-2)+2) _3(n+2)
4 > 4 '

wr(T) =224+ > fl@) =2+
z€V(T—{ui,usz})

Next we assume that d(vs) = 2. Since f(vs) = 0, it follows from Observation 5 and
the fact f is a TRRDF on T that f(v2) =2 and f(vs) = 0.

Assume now that d(vs) > 3. Since f(vq) = 0, the vertex vy is not adjacent to a leaf.
Considering above arguments we may assume that for each path vyz3222 in T where
z3 ¢ {vs,v5}, we have d(z3) = d(z2) = 2. Next we distinguish three cases.

Case 1. Let f(vs) = 2.

Assume that us ¢ {vs,vs} is a support vertex adjacent to vy and ug a leaf adjacent
to ug. Since T has no strong support vertex, we have d(ug) = 2. Since f(vs) = 2, we
observe that f(uz)+ f(u2) = 2. Then f|y (1r—{us,us}) is @ TRRDF on T'—{u3, ua}, and
we obtain the desired bound as above. Now let uz ¢ {vs, vs} be adjacent to vy, us a
support vertex adjacent to us and u; a leaf adjacent to uy. Without loss of generality,
we can assume that d(us) = d(uz) = 2. We note that f(us) + f(uz) + f(u1) = 3, and
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the function f restricted to T'— {u1,ue,us} is a TRRDF on T — {uy,us,us}. The
induction hypothesis leads to the desired bound as above.

Case 2. Let f(vs) = 1.

Then v4 has a neighbor ug ¢ {vs,vs} with f(u3) = 2, and uz has a neighbor us # vy
with f(u2) = 1. Now define the function g by g(vs) = 2, g(us) = 1 and g(z) = f(z)
otherwise. Then ¢ is a TRRDF on T of the same weight as f, and we are in the
position of Case 1.

Case 3. Let f(vs) = 0. Then vy has a neighbor us ¢ {vs,vs} with f(ug) = 2, and
us has a neighbor us # v4 with f(ug) = 1. Similarly, vs has a neighbor w # v4 with
f(w) =2, and w has a neighbor w’ # vs with f(w’) > 1. Tt follows that p > 7. In
this case we observe that the function f restricted to T'— {v1,v9,v3}, is a TRRDF on
T — {v1,v2,v3}, and since p > 7, the induction hypothesis implies

3(n—3)+2) _ 3(n+2)
4 = 4 '

Yerr(T) = 3 + > fl@) =3+
€V (T—{v1,v2,v3})

Finally, we assume that d(vs) = 2. Since f(vs) = 0, we conclude that f(vs) = 2. If
7 <n <9, then it is straightforward to verify that v, gr(T) > W. If n > 10, then
the function f restricted to T — {v1,v2,v3,v4} is a TRRDF on T — {v1, va, v3,v4},
and the induction hypothesis leads to

Yrr(T) =3+ Z flz) >3+ 3((n—4)+2) _ 3(n + 2).

4 4
z€V(T—{v1,v2,v3,04})
O

Example 2. Let H be the tree consisting of the vertices w and z and the paths v;vZv3v}

for 1 <1 < p such that w is adjacent to z and v} for 1 < i < p. Then n(H) = 4p+2, and the
function f with f(2) = f(v}) = 1, f(w) = f(v¥) =2 and f(v}) = f(v}) =0for 1 <i<pis
a TRRDF on H of weight 3p + 3. Therefore v¢rr(H) < 3p+3 = W. Using Theorem

10, we note that y,r(H) =3p+3 = W. This example demonstrates that Theorem
10 is sharp.

We conclude this section with an open problem.

Problem. Characterize all connected graphs G with v4,.r(G) = n(G).
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