Signless Laplacian eigenvalues of the zero divisor graph associated to finite commutative ring $\mathbb{Z}_{p^{M_{1}} q^{M_{2}}}$

S. Pirzada* ${ }^{*}$, Bilal A. Rather ${ }^{\dagger}$, Rezwan ul Shaban ${ }^{\ddagger}$, T. A. Chishti ${ }^{\S}$
Department of Mathematics, University of Kashmir, Srinagar, India
*pirzadasd@kashmiruniversity.ac.in
${ }^{\dagger}$ bilalahmadrr@gmail.com
${ }^{\ddagger}$ rezwanbhat21@gmail.com
$\S_{\text {tachishti@uok.edu.in }}$

Received: 27 April 2022; Accepted: 22 July 2022
Published Online: 25 July 2022

Abstract

For a commutative ring R with identity $1 \neq 0$, let the set $Z(R)$ denote the set of zero-divisors and let $Z^{*}(R)=Z(R) \backslash\{0\}$ be the set of non-zero zero divisors of R. The zero divisor graph of R, denoted by $\Gamma(R)$, is a simple graph whose vertex set is $Z^{*}(R)$ and two vertices $u, v \in Z^{*}(R)$ are adjacent if and only if $u v=v u=0$. In this article, we find the signless Laplacian spectrum of the zero divisor graphs $\Gamma\left(\mathbb{Z}_{n}\right)$ for $n=p^{M_{1}} q^{M_{2}}$, where $p<q$ are primes and M_{1}, M_{2} are positive integers.

Keywords: Signless Laplacian matrix; zero divisor graph, finite commutative ring, Eulers's totient function

AMS Subject classification: 05C50, 05C12, 15A18

1. Introduction

All graphs considered in this article are connected, undirected, simple and finite graphs. A graph is denoted by $G(V(G), E(G)$) (or simply by G), where $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the vertex set and $E(G)$ is the edge set of G. The order and the size of G are the cardinalities of $V(G)$ and $E(G)$, respectively. The degree of a vertex v in G is the number of edges incident with v and is denoted by $d_{G}(v)$ (or simply by d_{v} if it is clear from the context). The neighbourhood of a vertex v, denoted by $N(v)$, is the set of vertices of G adjacent to v, so that $d_{v}=|N(V)|$. A graph is called regular if every vertex is of same degree. The adjacency matrix

[^0]$A=\left(a_{i j}\right)$ of G is a square matrix of order n, whose (i, j)-entry is equal to 1 , if v_{i} is adjacent to v_{j} and equal to 0 , otherwise. Let $D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the diagonal matrix of vertex degrees $d_{i}=d_{G}\left(v_{i}\right), i=1,2, \ldots, n$ associated to G. The matrices $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$ are respectively the Laplacian and the signless Laplacian matrices and their spectrum are respectively the Laplacian spectrum and signless Laplacian spectrum of G. These matrices are real symmetric and positive semi-definite having real eigenvalues which can be ordered as $\lambda_{1}(G) \geq \lambda_{2}(G) \geq \cdots \geq \lambda_{n}(G)$ and $\mu_{1}(G) \geq \mu_{2}(G) \geq \cdots \geq \mu_{n}(G)$, respectively. More about Laplacian and signless Laplacian matrices can be seen in [8, 9, 14] and the references therein.
Let R be a commutative ring with multiplicative identity $1 \neq 0$. A non-zero element $x \in R$ is called a zero divisor of R if there exists a non-zero element $y \in R$ such that $x y=0$. The zero divisor graphs of commutative rings were first introduced by Beck [5], in the definition he included the additive identity and was interested mainly in coloring of commutative rings. Later Anderson and Livingston [4] modified the definition of zero divisor graphs and excluded the additive identity of the ring in the zero divisor set. For a commutative ring R with identity denoted by 1 , let the set $Z(R)$ denote the set of zero-divisors and let $Z^{*}(R)=Z(R) \backslash\{0\}$ be the set of non-zero zero divisors of R. The zero divisor graph of R, denoted by $\Gamma(R)$, is a simple graph whose vertex set is $Z^{*}(R)$ and two vertices $u, v \in Z^{*}(R)$ are adjacent if and only if $u v=v u=0$. We denote the ring of integers modulo n by \mathbb{Z}_{n}. The order of the zero divisor graph $\Gamma\left(\mathbb{Z}_{n}\right)$ is $n-\phi(n)-1$, where ϕ is Euler's totient function. The adjacency and the Laplacian spectral analysis was done in [7, 11, 17]. The normalized Laplacian and the signless Laplacian spectra were discussed in $[1,15]$. More literature about zero divisor graphs can be found in $[2-4,13]$ and the references therein.
For any graph G, we write $\operatorname{Spec}(G)$ for the spectrum of G which contains its eigenvalues including multiplicities. if vertices x and y are adjacent in G, then we write $x \sim y$. We use the standard notation, K_{n} and $K_{a, b}$ for the complete graph and the bipartite graph, respectively. Other undefined notations and terminology can be seen in $[8,12]$.
The rest of the paper is organized as follows. In Section 2, we start with some basic and useful results and then apply them to prove our main results.

2. Signless Laplacian eigenvalues of the zero divisor graph $\Gamma\left(\mathbb{Z}_{p^{M_{1}} q^{M_{2}}}\right)$

We start the section with some definitions and known results which are used to prove the main results of the section.

Definition 1. Let $G(V, E)$ be a graph of order n having vertex set $\{1,2, \ldots, k\}$ and $G_{i}=G_{i}\left(V_{i}, E_{i}\right)$ be disjoint graphs of order $n_{i}, 1 \leq i \leq k$. The graph $G\left[G_{1}, G_{2}, \ldots, G_{n}\right]$ is formed by taking the graphs $G_{1}, G_{2}, \ldots, G_{n}$ and joining each vertex of G_{i} to every vertex of G_{j} whenever i and j are adjacent in G.

This graph operation $G\left[G_{1}, G_{2}, \ldots, G_{n}\right]$ is called the generalized join graph operation in [6] and G-join operation in [8]. Herein we follow the later name with the notation $G\left[G_{1}, G_{2}, \ldots, G_{n}\right]$ and call it G-join.
The signless Laplacian spectrum of G-join of graphs is given by the following result.
Theorem 1. ([16]) Let G be a graph with $V(G)=\{1,2, \ldots, t\}$, and G_{i} 's be r_{i}-regular graphs of order $n_{i}(i=1,2, \ldots, t)$. If $G=G\left[G_{1}, G_{2}, \cdots, G_{t}\right]$, then the signless Laplacian spectrum of G can be computed as follows:

$$
\operatorname{Spec}_{Q}(G)=\left(\bigcup_{i=1}^{t}\left(N_{i}+\left(\operatorname{Spec}_{Q}\left(G_{i}\right) \backslash\left\{2 r_{i}\right\}\right)\right)\right) \bigcup \operatorname{Spec}\left(C_{Q}(G)\right)
$$

where $N_{i}=\sum_{j \in N_{G}(i)} n_{j}$ and

$$
C_{Q}(G)=\left(c_{i j}\right)_{t \times t}= \begin{cases}2 r_{i}+N_{i}, & i=j, \tag{1}\\ \sqrt{n_{i} n_{j}}, & i j \in E(G), \\ 0 & \text { otherwise }\end{cases}
$$

Let n be a positive integer and let $\tau(n)$ denotes the number of positive factors of n, that is

$$
\tau(n)=\sum_{d \mid n} 1
$$

where $d \mid n$ denotes d divides n.
The Euler's totient function $\phi(n)$ denotes the number of positive integers less or equal to n and relatively prime to n.
We say n is in canonical decomposition if $n=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{r}^{n_{r}}$, where $r, n_{1}, n_{2}, \ldots, n_{r}$ are positive integers and $p_{1}, p_{2}, \ldots, p_{r}$ are distinct primes.
The following result counts the values of $\tau(n)$.
Lemma 1. ([10]) Let n be a positive integer with canonical decomposition $n=$ $p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{r}^{n_{r}}$. Then

$$
\tau(n)=\left(n_{1}+1\right)\left(n_{2}+1\right) \ldots\left(n_{r}+1\right)
$$

The following result gives some properties of Euler's totient function.

Theorem 2. ([10]) Let ϕ be the Euler's totient function. Then following hold.
(i) ϕ is multiplicative, that is $\phi(s t)=\phi(s) \phi(t)$, whenever s and t are relatively prime.
(ii) Let n be a positive integer. Then $\sum_{d \mid n} \phi(d)=n$.
(iii) Let p be a prime. Then $\sum_{i=1}^{l} \phi\left(p^{l}\right)=p^{l}-1$.

An integer d dividing n is called a proper divisor of n if and only if $1<d<n$. Let Υ_{n} be the simple graph with vertex set as proper divisor set $\left\{d_{1}, d_{2}, \ldots, d_{t}\right\}$ of n, in which two distinct vertices are adjacent if and only if n divides $d_{i} d_{j}$. It is easy to see that Υ_{n} is a connected graph [7]. Let $p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{r}^{n_{r}}$ be the canonical decomposition of n, then by Lemma 1 , order of Υ_{n} is given by

$$
\left|V\left(\Upsilon_{n}\right)\right|=\left(n_{1}+1\right)\left(n_{2}+1\right) \ldots\left(n_{r}+1\right)-2 .
$$

For $1 \leq i \leq t$, let

$$
A_{d_{i}}=\left\{x \in \mathbb{Z}_{n}:(x, n)=d_{i}\right\},
$$

where (x, n) denotes the greatest common divisor of x and n. We observe that $A_{d_{i}} \cap$ $A_{d_{j}}=\phi$, when $i \neq j$, implying that the sets $A_{d_{1}}, A_{d_{2}}, \ldots, A_{d_{t}}$ are pairwise disjoint and partitions the vertex set of $\Gamma\left(\mathbb{Z}_{n}\right)$ as

$$
V\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=A_{d_{1}} \cup A_{d_{2}} \cup \cdots \cup A_{d_{t}} .
$$

From the definition of $A_{d_{i}}$, a vertex of $A_{d_{i}}$ is adjacent to the vertex of $A_{d_{j}}$ in $\Gamma\left(\mathbb{Z}_{n}\right)$ if and only if $n \mid d_{i} d_{j}$, for $i, j \in\{1,2, \ldots, t\}[7]$. The following result can be found in [17], which gives the cardinality of $A_{d_{i}}$.

Lemma 2. Let d_{i} be the divisor of n. Then $\left|A_{d_{i}}\right|=\phi\left(\frac{n}{d_{i}}\right)$, for $1 \leq i \leq t$.
The next lemma [7] says that the induced subgraphs $\Gamma\left(A_{d_{i}}\right)$ of $\Gamma\left(\mathbb{Z}_{n}\right)$ are either cliques or null graphs.

Lemma 3. ([7]) Let n be the positive integer and d_{i} be its proper divisor. Then the following hold.
(i) For $i \in\{1,2, \ldots, t\}$, the induced subgraph $\Gamma\left(A_{d_{i}}\right)$ of $\Gamma\left(\mathbb{Z}_{n}\right)$ on the vertex set $A_{d_{i}}$ is either the complete graph $K_{\phi\left(\frac{n}{d_{i}}\right)}$ or its complement $\bar{K}_{\phi\left(\frac{n}{d_{i}}\right)}$. Also, $\Gamma\left(A_{d_{i}}\right)$ is $K_{\phi\left(\frac{n}{d_{i}}\right)}$ if and only $n \mid d_{i}^{2}$.
(ii) For $i, j \in\{1,2, \ldots, t\}$ with $i \neq j$, a vertex of $A_{d_{i}}$ is adjacent to either all or none of the vertices in $A_{d_{j}}$ of $\Gamma\left(\mathbb{Z}_{n}\right)$.

The following lemma says that $\Gamma\left(\mathbb{Z}_{n}\right)$ is a G-join of certain complete graphs and null graphs.

Lemma 4. ([7]) Let $\Gamma\left(A_{d_{i}}\right)$ be the induced subgraph of $\Gamma\left(\mathbb{Z}_{n}\right)$ on the vertex set $A_{d_{i}}$ for $1 \leq i \leq t$. Then $\Gamma\left(\mathbb{Z}_{n}\right)=\Upsilon_{n}\left[\Gamma\left(A_{d_{1}}\right), \Gamma\left(A_{d_{2}}\right), \ldots, \Gamma\left(A_{d_{t}}\right)\right]$.

Now, we will find the signless Laplacian eigenvalues of $\Gamma\left(\mathbb{Z}_{n}\right)$, for $n=p^{M_{1}} q^{M_{2}}$, where p and $q, p<q$, are primes. This generalizes the results obtained in [1, 15]. We prove the case when M_{1} and $M_{2}, M_{1} \leq M_{2}$, are positive even integers and the odd case can be similarly proved.

Theorem 3. Let $\Gamma\left(\mathbb{Z}_{n}\right)$ be the zero divisor graph of order N, where $n=p^{M_{1}} q^{M_{2}}$ and $M_{1}=2 m_{1} \leq 2 m_{2}=M_{2}$. The signless Laplacian spectrum of $\Gamma\left(\mathbb{Z}_{n}\right)$ consists of the eigenvalues

$$
\begin{aligned}
& \mu_{i}=p^{i}-1, \text { for } i=1,2, \ldots, m_{1}, \ldots, 2 m_{1}, \\
& \mu_{i}=q^{j}-1, \text { for } j=1,2, \ldots, 2 m_{2} \text { and } i=M_{1}+1, M_{1}+2, \ldots, M_{1}+M_{2}, \\
& \mu_{i}=p q^{j}-1, \text { for } j=1,2, \ldots, 2 m_{2} \text { and } i=M_{1}+M_{2}+1, \ldots, M_{1}+2 M_{2}, \\
& \quad \vdots \\
& \mu_{i}=p^{m_{1}} q^{j}-1, \text { for } j=1,2, \ldots, m_{2}-1 \text { and } i=M_{1}+m_{1} M_{2}+1, \ldots, M_{1}+m_{1} M_{2}+m_{2}-1, \\
& \mu_{i}=p^{m_{1}} q^{j}-3, \text { for } j=m_{2}, \ldots, 2 m_{2} \text { and } i=M_{1}+m_{1} M_{2}+m_{2}, \ldots, M_{1}+\left(m_{1}+1\right) M_{2}, \\
& \quad \vdots \\
& \quad \vdots \\
& \mu_{i}=p^{2 m_{1}} q^{j}-1, \text { for } j=1,2, \ldots, m_{2}-1 \text { and } i=M_{1}+M_{1} M_{2}+1, \ldots, M_{1}+M_{1} M_{2}+m_{2}-1, \\
& \mu_{i}=p^{2 m_{1}} q^{j}-3, \text { for } j=m_{2}, \ldots, 2 m_{2} \text { and } i=M_{1}+M_{1} M_{2}+m_{2}, \ldots, M_{1}+M_{1} M_{2}-1,
\end{aligned}
$$

with multiplicities

$$
\begin{gathered}
\phi\left(p^{M_{1}-i} q^{M_{2}}\right)-1, \phi\left(p^{M_{1}} q^{M_{2}-j}\right)-1, \phi\left(p^{M_{1}-1} q^{M_{2}-j}\right)-1, \ldots, \phi\left(p^{m_{1}} q^{M_{2}-k}\right)-1, \phi\left(p^{m_{1}} q^{M_{2}-l}\right)-1, \\
\ldots, \phi\left(q^{M_{2}-k}\right)-1, \phi\left(q^{M_{2}-l}\right)-1,
\end{gathered}
$$

respectively, where $i=1, \ldots, M_{1}, j=1, \ldots, M_{2}, k=1, \ldots, m_{2}-1$ and $l=m_{2}, m_{2}+$ $1, \ldots, M_{2}-1$. The remaining signless Laplacian eigenvalues of $\Gamma\left(\mathbb{Z}_{n}\right)$ are the eigenvalues of the matrix given in (1).

Proof. Let $n=p^{M_{1}} q^{M_{2}}$, where p and $q, 2<p<q$, are primes and M_{1} and M_{2}, $2 \leq M_{1}=2 m_{1} \leq 2 m_{2}=M_{2}$, are positive even integers. Then the proper divisors of n are

$$
\begin{array}{r}
\left\{p, p^{2}, \ldots, p^{m_{1}}, \ldots, p^{M_{1}}, q, q^{2}, \ldots, q^{m_{2}}, \ldots, q^{M_{2}}, p q, p q^{2}, \ldots, p q^{m_{2}}, \ldots, p q^{M_{2}}, \ldots, p^{m_{1}} q, p^{m_{1}} q^{2}, \ldots,\right. \\
\left.p^{m_{1}} q^{m_{2}-1}, p^{m_{1}} q^{m_{2}}, \ldots, p^{m_{1}} q^{M_{2}}, \ldots, p^{M_{1}} q, p^{M_{1}} q^{2}, \ldots, p^{M_{1}} q^{m_{2}-1}, p^{M_{1}} q^{m_{2}}, \ldots, p^{M_{1}} q^{M_{2}-1}\right\}
\end{array}
$$

and the size of Υ_{n} is $\left(M_{1}+1\right)\left(M_{2}+1\right)-2=M_{1} M_{2}+M_{1}+M_{2}-1$. By the definition
of Υ_{n}, we see that

$$
\begin{aligned}
p & \sim p^{M_{1}-1} q^{M_{2}} \\
p^{2} & \sim p^{M_{1}-2} q^{M_{2}}, p^{M_{1}-1} q^{M_{2}}, \\
p^{3} & \sim p^{M_{1}-3} q^{M_{2}}, p^{M_{1}-2} q^{M_{2}}, p^{M_{1}-1} q^{M_{2}}, \\
\quad & \vdots \\
p^{m_{1}} & \sim p^{m_{1}} q^{M_{2}}, p^{m_{1}+1} q^{M_{2}}, \ldots, p^{M_{1}-1} q^{M_{2}}, \\
\quad & \\
p^{M_{1}} & \sim q^{M_{2}}, p q^{M_{2}}, p^{2} q^{M_{2}}, \ldots, p^{m_{1}} q^{M_{2}}, \ldots, p^{M_{1}-1} q^{M_{2}}
\end{aligned}
$$

That is,

$$
p^{i} \sim p^{j} q^{M_{2}}, i+j \geq M_{1}, \text { for } i=1,2, \ldots, M_{1} .
$$

Now, following the similar procedure, we have

$$
\begin{aligned}
q^{i} & \sim p^{M_{1}} q^{j}, i+j \geq M_{2}, \text { for } i=1,2, \ldots, M_{2}, \\
p q^{i} & \sim p^{k} q^{j}, i+j \geq M_{2}, \text { for } i=1,2, \ldots, M_{2} \text { and } k \geq 2 m_{1}-1, \\
& \vdots \\
p^{m_{1}} q^{i} & \sim p^{k} q^{j}, i+j \geq M_{2}, \text { for } i=1,2, \ldots, M_{2} \text { and } k \geq m_{1} \\
& \vdots \\
p^{M_{1}} q^{i} & \sim p^{k} q^{j}, i+j \geq M_{2}, \text { for } i=1,2, \ldots, M_{2}-1 \text { and } k \geq 0 .
\end{aligned}
$$

By Lemma 2, for $i=1,2, \ldots, M_{1}$ and $j=1,2, \ldots, M_{2}$, we see that $\left|A_{p^{i}}\right|=$ $\phi\left(p^{M_{1}-i} q^{M_{2}}\right),\left|A_{q^{j}}\right|=\phi\left(p^{M_{1}} q^{M_{2}-j}\right),\left|A_{p q^{j}}\right|=\phi\left(p^{M_{1}-1} q^{M_{2}-j}\right), \ldots,\left|A_{p^{m_{1}} q^{j}}\right|=$ $\phi\left(p^{m_{1}} q^{M_{2}-j}\right), \ldots,\left|A_{p^{M_{1}-1} q^{j}}\right|=\phi\left(p q^{M_{2}-j}\right)$ and

$$
\left|A_{p^{M_{1}} q^{k}}\right|=\phi\left(q^{M_{2}-k}\right), \text { for } k=1,2, \ldots, M_{2}-1 .
$$

Also, by Lemma 3, we have

$$
G_{i}= \begin{cases}\Gamma\left(A_{d_{p^{i}}}\right)=\bar{K}_{\phi\left(p^{M_{1}-i} q^{M_{2}}\right)}, & 1 \leq i \leq M_{1} \tag{2}\\ \Gamma\left(A_{d^{j}}\right)=\bar{K}_{\phi\left(p^{\left.M_{1} q^{M_{2}-j}\right)}\right.}, & 1 \leq j \leq M_{2} \\ \Gamma\left(A_{d_{p^{i} q^{j}}}\right)=\bar{K}_{\phi\left(p^{M_{1}-i} q^{M_{2}-j}\right)}, & 1 \leq i \leq m_{1}-1 \text { and } 1 \leq j \leq M_{2} \\ & \text { or } 1 \leq i \leq M_{1} \text { and } 1 \leq j \leq m_{2}-1 \\ \Gamma\left(A_{d_{p^{i} q^{j}}}\right)=K_{\phi\left(p^{M_{1}-i} q^{M_{2}-j}\right)}, & m_{1} \leq i \leq M_{1} \text { and } m_{2} \leq j \leq M_{2}\end{cases}
$$

By using Lemma 4, the joined union of the zero divisor graph $\Gamma\left(\mathbb{Z}_{n}\right)$ is given by

$$
\begin{aligned}
\Gamma\left(\mathbb{Z}_{n}\right)= & \Upsilon_{n}\left[\bar{K}_{\phi\left(p^{M_{1}-1} q^{M_{2}}\right)}, \ldots, \bar{K}_{\phi\left(p^{m_{1}} q^{M_{2}}\right)}, \ldots, \bar{K}_{\phi\left(q^{M_{2}}\right)}, \bar{K}_{\phi\left(p^{\left.M_{1} q^{M_{2}-1}\right)}\right.}, \ldots, \bar{K}_{\phi\left(p^{M_{1}} q^{m_{2}}\right)}, \ldots,\right. \\
& \bar{K}_{\phi\left(p^{M_{1}}\right)}, \bar{K}_{\phi\left(p^{M_{1}-1} q^{M_{2}-1}\right)}, \ldots, \bar{K}_{\phi\left(p^{M_{1}-1} q^{m_{2}}\right)}, \ldots, \bar{K}_{\phi\left(p^{M_{1}-1}\right)}, \ldots, \bar{K}_{\phi\left(p^{m} q^{M_{2}-1}\right.}, \ldots, \\
& \left.K_{\phi\left(p^{m_{1}} q^{m_{2}-1}\right)}, K_{\phi\left(p^{\left.m_{1} q^{m_{2}}\right)}, \ldots, K_{\phi\left(p^{m_{1}}\right)}, \ldots, K_{\left(\phi q^{M_{2}-1}\right)}, \ldots, K_{\phi\left(q^{m_{2}-1}\right)}, K_{\phi\left(q^{m_{2}}\right)}, \ldots,\right.} K_{\phi(q)}\right] .
\end{aligned}
$$

Now, we use Theorem 1, to calculate the signless Laplacian eigenvalues of $\Gamma\left(\mathbb{Z}_{n}\right)$. For that we first need to know the values of N_{i} 's. It is well known that the zero divisor graphs are of diameter at most three, so that $p^{i} \sim q^{i}$ if and only if $i=j=n$, otherwise $p^{i} \sim p^{k} q^{n}, i+k \geq n$ and $q^{j} \sim p^{n} q^{h}, j+h \geq n$ and finally $p^{k} q^{n} \sim p^{n} q^{h}, k \geq 1, h \geq 1$. This implies that $d\left(p^{i}, q^{j}\right)=3$, if $1 \leq i, j \leq n-1$ in Υ_{n}. Similarly the distance between other vertices is at most 2 . Now, by Theorems 1 and 2 , we have

$$
\begin{aligned}
N_{1} & =\phi(p)=p-1 \\
N_{2} & =\phi(p)+\phi\left(p^{2}\right)=p^{2}-1 \\
\quad & \\
N_{m_{1}} & =\phi\left(p^{m_{1}}\right)+\phi\left(p^{m_{1}-1}\right)+\cdots+\phi(p)=p^{m_{1}}-1 \\
\quad & \\
N_{M_{1}} & =\phi\left(p^{M_{1}}\right)+\phi\left(p^{M_{1}-1}\right)+\cdots+\phi(p)=p^{M_{1}}-1,
\end{aligned}
$$

that is,

$$
N_{i}=p^{i}-1, \text { for } i=1,2, \ldots, M_{1}
$$

By proceeding in the similar manner, other N_{i} 's are given by

$$
\begin{aligned}
& N_{i}=q^{j}-1, \text { for } i=M_{1}+1, \ldots, M_{1}+M_{2}, \text { and } j=1,2, \ldots, m_{2}, \ldots, M_{1}, \\
& N_{i}= \\
& \quad \text { pq } q^{j}-1 \text { for } i=M_{1}+M_{2}+1, \ldots, M_{1}+2 M_{2} \text { and } j=1,2, \ldots, m_{2}, \ldots, M_{1}, \\
& \quad \vdots \\
& N_{i}=p^{m_{1}} q^{j}-1, \text { for } i=M_{1}+m_{1} M_{2}+1, \ldots, M_{1}+m_{1} M_{2}+m_{2}-1 \text { and } j=1,2, \ldots, m_{2}-1, \\
& N_{i}=p^{m_{1}} q^{j}-1--\phi\left(p^{m_{1}} q^{j}\right) \text {, for } i=M_{1}+m_{1} M_{2}, \ldots, M_{1}+\left(m_{1}+1\right) M_{2} \text { and } j=m_{2}, \ldots, N_{2}, \\
& \quad \vdots \\
& \quad \begin{aligned}
& N_{i}=p^{M_{1}} q^{j}-1, \text { for } i=M_{1}+M_{1} M_{2}+1, \ldots, M_{1}+M_{1} M_{2}+m_{2}-1 \text { and } j=1,2, \ldots, m_{2}-1, \\
& N_{i}=p^{N_{1}} q^{j}-1-\phi\left(q^{N_{2}-j}\right), \text { for } i=M_{1}+M_{1} M_{2}+m_{2}, \ldots, M_{1}+M_{1} M_{2}+M_{2}-1 \\
& \text { and } j=m_{2}, \ldots, M_{2}-1 .
\end{aligned}
\end{aligned}
$$

Thus, by Theorem 1 and Equation (2), the signless Laplacian eigenvalues of $\Gamma\left(\mathbb{Z}_{n}\right)$ are

$$
\begin{aligned}
& \mu_{i}=N_{i} \text { for } i=1,2, \ldots, M_{1}+2 M_{2}, \\
& \vdots \\
& \mu_{i}=N_{i} \text { for } i=M_{1}+m_{1} M_{2}+1, \ldots, M_{1}+m_{1} M_{2}+m_{2}-1, \\
& \mu_{i}=N_{i}+\phi\left(p^{m_{1}} q^{j}\right)-2=p^{m_{1}} q^{j}-3 \text { for } i=M_{1}+m_{1} M_{2}+m_{2}, \ldots, M_{1}+\left(m_{1}+1\right) M_{2} \\
& \quad j=m_{2}, \ldots, M_{2}, \\
& \vdots \\
& \mu_{i}= \\
& \mu_{i}=N_{i} \text { for } i=M_{1}+\phi\left(q^{N_{2}-j}\right)-2=M_{1} M_{2}+1, \ldots, M_{1}+M_{2} M_{2}+m_{2}-1, \\
& \quad j=m_{2}, \ldots, M_{2},
\end{aligned}
$$

with multiplicities as in the statement. By using the adjacency relations, Equation (2) and value of N_{i} 's the remaining signless Laplacian eigenvalues of $\Gamma\left(\mathbb{Z}_{n}\right)$ are the eigenvalues of the matrix given in (1).
In particular, if $q=1$ in Theorem 3, we get the signless Laplacian eigenvalues of $\Gamma\left(\mathbb{Z}_{p^{2 m}}\right)$.

Corollary 1. If $n=p^{2 m}$ for some positive integer $m \geq 2$, then the signless Laplacian spectrum of $\Gamma\left(\mathbb{Z}_{n}\right)$ consists of the eigenvalue $p^{i}-1$, with multiplicity $\phi\left(p^{2 m-i}\right)$, for $i=$ $1,2, \ldots, m-1$, the eigenvalue $p^{i}-3$, with multiplicity $\phi\left(p^{2 m-i}\right)$, for $i=m, m+1, \ldots, 2 m-1$ and the remaining signless Laplacian eigenvalues of $\Gamma\left(\mathbb{Z}_{n}\right)$ are the zeros of the characteristic polynomial of the matrix given in (3).

Proof. The proper divisors of n are $\left\{p, p^{2}, \ldots, p^{2 m-1}\right\}$ and so by definition of $\Upsilon_{p^{2 m}}$, the vertex p^{i} is adjacent to the vertex p^{j} if and only if $j \geq 2 m-i$ with $1 \leq i \leq 2 m-1$ and $i \neq j$. For $i=1,2, \ldots, 2 m-2,2 m-1$, it is easy to see that $N_{i}=\sum_{i=1}^{m-1} \phi\left(p^{i}\right)$, and using the fact that $\sum_{i=1}^{r} \phi\left(p^{r}\right)=p^{r}-1$, we have

$$
N_{i}=p^{i}-1, \text { for } i=1,2, \ldots, m-2, m-1
$$

Similarly, for $i=m, m+1, \ldots, 2 m-2,2 m-1$, we have

$$
N_{i}=\sum_{j=1}^{i} \phi\left(p^{j}\right)-\phi\left(p^{2 m-i}\right)=p^{i}-1-\phi\left(p^{2 m-i}\right) .
$$

Since n does not divide $\left(p^{i}\right)^{2}$, for $i=1,2, \ldots, m-1$ and n divides $\left(p^{i}\right)^{2}$, for $i=$ $m, m+1, \ldots, 2 m-2,2 m-1$, therefore, we have

$$
G_{i}= \begin{cases}\bar{K}_{\phi\left(p^{2 m-i}\right)} & \text { for } i=1,2,3, \ldots, m-1 \\ K_{\phi\left(p^{2 m-i}\right)} & \text { for } i=m, m+1, \ldots, 2 m-2,2 m-1\end{cases}
$$

Also, $2 r_{i}+N_{i}=p^{i}-1$ for $i=1,2 \ldots, m-1$, and $2 r_{i}+N_{i}=p^{i}+\phi\left(p^{2 m-i}\right)-3$ for $i=m, \ldots, 2 m-2,2 m-1$. Further, order of G_{i} 's are $n_{i}=\phi\left(p^{2 m-i}\right)$, and using Theorem 1, we have

$$
\begin{aligned}
\operatorname{Spec}_{Q}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)= & \left\{(p-1)^{\left[\phi\left(p^{2 m-1}\right)-1\right]},\left(p^{2}-1\right)^{\left[\phi\left(p^{2 m-2}\right)-1\right]}, \ldots,\left(p^{m-2}-1\right)^{\left[\phi\left(p^{m+2}\right)-1\right]},\right. \\
& \left.\left(p^{m-1}-1\right)^{\left[\phi\left(p^{m+1}\right)-1\right]}\right\}\left(\bigcup_{i=m}^{2 m-1}\left(N_{i}+\left(\operatorname{Spec}\left(K_{\phi\left(p^{2 m-i}\right)}\right) \backslash\left\{2 r_{i}\right\}\right)\right)\right)
\end{aligned}
$$

and the eigenvalues of matrix (3).

$$
\left(\begin{array}{ccccccccc}
N_{1} & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & b_{1,2 m-1} \tag{3}\\
0 & N_{2} & \cdots & 0 & 0 & 0 & \cdots & b_{2,2 m-2} & b_{2,2 m-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \cdots & \vdots \\
0 & 0 & \cdots & N_{m-1} & 0 & b_{m-1, m+1} & \cdots & b_{m-1,2 m-2} & b_{m-1,2 m-1} \\
0 & 0 & \cdots & 0 & a_{m} & b_{m, m+1} & \cdots & b_{m, 2 m-2} & b_{m, 2 m-1} \\
0 & 0 & \cdots & b_{m+1, m-1} & b_{m+1, m} & a_{m+1} & \cdots & b_{m+1,2 m-2} & b_{m+1,2 m-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & b_{2 m-2,2} & \cdots & b_{2 m-2, m-1} & b_{2 m-2, m} & b_{2 m-2, m+1} & \cdots & a_{2 m-2} & b_{2 m-2,2 m-1} \\
0 & \cdots & b_{2 m-1, m-1} & b_{2 m-1, m} & b_{2 m-1, m+1} & \cdots & b_{2 m-1,2 m-2} & a_{2 m-1}
\end{array}\right)
$$

where $b_{i, j}=b_{j, i}=\sqrt{n_{i} n_{j}}$, for $1 \leq i, j \leq 2 m-1$ and $a_{i}=2 r_{i}+N_{i}$, for $i=m, m+1, \ldots, 2 m-1$.
We recall that the signless Laplacian spectrum of $K_{\phi\left(p^{2 m-i}\right)}$ is $\left\{2 \phi\left(p^{2 m-i}\right)-\right.$ $\left.2,\left(\phi\left(p^{2 m-i}\right)-2\right)^{\left[\phi\left(p^{2 m-i}\right)-1\right]}\right\}$ and using $N_{i}=p^{i}-1-\phi\left(p^{2 m-i}\right)$ for $i=m, \ldots, 2 m-1$, it easily follows that

$$
\begin{array}{r}
\bigcup_{i=m}^{2 m-1}\left(N_{i}+\left(\operatorname{Spec}\left(K_{\phi\left(p^{2 m-i}\right)}\right) \backslash\left\{2 r_{i}\right\}\right)\right)=\left\{\left(p^{m}-3\right)^{\left[\phi\left(p^{m}\right)-1\right]},\left(p^{m+1}-3\right)^{\left[\phi\left(p^{m-1}\right)-1\right]}, \ldots,\right. \\
\left.\left(p^{2 m-2}-3\right)^{\left[\phi\left(p^{2}\right)-1\right]},\left(p^{2 m-1}-3\right)^{[\phi(p)-1]}\right\} .
\end{array}
$$

If $m_{1}=1$ and $q=1$ in Theorem 3, we have $\Gamma\left(\mathbb{Z}_{n}\right)=K_{\phi\left(p^{2}\right)}$ and its signless Laplacian spectrum is given by the following observation.

Corollary 2. If $n=p^{2}$, then the signless Laplacian spectrum of $\Gamma\left(\mathbb{Z}_{n}\right)$ is

$$
\left\{2 p-4,(p-3)^{[p-2]}\right\} .
$$

For $n=p^{3}$, zero divisor graph is

$$
\Gamma\left(\mathbb{Z}_{p^{3}}\right)=\Upsilon_{p^{3}}\left[\Gamma\left(A_{p}\right), \Gamma\left(A_{p^{2}}\right)\right]=K_{2}\left[\bar{K}_{\phi\left(p^{2}\right)}, \bar{K}_{\phi(p)}\right]=\bar{K}_{p(p-1)} \nabla K_{p-1}
$$

and its signless Laplacian spectrum is given by the following observation.

Corollary 3. If $n=p^{3}$, then the signless Laplacian spectrum of $\Gamma\left(\mathbb{Z}_{n}\right)$ is

$$
\left\{(p-1)^{\left[p^{2}-p-1\right]},\left(p^{2}-3\right)^{[p-2]}, \frac{1}{2}\left(p^{2}-3 \pm \sqrt{p^{4}-6 p^{2}+8 p+1}\right)\right\}
$$

The following result gives the signless Laplacian spectrum of $\Gamma\left(\mathbb{Z}_{p^{M_{1}} q^{M_{2}}}\right)$, when both M_{1} and M_{2} are odd. Its proof is similar to that of Theorem 3.

Theorem 4. Let $\Gamma\left(\mathbb{Z}_{n}\right)$ be the zero divisor graph of order N, where $n=p^{M_{1}} q^{M_{2}}$ and $M_{1}=2 m_{1}+1 \leq 2 m_{2}+1=M_{2}$. The signless Laplacian spectrum of $\Gamma\left(\mathbb{Z}_{n}\right)$ consists of the eigenvalues
$\mu_{i}=p^{i}-1$, for $i=1,2, \ldots, m_{1}+1, \ldots, 2 m_{1}+1$,
$\mu_{i}=q^{j}-1$, for $j=1,2, \ldots, 2 m_{2}+1$ and $i=M_{1}+1, M_{1}+2, \ldots, M_{1}+M_{2}$,
$\mu_{i}=p q^{j}-1$, for $j=1,2, \ldots, 2 m_{2}+1$ and $i=M_{1}+M_{2}+1, \ldots, M_{1}+2 M_{2}$,
$\mu_{i}=p^{m_{1}+1} q^{j}-1$, for $j=1,2, \ldots, m_{2}$ and $i=N_{1}+\left(m_{2}+1\right) N_{2}+1, \ldots, N_{1}+\left(m_{2}+1\right) N_{2}+m_{2}$, $\mu_{i}=p^{m_{1}+1} q^{j}-3$, for $j=m_{2}+1, \ldots, M_{2}$ and $i=M_{1}+\left(m_{2}+1\right) M_{2}+m_{2}, \ldots, M_{1}+\left(m_{2}+2\right) M_{2}$,
$\mu_{i}=p^{2 m_{1}+1} q^{j}-1$, for $j=1,2, \ldots, m_{2}$ and $i=M_{1}+M_{1} M_{2}+1, \ldots, M_{1}+M_{1} M_{2}+m_{2}$,
$\mu_{i}=p^{2 m_{1}+1} q^{j}-3$, for $j=m_{2}+1, \ldots, 2 m_{2}$ and $i=M_{1}+M_{1} M_{2}+m_{2}+1, \ldots, M_{1}+M_{1} M_{2}-1$,
with multiplicities

$$
\begin{aligned}
\phi\left(p^{M_{1}-i} q^{M_{2}}\right)-1, \phi\left(p^{M_{1}} q^{M_{2}-j}\right)-1, & \phi\left(p^{M_{1}-1} q^{M_{2}-j}\right)-1, \ldots, \phi\left(p^{m_{1}} q^{M_{2}-j}\right)-1, \\
& \phi\left(p^{m_{1}} q^{M_{2}-k}\right)-1, \ldots, \phi\left(q^{M_{2}-j}\right)-1, \phi\left(q^{M_{2}-k}\right)-1,
\end{aligned}
$$

respectively, where $i=1, \ldots, M_{1}, j=1, \ldots, m_{2}$ and $k=m_{2}+1, m_{2}+1, \ldots, M_{2}-1$. The remaining signless Laplacian eigenvalues of $\Gamma\left(\mathbb{Z}_{n}\right)$ are the eigenvalues of the matrix given in (1).

In particular, if $q=1$ in Theorem 4, we have the following observation.
Corollary 4. If $n=p^{2 m+1}$ for some positive integer $m \geq 2$, then the signless Laplacian spectrum of $\Gamma\left(\mathbb{Z}_{n}\right)$ consists of the eigenvalue $p^{i}-1$, with multiplicity $\phi\left(p^{2 m+1-i}\right)$, for $i=$ $1,2, \ldots, m$, the eigenvalue $p^{i}-3$, with multiplicity $\phi\left(p^{2 m+1-i}\right)$, for $i=m+1, m+2, \ldots, 2 m$ and the remaining signless Laplacian eigenvalues of $\Gamma\left(\mathbb{Z}_{n}\right)$ are the zeros of the characteristic
polynomial of the following matrix

$$
\left(\begin{array}{ccccccccc}
N_{1} & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & b_{1,2 m} \\
0 & N_{2} & \cdots & 0 & 0 & 0 & \cdots & b_{2,2 m-1} & b_{2,2 m} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & N_{m} & 0 & b_{m, m+1} & \cdots & b_{m, 2 m-1} & b_{m, 2 m} \\
0 & 0 & \cdots & 0 & a_{m+1} & b_{m+1, m+1} & \cdots & b_{m+1,2 m-1} & b_{m, 2 m} \\
0 & 0 & \cdots & b_{m+2, m} & b_{m+2, m+1} & a_{m+2} & \cdots & b_{m+2,2 m-1} & b_{m+2,2 m} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & b_{2 m-1,2} & \cdots & b_{2 m-1, m} & b_{2 m-1, m+1} & b_{2 m-1, m+2} & \cdots & a_{2 m-1} & b_{2 m-1,2 m} \\
b_{2 m, 1} & b_{2 m, 2} & \cdots & b_{2 m, m} & b_{2 m, m+1} & b_{2 m, m+2} & \cdots & b_{2 m, 2 m-1} & a_{2 m}
\end{array}\right),
$$

where, $b_{i, j}=b_{j, i}=\sqrt{n_{i} n_{j}}$, for $1 \leq i, j \leq 2 m$ and $a_{i}=2 r_{i}+N_{i}$, for $i=m+1, m+2 \ldots, 2 m$.

If $m_{1}=m_{2}=0$, then $n=p q$. So, by Lemmas 3 and 4 , we have

$$
\begin{equation*}
\Gamma\left(\mathbb{Z}_{p q}\right)=\Upsilon_{p q}\left[\Gamma\left(A_{p}\right), \Gamma\left(A_{q}\right)\right]=K_{2}\left[\bar{K}_{\phi(p)}, \bar{K}_{\phi(q)}\right]=\bar{K}_{\phi(p)} \nabla \bar{K}_{\phi(q)}=K_{\phi(p), \phi(q)} . \tag{4}
\end{equation*}
$$

The next consequence of Theorem 4 gives the signless Laplacian spectrum of the bipartite graph $\Gamma\left(\mathbb{Z}_{p q}\right)$.

Corollary 5. The signless Laplacian spectrum of $\Gamma\left(\mathbb{Z}_{p q}\right)$ is

$$
\left\{0,(q-1)^{[p-2]},(p-1)^{[q-2]}, p+q-2\right\} .
$$

Now, consider the case when one of M_{i} 's is even and other is odd, say M_{1} is even and M_{2} is odd or M_{1} is odd and M_{2} is even. In the following result, we discuss the first case and the second case can be treated similarly.

Theorem 5. Let $\Gamma\left(\mathbb{Z}_{n}\right)$ be the zero divisor graph of order N, where $n=p^{M_{1}} q^{M_{2}}$ and $m_{1}<m_{2}$ so that $M_{1}=2 m_{1}<2 m_{2}+1=M_{2}$. The signless Laplacian spectrum of $\Gamma\left(\mathbb{Z}_{n}\right)$ consists of the eigenvalues

$$
\begin{aligned}
& \mu_{i}=p^{i}-1, \text { for } i=1,2, \ldots, m_{1}, \ldots, M_{1}, \\
& \mu_{i}=q^{j}-1, \text { for } j=1,2, \ldots, M_{2} \text { and } i=M_{1}+1, M_{1}+2, \ldots, M_{1}+M_{2}, \\
& \mu_{i}=p q^{j}-1, \text { for } j=1,2, \ldots, M_{2} \text { and } i=M_{1}+M_{2}+1, \ldots, M_{1}+2 M_{2}, \\
& \quad \vdots \\
& \mu_{i}=p^{m_{1}} q^{j}-1, \text { for } j=1,2, \ldots, m_{2} \text { and } i=M_{1}+m_{1} M_{2}+1, \ldots, M_{1}+m_{1} M_{2}+m_{2}, \\
& \mu_{i}=p^{m_{1}} q^{j}-3, \text { for } j=m_{2}+1, \ldots, M_{2} \text { and } i=M_{1}+m_{1} M_{2}+m_{2}+1, \ldots, M_{1}+\left(m_{1}+1\right) M_{2} \\
& \quad \vdots \\
& \mu_{i}=p^{M_{1}} q^{j}-1, \text { for } j=1,2, \ldots, m_{2} \text { and } i=M_{1}+M_{1} M_{2}+1, \ldots, M_{1}+M_{1} M_{2}+m_{2}, \\
& \mu_{i}=p^{M_{1}} q^{j}-3, \text { for } j=m_{2}+1, \ldots, 2 m_{2} \text { and } i=M_{1}+M_{1} M_{2}+m_{2}+1, \ldots, M_{1}+M_{1} M_{2}-1,
\end{aligned}
$$

with multiplicities

$$
\begin{align*}
\phi\left(p^{M_{1}-i} q^{M_{2}}\right)-1, \phi\left(p^{M_{1}} q^{M_{2}-j}\right)-1, & \phi\left(p^{M_{1}-1} q^{M_{2}-j}\right)-1, \ldots, \phi\left(p^{m_{1}} q^{M_{2}-k}\right)-1 \\
& \phi\left(p^{m_{1}} q^{M_{2}-l}\right)-1, \ldots, \phi\left(q^{M_{2}-k}\right)-1, \phi\left(q^{M_{2}-l}\right)-1, \tag{5}
\end{align*}
$$

respectively, where $i=1, \ldots, M_{1}, j=1, \ldots, M_{2}, k=1,2, \ldots, m_{2}$ and $l=m_{2}+1, m_{2}+$ $2, \ldots, M_{2}-1$. The remaining signless Laplacian eigenvalues of $\Gamma\left(\mathbb{Z}_{n}\right)$ are the eigenvalues of the matrix given in (1).

Proof. Let $n=p^{M_{1}} q^{M_{2}}$, where p and $q, 2<p<q$, are primes and $m_{1}<m_{2}$ so that $2 \leq M_{1}=2 m_{1}<2 m_{2}+1=M_{2}$. The proper divisor set of n is $\left\{p, p^{2}, \ldots, p^{m_{1}}, \ldots, p^{M_{1}}, q, q^{2}, \ldots, q^{m_{2}+1}, \ldots, q^{M_{2}}, p q, p q^{2}, \ldots, p q^{m_{2}+1}, \ldots, p q^{M_{2}}, \ldots, p^{m_{1}} q, p^{m_{1}} q^{2}\right.$, $\left.\ldots, p^{m_{1}} q^{m_{2}}, p^{m_{1}} q^{m_{2}+1}, \ldots, p^{m_{1}} q^{M_{2}}, \ldots, p^{M_{1}} q, p^{M_{1}} q^{2}, \ldots, p^{M_{1}} q^{m_{2}}, p^{M_{1}} q^{m_{2}+1}, \ldots, p^{M_{1}} q^{M_{2}-1}\right\}$ and the size of Υ_{n} is $\left(M_{1}+1\right)\left(M_{2}+1\right)-2=M_{1} M_{2}+M_{1}+M_{2}-1$. By the definition of Υ_{n}, the adjacency relations are

$$
\begin{aligned}
p^{i} & \sim p^{j} q^{M_{2}}, i+j \geq M_{1}, \text { for } i=1,2, \ldots, M_{1} \\
q^{i} & \sim p^{M_{1}} q^{j}, i+j \geq M_{2}, \text { for } i=1,2, \ldots, M_{2}, \\
p q^{i} & \sim p^{k} q^{j}, i+j \geq M_{2}, \text { for } i=1,2, \ldots, M_{2} \text { and } k \geq 2 m_{1}-1, \\
& \vdots \\
p^{m_{1}} q^{i} & \sim p^{k} q^{j}, i+j \geq M_{2}, \text { for } i=1,2, \ldots, M_{2} \text { and } k \geq m_{1} \\
& \vdots \\
p^{M_{1}} q^{i} & \sim p^{k} q^{j}, i+j \geq M_{2}, \text { for } i=1,2, \ldots, M_{2}-1 \text { and } k \geq 0 .
\end{aligned}
$$

By Lemma 2 , for $i=1,2, \ldots, M_{1}, j=1,2, \ldots, M_{2}$ and $k=1,2, \ldots, M_{2}-1$, we have $\left|A_{p^{i}}\right|=\phi\left(p^{M_{1}-i} q^{M_{2}}\right),\left|A_{q^{j}}\right|=\phi\left(p^{M_{1}} q^{M_{2}-j}\right),\left|A_{p q^{j}}\right|=\phi\left(p^{M_{1}-1} q^{M_{2}-j}\right), \ldots,\left|A_{p^{m_{1}} q^{j}}\right|=$ $\phi\left(p^{m_{1}} q^{M_{2}-j}\right), \ldots,\left|A_{p^{M_{1}-1} q^{j}}\right|=\phi\left(p q^{M_{2}-j}\right),\left|A_{p^{M_{1}} q^{k}}\right|=\phi\left(q^{M_{2}-k}\right)$. Also, by Lemma 3, we have

$$
G_{i}= \begin{cases}\Gamma\left(A_{d_{p^{i}}}\right)=\bar{K}_{\phi\left(p^{M_{1}-i} q^{M_{2}}\right)}, & 1 \leq i \leq M_{1} \tag{6}\\ \Gamma\left(A_{d_{q^{j}}}\right)=\bar{K}_{\phi\left(p^{M_{1}} q^{M_{2}-j}\right)}, & 1 \leq j \leq M_{2} \\ \Gamma\left(A_{d_{p^{i} q^{j}}}\right)=\bar{K}_{\phi\left(p^{N_{1}-i} q^{N_{2}-j}\right)}, & 1 \leq i \leq m_{1}-1 \text { and } 1 \leq j \leq M_{2} \\ & \text { or } 1 \leq i \leq M_{1} \text { and } 1 \leq j \leq m_{2} \\ \Gamma\left(A_{d_{p^{i} q^{j}}}\right)=K_{\phi\left(p^{N_{1}-i} q^{N_{2}-j}\right)}, & m_{1} \leq i \leq N_{1} \text { and } m_{2} \leq j \leq N_{2}\end{cases}
$$

Thus, by Lemma 4 , the joined union of $\Gamma\left(\mathbb{Z}_{n}\right)$ is

$$
\begin{aligned}
\Gamma\left(\mathbb{Z}_{n}\right)= & \Upsilon_{n}\left[\bar{K}_{\phi\left(p^{M_{1}-1} q^{M_{2}}\right)}, \ldots, \bar{K}_{\phi\left(p^{m_{1}} q^{M_{2}}\right)}, \ldots, \bar{K}_{\phi\left(q^{M_{2}}\right)}, \bar{K}_{\phi\left(p^{\left.M_{1} q^{M_{2}-1}\right)}\right.}, \ldots, \bar{K}_{\phi\left(p^{M_{1}} q^{m_{2}}\right)}, \ldots,\right. \\
& \bar{K}_{\phi\left(p^{M_{1}}\right)}, \bar{K}_{\phi\left(p^{M_{1}-1} q^{M_{2}-1}\right)}, \ldots, \bar{K}_{\phi\left(p^{M_{1}-1} q^{m_{2}}\right)}, \ldots, \bar{K}_{\phi\left(p^{M_{1}-1}\right)}, \ldots, \bar{K}_{\phi\left(p^{m_{1}} q^{M_{2}-1}\right)}, \ldots, \\
& K_{\phi\left(p^{m_{1}} q^{m_{2}-11}\right)}, K_{\phi\left(p^{m_{1}} q^{m_{2}}\right)}, \ldots, K_{\phi\left(p^{m_{1}}\right)}, \ldots, K_{\phi\left(q^{M_{2}-1}\right.}, \ldots, K_{\phi(q)}, . \\
& \left.K_{\phi(q)}\right) .
\end{aligned}
$$

By Theorems 1 and 2, we have value of N_{i} 's as
$N_{i}=p^{i}-1$, for $i=1,2, \ldots, M_{1}$
$N_{i}=q^{j}-1$, for $i=M_{1}+1, \ldots, M_{1}+M_{2}$ and $j=1,2, \ldots, m_{2}+1, \ldots, M_{2}$,
$N_{i}=p q^{j}-1$ for $i=M_{1}+M_{2}+1, \ldots, M_{1}+2 M_{2}$ and $j=1,2, \ldots, m_{2}+1, \ldots, M_{2}$,
$N_{i}=p^{m_{1}} q^{j}-1$, for $i=M_{1}+m_{1} M_{2}+1, \ldots, M_{1}+m_{1} M_{2}+m_{2}-1$ and $j=1,2, \ldots, m_{2}$,
$N_{i}=p^{m_{1}} q^{j}-1-\phi\left(p^{m_{1}} q^{j}\right)$, for $i=M_{1}+m_{1} M_{2}, \ldots, M_{1}+\left(m_{1}+1\right) M_{2}$ and $j=m_{2}+1, \ldots, M_{2}$,
$N_{i}=p^{M_{1}} q^{j}-1$, for $i=M_{1}+M_{1} M_{2}+1, \ldots, M_{1}+M_{1} M_{2}+m_{2}$ and $j=1,2, \ldots, m_{2}$,
$N_{i}=p^{M_{1}} q^{j}-1-\phi\left(q^{M_{2}-j}\right)$, for $i=M_{1}+M_{1} M_{2}+m_{2}+1, \ldots, M_{1}+M_{1} M_{2}+M_{2}-1$ and $j=m_{2}+1, \ldots, 2 m_{2}$.

Thus, by Theorem 1 and Equation (6), the signless Laplacian eigenvalues of $\Gamma\left(\mathbb{Z}_{n}\right)$ are

$$
\begin{aligned}
& \mu_{i}=N_{i} \text { for } i=1,2, \ldots, M_{1}+2 M_{2}, \\
& \quad \vdots \\
& \begin{aligned}
& \mu_{i}=N_{i} \text { for } i=M_{1}+m_{1} M_{2}+1, \ldots, M_{1}+m_{1} M_{2}+m_{2}, \\
& \mu_{i}=N_{i}+\phi\left(p^{m_{1}} q^{M_{2}-j}\right)-2=p^{m_{1}} q^{j}-3 \text { for } i=M_{1}+m_{1} M_{2}+m_{2}+1, \ldots, M_{1}+\left(m_{1}+1\right) M_{2} \\
& j=m_{2}+1, \ldots, M_{2}, \\
& \vdots
\end{aligned} \\
& \begin{array}{l}
\mu_{i}=N_{i} \text { for } i=M_{1}+M_{1} M_{2}+1, \ldots, M_{1}+M_{2} M_{2}+m_{2}, \\
\mu_{i}= \\
\end{array} \quad \begin{array}{l}
N_{i}+\phi\left(q^{M_{2}-j}\right)-2=p^{M_{1}} q^{j}-3 \text { for } i=M_{1}+M_{1} M_{2}+m_{2}+1, \ldots, M_{1}+M_{1} M_{2}-1 \\
\\
\quad j=m_{2}+1, \ldots, M_{2} .
\end{array}
\end{aligned}
$$

with multiplicities as in Equation (5). By using the adjacency relations, Equation (6) and value of N_{i} 's in matrix (1), we can find the remaining signless Laplacian eigenvalues of $\Gamma\left(\mathbb{Z}_{n}\right)$.
Acknowledgements. We are grateful to the anonymous referee for his valuable comments. The research of S. Pirzada is supported by the SERB-DST research project number CRG/2020/000109.

Conflict of interest. The authors declare that they have no conflict of interest.

Data Availibility Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] M. Afkhami, Z. Barati, and K. Khashyarmanesh, On the signless Laplacian and normalized Laplacian spectrum of the zero divisor graphs, Ricerche Mat. (2020), https://doi.org/10.1007/s11587-020-00519-3.
[2] S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra 274 (2004), no. 2, 847-855.
[3] D. F. Anderson, T. Asir, A. Badawi, and T. Tamizh Chelvam, Graphs from Rings, Springer, 2021.
[4] D.F. Anderson and P.S. Livingston, The zero divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.
[5] I. Beck, Coloring of a Commutative Rings, J. Algebra 116 (1988), no. 1, 208-226.
[6] D.M. Cardoso, M.A. De Freitas, E.A. Martins, and M. Robbiano, Spectra of graphs obtained by a generalization of the join graph operation, Discrete Math. 313 (2013), no. 5, 733-741.
[7] S. Chattopadhyay, K.L. Patra, and B.K. Sahoo, Laplacian eigenvalues of the zero divisor graph of the ring \mathbb{Z}_{n}, Linear Algebra Appl. 584 (2020), 267-286.
[8] D. Cvetković, P. Rowlison, and S. Simić, An Introduction to the Theory of Graph Spectra, London Math. S. Student Text, 75. Cambridge University Press, Inc. UK, 2010.
[9] H.A. Ganie, B. A Chat, and S. Pirzada, Signless Laplacian energy of a graph and energy of a line graph, Linear Algebra Appl. 544 (2018), 306-324.
[10] T. Koshy, Elementary Number Theory with Applications, Second edition, Academic press, USA, 2002.
[11] P.M. Magi, S.M. Jose, and A. Kishore, Spectrum of the zero-divisor graph on the ring of integers modulo n, J. Math. Comput. Sci. 10 (2020), no. 5, 1643-1666.
[12] S. Pirzada, An Introduction to Graph Theory, Universities Press, Orient BlackSwan, Hyderabad, 2012.
[13] S. Pirzada, M. Aijaz, and M.I. Bhat, On zero divisor graphs of the rings \mathbb{Z}_{n}, Afrika Matematika 31 (2020), no. 3, 727-737.
[14] S. Pirzada and H.A. Ganie, On the Laplacian eigenvalues of a graph and Laplacian energy, Linear Algebra Appl. 486 (2015), 454-468.
[15] S. Pirzada, B. Rather, R.U. Shaban, and S. Merajuddin, On signless Laplacian spectrum of the zero divisor graphs of the ring \mathbb{Z}_{n}, Korean J. Math. 29 (2021), no. 1, 13-24.
[16] B.-F. Wu, Y.-Y. Lou, and C.-X. He, Signless Laplacian and normalized Laplacian on the H-join operation of graphs, Discrete Math. Algorithms Appl. 6 (2014), no. 3, ID: 1450046.
[17] M. Young, Adjacency matrices of zero-divisor graphs of integers modulo n, Involve 8 (2015), no. 5, 753-761.

[^0]: * Corresponding Author

