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Abstract: For a commutative ring R with identity 1 6= 0, let the set Z(R) denote

the set of zero-divisors and let Z∗(R) = Z(R) \ {0} be the set of non-zero zero divisors
of R. The zero divisor graph of R, denoted by Γ(R), is a simple graph whose vertex

set is Z∗(R) and two vertices u, v ∈ Z∗(R) are adjacent if and only if uv = vu = 0. In

this article, we find the signless Laplacian spectrum of the zero divisor graphs Γ(Zn)
for n = pM1qM2 , where p < q are primes and M1,M2 are positive integers.
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1. Introduction

All graphs considered in this article are connected, undirected, simple and finite

graphs. A graph is denoted by G(V (G), E(G)) (or simply by G), where V (G) =

{v1, v2, . . . , vn} is the vertex set and E(G) is the edge set of G. The order and

the size of G are the cardinalities of V (G) and E(G), respectively. The degree of

a vertex v in G is the number of edges incident with v and is denoted by dG(v)

(or simply by dv if it is clear from the context). The neighbourhood of a vertex v,

denoted by N(v), is the set of vertices of G adjacent to v, so that dv = |N(V )|.
A graph is called regular if every vertex is of same degree. The adjacency matrix
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A = (aij) of G is a square matrix of order n, whose (i, j)-entry is equal to 1, if

vi is adjacent to vj and equal to 0, otherwise. Let D(G) = diag(d1, d2, . . . , dn) be

the diagonal matrix of vertex degrees di = dG(vi), i = 1, 2, . . . , n associated to G.

The matrices L(G) = D(G) − A(G) and Q(G) = D(G) + A(G) are respectively the

Laplacian and the signless Laplacian matrices and their spectrum are respectively the

Laplacian spectrum and signless Laplacian spectrum of G. These matrices are real

symmetric and positive semi-definite having real eigenvalues which can be ordered

as λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) and µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G), respectively.

More about Laplacian and signless Laplacian matrices can be seen in [8, 9, 14] and

the references therein.

Let R be a commutative ring with multiplicative identity 1 6= 0. A non-zero element

x ∈ R is called a zero divisor of R if there exists a non-zero element y ∈ R such

that xy = 0. The zero divisor graphs of commutative rings were first introduced by

Beck [5], in the definition he included the additive identity and was interested mainly

in coloring of commutative rings. Later Anderson and Livingston [4] modified the

definition of zero divisor graphs and excluded the additive identity of the ring in the

zero divisor set. For a commutative ring R with identity denoted by 1, let the set

Z(R) denote the set of zero-divisors and let Z∗(R) = Z(R)\{0} be the set of non-zero

zero divisors of R. The zero divisor graph of R, denoted by Γ(R), is a simple graph

whose vertex set is Z∗(R) and two vertices u, v ∈ Z∗(R) are adjacent if and only if

uv = vu = 0. We denote the ring of integers modulo n by Zn. The order of the zero

divisor graph Γ(Zn) is n−φ(n)−1, where φ is Euler’s totient function. The adjacency

and the Laplacian spectral analysis was done in [7, 11, 17]. The normalized Laplacian

and the signless Laplacian spectra were discussed in [1, 15]. More literature about

zero divisor graphs can be found in [2–4, 13] and the references therein.

For any graph G, we write Spec(G) for the spectrum of G which contains its eigen-

values including multiplicities. if vertices x and y are adjacent in G, then we write

x ∼ y. We use the standard notation, Kn and Ka,b for the complete graph and the

bipartite graph, respectively. Other undefined notations and terminology can be seen

in [8, 12].

The rest of the paper is organized as follows. In Section 2, we start with some basic

and useful results and then apply them to prove our main results.

2. Signless Laplacian eigenvalues of the zero divisor graph
Γ(ZpM1qM2 )

We start the section with some definitions and known results which are used to prove

the main results of the section.

Definition 1. Let G(V,E) be a graph of order n having vertex set {1, 2, . . . , k} and
Gi = Gi(Vi, Ei) be disjoint graphs of order ni, 1 ≤ i ≤ k. The graph G[G1, G2, . . . , Gn] is
formed by taking the graphs G1, G2, . . . , Gn and joining each vertex of Gi to every vertex of
Gj whenever i and j are adjacent in G.
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This graph operation G[G1, G2, . . . , Gn] is called the generalized join graph operation

in [6] and G-join operation in [8]. Herein we follow the later name with the notation

G[G1, G2, . . . , Gn] and call it G-join.

The signless Laplacian spectrum of G-join of graphs is given by the following result.

Theorem 1. ([16]) Let G be a graph with V (G) = {1, 2, . . . , t}, and Gi’s be ri-regular
graphs of order ni (i = 1, 2, . . . , t). If G = G[G1, G2, · · · , Gt], then the signless Laplacian
spectrum of G can be computed as follows:

SpecQ(G) =

(
t⋃
i=1

(
Ni +

(
SpecQ(Gi)\{2ri}

)))⋃
Spec(CQ(G)),

where Ni =
∑

j∈NG(i)

nj and

CQ(G) = (cij)t×t =


2ri +Ni, i = j,
√
ninj , ij ∈ E(G),

0 otherwise.

(1)

Let n be a positive integer and let τ(n) denotes the number of positive factors of n,

that is

τ(n) =
∑
d|n

1,

where d|n denotes d divides n.

The Euler’s totient function φ(n) denotes the number of positive integers less or equal

to n and relatively prime to n.

We say n is in canonical decomposition if n = pn1
1 pn2

2 . . . pnrr , where r, n1, n2, . . . , nr
are positive integers and p1, p2, . . . , pr are distinct primes.

The following result counts the values of τ(n).

Lemma 1. ([10]) Let n be a positive integer with canonical decomposition n =
pn1
1 pn2

2 . . . pnrr . Then

τ(n) = (n1 + 1)(n2 + 1) . . . (nr + 1)

The following result gives some properties of Euler’s totient function.

Theorem 2. ([10]) Let φ be the Euler’s totient function. Then following hold.

(i) φ is multiplicative, that is φ(st) = φ(s)φ(t), whenever s and t are relatively prime.

(ii) Let n be a positive integer. Then
∑
d|n

φ(d) = n.

(iii) Let p be a prime. Then
l∑
i=1

φ(pl) = pl − 1.
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An integer d dividing n is called a proper divisor of n if and only if 1 < d < n. Let

Υn be the simple graph with vertex set as proper divisor set {d1, d2, . . . , dt} of n, in

which two distinct vertices are adjacent if and only if n divides didj . It is easy to see

that Υn is a connected graph [7]. Let pn1
1 pn2

2 . . . pnrr be the canonical decomposition

of n, then by Lemma 1, order of Υn is given by

|V (Υn)| = (n1 + 1)(n2 + 1) . . . (nr + 1)− 2.

For 1 ≤ i ≤ t, let

Adi = {x ∈ Zn : (x, n) = di},

where (x, n) denotes the greatest common divisor of x and n. We observe that Adi ∩
Adj = φ, when i 6= j, implying that the sets Ad1 , Ad2 , . . . , Adt are pairwise disjoint

and partitions the vertex set of Γ(Zn) as

V (Γ(Zn)) = Ad1 ∪Ad2 ∪ · · · ∪Adt .

From the definition of Adi , a vertex of Adi is adjacent to the vertex of Adj in Γ(Zn)

if and only if n|didj , for i, j ∈ {1, 2, . . . , t} [7]. The following result can be found in

[17], which gives the cardinality of Adi .

Lemma 2. Let di be the divisor of n. Then |Adi | = φ
(
n
di

)
, for 1 ≤ i ≤ t.

The next lemma [7] says that the induced subgraphs Γ(Adi) of Γ(Zn) are either cliques

or null graphs.

Lemma 3. ([7]) Let n be the positive integer and di be its proper divisor. Then the
following hold.

(i) For i ∈ {1, 2, . . . , t}, the induced subgraph Γ(Adi) of Γ(Zn) on the vertex set Adi is
either the complete graph K

φ
(
n
di

) or its complement K
φ
(
n
di

). Also, Γ(Adi) is K
φ
(
n
di

)
if and only n|d2i .

(ii) For i, j ∈ {1, 2, . . . , t} with i 6= j, a vertex of Adi is adjacent to either all or none of
the vertices in Adj of Γ(Zn).

The following lemma says that Γ(Zn) is a G-join of certain complete graphs and null

graphs.

Lemma 4. ([7]) Let Γ(Adi) be the induced subgraph of Γ(Zn) on the vertex set Adi for
1 ≤ i ≤ t. Then Γ(Zn) = Υn[Γ(Ad1),Γ(Ad2), . . . ,Γ(Adt)].
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Now, we will find the signless Laplacian eigenvalues of Γ(Zn), for n = pM1qM2 , where

p and q, p < q, are primes. This generalizes the results obtained in [1, 15]. We prove

the case when M1 and M2, M1 ≤M2, are positive even integers and the odd case can

be similarly proved.

Theorem 3. Let Γ(Zn) be the zero divisor graph of order N , where n = pM1qM2

and M1 = 2m1 ≤ 2m2 = M2. The signless Laplacian spectrum of Γ(Zn) consists of the
eigenvalues

µi =pi − 1, for i = 1, 2, . . . ,m1, . . . , 2m1,

µi =qj − 1, for j = 1, 2, . . . , 2m2 and i = M1 + 1,M1 + 2, . . . ,M1 +M2,

µi =pqj − 1, for j = 1, 2, . . . , 2m2 and i = M1 +M2 + 1, . . . ,M1 + 2M2,

...

µi =pm1qj − 1, for j = 1, 2, . . . ,m2 − 1 and i = M1 +m1M2 + 1, . . . ,M1 +m1M2 +m2 − 1,

µi =pm1qj − 3, for j = m2, . . . , 2m2 and i = M1 +m1M2 +m2, . . . ,M1 + (m1 + 1)M2,

...

µi =p2m1qj − 1, for j = 1, 2, . . . ,m2 − 1 and i = M1 +M1M2 + 1, . . . ,M1 +M1M2 +m2 − 1,

µi =p2m1qj − 3, for j = m2, . . . , 2m2 and i = M1 +M1M2 +m2, . . . ,M1 +M1M2 − 1,

with multiplicities

φ(pM1−iqM2 )− 1, φ(pM1qM2−j)− 1,φ(pM1−1qM2−j)− 1, . . . , φ(pm1qM2−k)− 1, φ(pm1qM2−l)− 1,

. . . , φ(qM2−k)− 1, φ(qM2−l)− 1,

respectively, where i = 1, . . . ,M1, j = 1, . . . ,M2, k = 1, . . . ,m2 − 1 and l = m2,m2 +
1, . . . ,M2 − 1. The remaining signless Laplacian eigenvalues of Γ(Zn) are the eigenvalues of
the matrix given in (1).

Proof. Let n = pM1qM2 , where p and q, 2 < p < q, are primes and M1 and M2,
2 ≤ M1 = 2m1 ≤ 2m2 = M2, are positive even integers. Then the proper divisors of
n are

{
p, p2, . . . , pm1 , . . . , pM1 , q, q2, . . . , qm2 , . . . , qM2 , pq, pq2, . . . , pqm2 , . . . , pqM2 , . . . , pm1q, pm1q2, . . . ,

pm1qm2−1, pm1qm2 , . . . , pm1qM2 , . . . , pM1q, pM1q2, . . . , pM1qm2−1, pM1qm2 , . . . , pM1qM2−1
}

and the size of Υn is (M1 +1)(M2 +1)−2 = M1M2 +M1 +M2−1. By the definition
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of Υn, we see that

p ∼ pM1−1qM2 ,

p2 ∼ pM1−2qM2 , pM1−1qM2 ,

p3 ∼ pM1−3qM2 , pM1−2qM2 , pM1−1qM2 ,

...

pm1 ∼ pm1qM2 , pm1+1qM2 , . . . , pM1−1qM2 ,

...

pM1 ∼ qM2 , pqM2 , p2qM2 , . . . , pm1qM2 , . . . , pM1−1qM2 .

That is,

pi ∼ pjqM2 , i+ j ≥M1, for i = 1, 2, . . . ,M1.

Now, following the similar procedure, we have

qi ∼ pM1qj , i+ j ≥M2, for i = 1, 2, . . . ,M2,

pqi ∼ pkqj , i+ j ≥M2, for i = 1, 2, . . . ,M2 and k ≥ 2m1 − 1,

...

pm1qi ∼ pkqj , i+ j ≥M2, for i = 1, 2, . . . ,M2 and k ≥ m1

...

pM1qi ∼ pkqj , i+ j ≥M2, for i = 1, 2, . . . ,M2 − 1 and k ≥ 0.

By Lemma 2, for i = 1, 2, . . . ,M1 and j = 1, 2, . . . ,M2, we see that |Api | =

φ(pM1−iqM2), |Aqj | = φ(pM1qM2−j), |Apqj | = φ(pM1−1qM2−j), . . . , |Apm1qj | =

φ(pm1qM2−j), . . . , |ApM1−1qj | = φ(pqM2−j) and

|ApM1qk | = φ(qM2−k), for k = 1, 2, . . . ,M2 − 1.

Also, by Lemma 3, we have

Gi =



Γ
(
Adpi

)
= Kφ(pM1−iqM2 ), 1 ≤ i ≤M1,

Γ
(
Adqj

)
= Kφ(pM1qM2−j), 1 ≤ j ≤M2,

Γ
(
Adpiqj

)
= Kφ(pM1−iqM2−j), 1 ≤ i ≤ m1 − 1 and 1 ≤ j ≤M2

or 1 ≤ i ≤M1 and 1 ≤ j ≤ m2 − 1,

Γ
(
Adpiqj

)
= Kφ(pM1−iqM2−j), m1 ≤ i ≤M1 and m2 ≤ j ≤M2.

(2)
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By using Lemma 4, the joined union of the zero divisor graph Γ(Zn) is given by

Γ(Zn) =Υn
[
Kφ(pM1−1qM2 ), . . . ,Kφ(pm1qM2 ), . . . ,Kφ(qM2 ),Kφ(pM1qM2−1), . . . ,Kφ(pM1qm2 ), . . . ,

Kφ(pM1 ),Kφ(pM1−1qM2−1), . . . ,Kφ(pM1−1qm2 ), . . . ,Kφ(pM1−1), . . . ,Kφ(pm1qM2−1), . . . ,

Kφ(pm1qm2−1),Kφ(pm1qm2 ), . . . ,Kφ(pm1 ), . . . ,K(φqM2−1), . . . ,Kφ(qm2−1),Kφ(qm2 ), . . . ,

Kφ(q)
]
.

Now, we use Theorem 1, to calculate the signless Laplacian eigenvalues of Γ(Zn). For

that we first need to know the values of Ni’s. It is well known that the zero divisor

graphs are of diameter at most three, so that pi ∼ qi if and only if i = j = n, otherwise

pi ∼ pkqn, i+k ≥ n and qj ∼ pnqh, j+h ≥ n and finally pkqn ∼ pnqh, k ≥ 1, h ≥ 1.

This implies that d(pi, qj) = 3, if 1 ≤ i, j ≤ n − 1 in Υn. Similarly the distance

between other vertices is at most 2. Now, by Theorems 1 and 2, we have

N1 = φ(p) = p− 1

N2 = φ(p) + φ(p2) = p2 − 1

...

Nm1 = φ(pm1) + φ(pm1−1) + · · ·+ φ(p) = pm1 − 1

...

NM1 = φ(pM1) + φ(pM1−1) + · · ·+ φ(p) = pM1 − 1,

that is,

Ni = pi − 1, for i = 1, 2, . . . ,M1.

By proceeding in the similar manner, other Ni’s are given by

Ni =qj − 1, for i = M1 + 1, . . . ,M1 +M2, and j = 1, 2, . . . ,m2, . . . ,M1,

Ni =pqj − 1 for i = M1 +M2 + 1, . . . ,M1 + 2M2 and j = 1, 2, . . . ,m2, . . . ,M1,

...

Ni =pm1qj − 1, for i = M1 +m1M2 + 1, . . . ,M1 +m1M2 +m2 − 1 and j = 1, 2, . . . ,m2 − 1,

Ni =pm1qj − 1−−φ(pm1qj), for i = M1 +m1M2, . . . ,M1 + (m1 + 1)M2 and j = m2, . . . , N2,

...

Ni =pM1qj − 1, for i = M1 +M1M2 + 1, . . . ,M1 +M1M2 +m2 − 1 and j = 1, 2, . . . ,m2 − 1,

Ni =pN1qj − 1− φ(qN2−j), for i = M1 +M1M2 +m2, . . . ,M1 +M1M2 +M2 − 1

and j = m2, . . . ,M2 − 1.
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Thus, by Theorem 1 and Equation (2), the signless Laplacian eigenvalues of Γ(Zn)
are

µi = Ni for i = 1, 2, . . . ,M1 + 2M2,

.

..

µi = Ni for i = M1 +m1M2 + 1, . . . ,M1 +m1M2 +m2 − 1,

µi = Ni + φ(pm1qj)− 2 = pm1qj − 3 for i = M1 +m1M2 +m2, . . . ,M1 + (m1 + 1)M2

j = m2, . . . ,M2,

..

.

µi = Ni for i = M1 +M1M2 + 1, . . . ,M1 +M2M2 +m2 − 1,

µi = Ni + φ(qN2−j)− 2 = pM1qj − 3 for i = M1 +M1M2 +m2, . . . ,M1 +M1M2 − 1

j = m2, . . . ,M2,

with multiplicities as in the statement. By using the adjacency relations, Equation

(2) and value of Ni’s the remaining signless Laplacian eigenvalues of Γ(Zn) are the

eigenvalues of the matrix given in (1).

In particular, if q = 1 in Theorem 3, we get the signless Laplacian eigenvalues of

Γ(Zp2m).

Corollary 1. If n = p2m for some positive integer m ≥ 2, then the signless Laplacian
spectrum of Γ(Zn) consists of the eigenvalue pi − 1, with multiplicity φ(p2m−i), for i =
1, 2, . . . ,m−1, the eigenvalue pi−3, with multiplicity φ(p2m−i), for i = m,m+1, . . . , 2m−1
and the remaining signless Laplacian eigenvalues of Γ(Zn) are the zeros of the characteristic
polynomial of the matrix given in (3).

Proof. The proper divisors of n are {p, p2, . . . , p2m−1} and so by definition of Υp2m ,

the vertex pi is adjacent to the vertex pj if and only if j ≥ 2m− i with 1 ≤ i ≤ 2m−1

and i 6= j. For i = 1, 2, . . . , 2m− 2, 2m− 1, it is easy to see that Ni =
m−1∑
i=1

φ(pi), and

using the fact that
r∑
i=1

φ(pr) = pr − 1, we have

Ni = pi − 1, for i = 1, 2, . . . ,m− 2,m− 1.

Similarly, for i = m,m+ 1, . . . , 2m− 2, 2m− 1, we have

Ni =

i∑
j=1

φ(pj)− φ(p2m−i) = pi − 1− φ(p2m−i).

Since n does not divide (pi)2, for i = 1, 2, . . . ,m − 1 and n divides (pi)2, for i =

m,m+ 1, . . . , 2m− 2, 2m− 1, therefore, we have

Gi =

{
Kφ(p2m−i) for i = 1, 2, 3, . . . ,m− 1,

Kφ(p2m−i) for i = m,m+ 1, . . . , 2m− 2, 2m− 1.
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Also, 2ri + Ni = pi − 1 for i = 1, 2 . . . ,m − 1, and 2ri + Ni = pi + φ(p2m−i) − 3
for i = m, . . . , 2m − 2, 2m − 1. Further, order of Gi’s are ni = φ(p2m−i), and using
Theorem 1, we have

SpecQ(Γ(Zn)) =
{

(p− 1)[φ(p2m−1)−1], (p2 − 1)[φ(p2m−2)−1], . . . , (pm−2 − 1)[φ(pm+2)−1],

(pm−1 − 1)[φ(pm+1)−1]
}(2m−1⋃

i=m

(
Ni +

(
Spec

(
Kφ(p2m−i)

)
r {2ri}

)))

and the eigenvalues of matrix (3).



N1 0 · · · 0 0 0 · · · 0 b1,2m−1

0 N2 · · · 0 0 0 · · · b2,2m−2 b2,2m−1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
. · · ·

.

.

.
.
.
.

0 0 · · · Nm−1 0 bm−1,m+1 · · · bm−1,2m−2 bm−1,2m−1

0 0 · · · 0 am bm,m+1 · · · bm,2m−2 bm,2m−1

0 0 · · · bm+1,m−1 bm+1,m am+1 · · · bm+1,2m−2 bm+1,2m−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 b2m−2,2 · · · b2m−2,m−1 b2m−2,m b2m−2,m+1 · · · a2m−2 b2m−2,2m−1

b2m−1,1 b2m−1,2 · · · b2m−1,m−1 b2m−1,m b2m−1,m+1 · · · b2m−1,2m−2 a2m−1


(3)

where bi,j = bj,i =
√
ninj , for 1 ≤ i, j ≤ 2m − 1 and ai = 2ri + Ni, for

i = m,m+ 1, . . . , 2m− 1.

We recall that the signless Laplacian spectrum of Kφ(p2m−i) is
{

2φ(p2m−i) −

2, (φ(p2m−i)−2)[φ(p
2m−i)−1]

}
and using Ni = pi−1−φ(p2m−i) for i = m, . . . , 2m−1,

it easily follows that

2m−1⋃
i=m

(
Ni +

(
Spec

(
Kφ(p2m−i)

)
\ {2ri}

))
=

{
(p
m − 3)[

φ(pm)−1], (p
m+1 − 3)

[
φ
(
pm−1

)
−1
]
, . . . ,

(p
2m−2 − 3)

[
φ
(
p2
)
−1
]
, (p

2m−1 − 3)
[φ(p)−1]

}
.

If m1 = 1 and q = 1 in Theorem 3, we have Γ(Zn) = Kφ(p2) and its signless Laplacian

spectrum is given by the following observation.

Corollary 2. If n = p2, then the signless Laplacian spectrum of Γ(Zn) is

{2p− 4, (p− 3)[p−2]}.

For n = p3, zero divisor graph is

Γ(Zp3) = Υp3 [Γ(Ap),Γ(Ap2)] = K2[Kφ(p2),Kφ(p)] = Kp(p−1)OKp−1

and its signless Laplacian spectrum is given by the following observation.
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Corollary 3. If n = p3, then the signless Laplacian spectrum of Γ(Zn) is

{
(p− 1)[p

2−p−1], (p2 − 3)[p−2],
1

2

(
p2 − 3±

√
p4 − 6p2 + 8p+ 1

)}
.

The following result gives the signless Laplacian spectrum of Γ(ZpM1qM2 ), when both

M1 and M2 are odd. Its proof is similar to that of Theorem 3.

Theorem 4. Let Γ(Zn) be the zero divisor graph of order N , where n = pM1qM2 and
M1 = 2m1 + 1 ≤ 2m2 + 1 = M2. The signless Laplacian spectrum of Γ(Zn) consists of the
eigenvalues

µi =pi − 1, for i = 1, 2, . . . ,m1 + 1, . . . , 2m1 + 1,

µi =qj − 1, for j = 1, 2, . . . , 2m2 + 1 and i = M1 + 1,M1 + 2, . . . ,M1 +M2,

µi =pqj − 1, for j = 1, 2, . . . , 2m2 + 1 and i = M1 +M2 + 1, . . . ,M1 + 2M2,

...

µi =pm1+1qj − 1, for j = 1, 2, . . . ,m2 and i = N1 + (m2 + 1)N2 + 1, . . . , N1 + (m2 + 1)N2 +m2,

µi =pm1+1qj − 3, for j = m2 + 1, . . . ,M2 and i = M1 + (m2 + 1)M2 +m2, . . . ,M1 + (m2 + 2)M2,

...

µi =p2m1+1qj − 1, for j = 1, 2, . . . ,m2 and i = M1 +M1M2 + 1, . . . ,M1 +M1M2 +m2,

µi =p2m1+1qj − 3, for j = m2 + 1, . . . , 2m2 and i = M1 +M1M2 +m2 + 1, . . . ,M1 +M1M2 − 1,

with multiplicities

φ(pM1−iqM2)− 1, φ(pM1qM2−j)− 1,φ(pM1−1qM2−j)− 1, . . . , φ(pm1qM2−j)− 1,

φ(pm1qM2−k)− 1, . . . , φ(qM2−j)− 1, φ(qM2−k)− 1,

respectively, where i = 1, . . . ,M1, j = 1, . . . ,m2 and k = m2 + 1,m2 + 1, . . . ,M2 − 1. The
remaining signless Laplacian eigenvalues of Γ(Zn) are the eigenvalues of the matrix given in
(1).

In particular, if q = 1 in Theorem 4, we have the following observation.

Corollary 4. If n = p2m+1 for some positive integer m ≥ 2, then the signless Laplacian
spectrum of Γ(Zn) consists of the eigenvalue pi − 1, with multiplicity φ(p2m+1−i), for i =
1, 2, . . . ,m, the eigenvalue pi−3, with multiplicity φ(p2m+1−i), for i = m+1,m+2, . . . , 2m
and the remaining signless Laplacian eigenvalues of Γ(Zn) are the zeros of the characteristic
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polynomial of the following matrix



N1 0 · · · 0 0 0 · · · 0 b1,2m
0 N2 · · · 0 0 0 · · · b2,2m−1 b2,2m
...

...
. . .

...
...

... · · ·
...

...
0 0 · · · Nm 0 bm,m+1 · · · bm,2m−1 bm,2m
0 0 · · · 0 am+1 bm+1,m+1 · · · bm+1,2m−1 bm,2m
0 0 · · · bm+2,m bm+2,m+1 am+2 · · · bm+2,2m−1 bm+2,2m

...
...

...
...

...
...

. . .
...

...
0 b2m−1,2 · · · b2m−1,m b2m−1,m+1 b2m−1,m+2 · · · a2m−1 b2m−1,2m

b2m,1 b2m,2 · · · b2m,m b2m,m+1 b2m,m+2 · · · b2m,2m−1 a2m


,

where, bi,j = bj,i =
√
ninj , for 1 ≤ i, j ≤ 2m and ai = 2ri+Ni, for i = m+1,m+2 . . . , 2m.

If m1 = m2 = 0, then n = pq. So, by Lemmas 3 and 4, we have

Γ(Zpq) = Υpq[Γ(Ap),Γ(Aq)] = K2[Kφ(p),Kφ(q)] = Kφ(p)OKφ(q) = Kφ(p),φ(q). (4)

The next consequence of Theorem 4 gives the signless Laplacian spectrum of the

bipartite graph Γ(Zpq).

Corollary 5. The signless Laplacian spectrum of Γ(Zpq) is

{0, (q − 1)[p−2], (p− 1)[q−2], p+ q − 2}.

Now, consider the case when one of Mi’s is even and other is odd, say M1 is even and

M2 is odd or M1 is odd and M2 is even. In the following result, we discuss the first

case and the second case can be treated similarly.

Theorem 5. Let Γ(Zn) be the zero divisor graph of order N , where n = pM1qM2 and
m1 < m2 so that M1 = 2m1 < 2m2 + 1 = M2. The signless Laplacian spectrum of Γ(Zn)
consists of the eigenvalues

µi =pi − 1, for i = 1, 2, . . . ,m1, . . . ,M1,

µi =qj − 1, for j = 1, 2, . . . ,M2 and i = M1 + 1,M1 + 2, . . . ,M1 +M2,

µi =pqj − 1, for j = 1, 2, . . . ,M2 and i = M1 +M2 + 1, . . . ,M1 + 2M2,

...

µi =pm1qj − 1, for j = 1, 2, . . . ,m2 and i = M1 +m1M2 + 1, . . . ,M1 +m1M2 +m2,

µi =pm1qj − 3, for j = m2 + 1, . . . ,M2 and i = M1 +m1M2 +m2 + 1, . . . ,M1 + (m1 + 1)M2

...

µi =pM1qj − 1, for j = 1, 2, . . . ,m2 and i = M1 +M1M2 + 1, . . . ,M1 +M1M2 +m2,

µi =pM1qj − 3, for j = m2 + 1, . . . , 2m2 and i = M1 +M1M2 +m2 + 1, . . . ,M1 +M1M2 − 1,
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with multiplicities

φ(pM1−iqM2)− 1, φ(pM1qM2−j)− 1,φ(pM1−1qM2−j)− 1, . . . , φ(pm1qM2−k)− 1,

φ(pm1qM2−l)− 1, . . . , φ(qM2−k)− 1, φ(qM2−l)− 1,
(5)

respectively, where i = 1, . . . ,M1, j = 1, . . . ,M2, k = 1, 2, . . . ,m2 and l = m2 + 1,m2 +
2, . . . ,M2 − 1. The remaining signless Laplacian eigenvalues of Γ(Zn) are the eigenvalues of
the matrix given in (1).

Proof. Let n = pM1qM2 , where p and q, 2 < p < q, are primes and m1 < m2

so that 2 ≤ M1 = 2m1 < 2m2 + 1 = M2. The proper divisor set of n is{
p, p2, . . . , pm1 , . . . , pM1 , q, q2, . . . , qm2+1, . . . , qM2 , pq, pq2, . . . , pqm2+1, . . . , pqM2 , . . . , pm1q, pm1q2,

. . . , pm1qm2 , pm1qm2+1, . . . , pm1qM2 , . . . , pM1q, pM1q2, . . . , pM1qm2 , pM1qm2+1, . . . , pM1qM2−1
}

and the size of Υn is (M1 + 1)(M2 + 1)−2 = M1M2 +M1 +M2−1. By the definition

of Υn, the adjacency relations are

pi ∼ pjqM2 , i+ j ≥M1, for i = 1, 2, . . . ,M1

qi ∼ pM1qj , i+ j ≥M2, for i = 1, 2, . . . ,M2,

pqi ∼ pkqj , i+ j ≥M2, for i = 1, 2, . . . ,M2 and k ≥ 2m1 − 1,

...

pm1qi ∼ pkqj , i+ j ≥M2, for i = 1, 2, . . . ,M2 and k ≥ m1

...

pM1qi ∼ pkqj , i+ j ≥M2, for i = 1, 2, . . . ,M2 − 1 and k ≥ 0.

By Lemma 2, for i = 1, 2, . . . ,M1, j = 1, 2, . . . ,M2 and k = 1, 2, . . . ,M2− 1, we have

|Api | = φ(pM1−iqM2), |Aqj | = φ(pM1qM2−j), |Apqj | = φ(pM1−1qM2−j), . . . , |Apm1qj | =
φ(pm1qM2−j), . . . , |ApM1−1qj | = φ(pqM2−j), |ApM1qk | = φ(qM2−k). Also, by Lemma 3,

we have

Gi =



Γ
(
Adpi

)
= Kφ(pM1−iqM2 ), 1 ≤ i ≤M1,

Γ
(
Adqj

)
= Kφ(pM1qM2−j), 1 ≤ j ≤M2,

Γ
(
Adpiqj

)
= Kφ(pN1−iqN2−j), 1 ≤ i ≤ m1 − 1 and 1 ≤ j ≤M2

or 1 ≤ i ≤M1 and 1 ≤ j ≤ m2,

Γ
(
Adpiqj

)
= Kφ(pN1−iqN2−j), m1 ≤ i ≤ N1 and m2 ≤ j ≤ N2.

(6)

Thus, by Lemma 4, the joined union of Γ(Zn) is

Γ(Zn) =Υn
[
Kφ(pM1−1qM2 ), . . . ,Kφ(pm1qM2 ), . . . ,Kφ(qM2 ),Kφ(pM1qM2−1), . . . ,Kφ(pM1qm2 ), . . . ,

Kφ(pM1 ),Kφ(pM1−1qM2−1), . . . ,Kφ(pM1−1qm2 ), . . . ,Kφ(pM1−1), . . . ,Kφ(pm1qM2−1), . . . ,

Kφ(pm1qm2−11),Kφ(pm1qm2 ), . . . ,Kφ(pm1 ), . . . ,Kφ(qM2−1), . . . ,Kφ(qm2−1),Kφ(qm2 ), . . . ,

Kφ(q)
]
.
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By Theorems 1 and 2, we have value of Ni’s as

Ni =pi − 1, for i = 1, 2, . . . ,M1

Ni =qj − 1, for i = M1 + 1, . . . ,M1 +M2 and j = 1, 2, . . . ,m2 + 1, . . . ,M2,

Ni =pqj − 1 for i = M1 +M2 + 1, . . . ,M1 + 2M2 and j = 1, 2, . . . ,m2 + 1, . . . ,M2,

...

Ni =pm1qj − 1, for i = M1 +m1M2 + 1, . . . ,M1 +m1M2 +m2 − 1 and j = 1, 2, . . . ,m2,

Ni =pm1qj − 1− φ(pm1qj), for i = M1 +m1M2, . . . ,M1 + (m1 + 1)M2 and j = m2 + 1, . . . ,M2,

...

Ni =pM1qj − 1, for i = M1 +M1M2 + 1, . . . ,M1 +M1M2 +m2 and j = 1, 2, . . . ,m2,

Ni =pM1qj − 1− φ(qM2−j), for i = M1 +M1M2 +m2 + 1, . . . ,M1 +M1M2 +M2 − 1

and j = m2 + 1, . . . , 2m2.

Thus, by Theorem 1 and Equation (6), the signless Laplacian eigenvalues of Γ(Zn)
are

µi = Ni for i = 1, 2, . . . ,M1 + 2M2,

.

..

µi = Ni for i = M1 +m1M2 + 1, . . . ,M1 +m1M2 +m2,

µi = Ni + φ(pm1qM2−j)− 2 = pm1qj − 3 for i = M1 +m1M2 +m2 + 1, . . . ,M1 + (m1 + 1)M2

j = m2 + 1, . . . ,M2,

...

µi = Ni for i = M1 +M1M2 + 1, . . . ,M1 +M2M2 +m2,

µi = Ni + φ(qM2−j)− 2 = pM1qj − 3 for i = M1 +M1M2 +m2 + 1, . . . ,M1 +M1M2 − 1

j = m2 + 1, . . . ,M2.

with multiplicities as in Equation (5). By using the adjacency relations, Equation

(6) and value of Ni’s in matrix (1), we can find the remaining signless Laplacian

eigenvalues of Γ(Zn).
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