On Sombor coindex of graphs

Chinglensana Phanjoubam ${ }^{1, \dagger}$, Sainkupar Mn Mawiong ${ }^{2, *}$, Ardeline M. Buhphang ${ }^{1, \ddagger}$
${ }^{1}$ Department of Mathematics, North-Eastern Hill University, Shillong, India
${ }^{\dagger}$ phanjoubam17@gmail.com
\ddagger ardeline17@gmail.com
${ }^{2}$ Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong, India skupar@gmail.com

Received: 5 April 2022; Accepted: 18 July 2022
Published Online: 25 July 2022

Abstract

In this paper, we explore several properties of Sombor coindex of a finite simple graph and we derive a bound for the total Sombor index. We also explore its relations to the Sombor index, the Zagreb coindices, forgotten coindex and other important graph parameters. We further compute the bounds of the Somber coindex of some graph operations and derived explicit formulae of Sombor coindex for some well-known graphs as application.

Keywords: Sombor index, Sombor coindex, total Sombor index, graph operations
AMS Subject classification: 05C07, 05C35

1. Introduction

We consider only finite simple graph in this paper. Let G be a finite simple graph on n vertices and m edges. We denote the vertex set and the edge set of G by $V(G)$ and $E(G)$, respectively. The complement of G, denoted by \bar{G}, is a simple graph on $V(G)$ in which two vertices u and v are adjacent, i.e., joined by an edge $u v$, if and only if they are not adjacent in G. Hence, $u v \in E(\bar{G})$ if and only if $u v \notin E(G)$. Clearly, $E(G) \cup E(\bar{G})=E\left(K_{n}\right)$, where K_{n} is the complete graph on n vertices and $\bar{m}=|E(\bar{G})|=\binom{n}{2}-m$. The degree of a vertex u in G is denoted by $d_{G}(u)$. Then $d_{\bar{G}}(u)=n-1-d_{G}(u)$. Let Δ and δ denote the maximum vertex degree and the minimum vertex degree of the graph G, respectively.

[^0]In chemical graph theory, one generally considers various graph-theoretical invariants of molecular graphs (also known as topological indices or molecular descriptors), and study how strongly are they correlated with various properties of the corresponding molecules. The first such topological index was introduced in 1947 by Harry Wiener and used for correlation with boiling points of alkanes [20]. Wiener's index is related to the distances in molecular graphs. Historically, the first vertex-degree-based topological indices were the graph invariants that nowadays are called Zagreb indices. Along this line of approach, numerous graph invariants have been employed with varying degree of success in QSAR (quantitative structure-activity relationship) and QSPR (quantitative structure-property relationship) studies. The Zagreb indices are among the most studied invariants and they are defined as sums of contributions dependent on the degrees of adjacent vertices over all edges of a graph. The Zagreb indices of a graph G, i.e., the first Zagreb index $M_{1}(G)$ and the second Zagreb index $M_{2}(G)$, are defined [11] as follows.

$$
M_{1}(G)=\sum_{u \in V(G)} d_{G}(u)^{2}=\sum_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right] ; \quad M_{2}(G)=\sum_{u v \in E(G)} d_{G}(u) d_{G}(v) .
$$

The Zagreb indices can be viewed as the contributions of pairs of adjacent vertices to additively and multiplicatively weighted versions of Wiener numbers and polynomials [11]. When computing the weighted Wiener polynomials of certain composite graphs, similar contributions of non-adjacent pairs of vertices had to be taken into account [6]. These quantities were called Zagreb coindices since the defining sums run over the edges of the complement of G although the degrees of the vertices are with respect to the graph itself. The first Zagreb coindex $\bar{M}_{1}(G)$ and the second Zagreb coindex $\bar{M}_{2}(G)$ are defined [6] as follows.

$$
\bar{M}_{1}(G)=\sum_{u v \notin E(G)}\left[d_{G}(u)+d_{G}(v)\right] ; \quad \bar{M}_{2}(G)=\sum_{u v \notin E(G)} d_{G}(u) d_{G}(v) .
$$

Generalised version of the first Zagreb index has also been introduced [12] and is known as the general first Zagreb index which is defined as

$$
M_{1}^{p}(G)=\sum_{u \in V(G)} d_{G}(u)^{p}
$$

When $p=3, M_{1}^{3}(G)=\sum_{u \in V(G)} d_{G}(u)^{3}$ is known as the forgotten index $F(G)$ and is also equal to

$$
F(G)=\sum_{u v \in E(G)}\left[d_{G}(u)^{2}+d_{G}(v)^{2}\right] .
$$

The forgotten coindex of a graph G is defined [5] as

$$
\bar{F}(G)=\sum_{u v \notin E(G)}\left[d_{G}(u)^{2}+d_{G}(v)^{2}\right] .
$$

Several properties of the Zagreb coindices have been explored and the Zagreb coindices for some derived graphs and several graph operations have also been studied recently in [1], [13] and [18]. In [5], forgotten coindex of some graph operations are obtained and in [2] relations between this invariant and some well-known graph invariants are explored. Motivated by such results, we consider in this paper the recently introduced but much studied topological index of a graph, the Sombor index [9]. The chemical applicability of Sombor index is explored and has shown good predictive potential [16]. Computations of Sombor index for chemical graphs are done in [3], basic properties of Sombor index are obtained in $[4,10,15]$ and its relations to some well known topological indices are explored in [8], [14] and [19]. In [17], a structural result for graphs with integer values of Sombor index and some bounds on the Sombor index are derived among other results and it also indicates many possible future directions, for instance the global or total Sombor index which is the sums of contributions $\sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}$ for all pairs of vertices u, v, whether adjacent or not. It further indicates another potentially interesting future work which is the difference between the total and the classical Sombor index that corresponds to the Sombor coindex. Following this direction, we explore the Sombor coindex of graphs as indicated in [17]. We give several properties of the Sombor coindex and its relations to Sombor index, Zagreb coindices, forgotten coindex and other important graph parameters. Since several complicated (and important) graphs often arise from simpler graphs via some graph operations, we also present the Sombor coindex of some graph operations. The paper is arranged as follows: In section 2, we recall the definitions of the Sombor index and the Sombor coindex along with some examples. In section 3, we give several properties of the Sombor coindex and its bounds in terms of important graph parameters. In section 4, we explore the relations between Sombor coindex and other topological coindices: Zagreb coindices and forgotten coindex. In section 5, we present the Sombor coindex of some graph operations and we also compute the Sombor coindex of some (chemical) graphs as application. We end the paper with some possible future work in the concluding section.

2. Sombor coindex of graphs

Motivated by the geometric interpretation of the degree radius of an edge $u v$, which is the distance from the origin to the ordered pair $\left(d_{G}(u), d_{G}(v)\right)$, where $d_{G}(u) \leq d_{G}(v)$, Gutman recently introduced a new vertex-degree-based molecular structure descriptor [9], the Sombor index, which is defined as

$$
S O(G)=\sum_{u v \in E(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}
$$

We present some examples of the Somber index. For more details we refer the reader to [9].

Example 1. (i) $S O\left(K_{n}\right)=n(n-1)^{2} / \sqrt{2}$ and $S O\left(\overline{K_{n}}\right)=0$.
(ii) For the cycle $C_{n}(n \geq 3), S O\left(C_{n}\right)=2 \sqrt{2} n$.
(iii) Notice that $S O\left(P_{2}\right)=S O\left(K_{2}\right)=\sqrt{2}$. For $n \geq 3, S O\left(P_{n}\right)=2(n-3) \sqrt{2}+2 \sqrt{5}$.

We now recall the Sombor coindex. It is defined by considering analogous contributions from the pairs of non-adjacent vertices to the formula of Sombor index which was indicated in [17]. The Sombor coindex of G is defined as

$$
\overline{S O}(G)=\sum_{u v \notin E(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} .
$$

Remark 1. Notice that the total Sombor index, denoted by $S O_{t}(G)$, is expressed as

$$
S O_{t}(G)=S O(G)+\overline{S O}(G)
$$

Remark 2. The Sombor coindex of G is also expressed as

$$
\overline{S O}(G)=\sum_{u v \in E(\bar{G})} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} .
$$

Remark 3. Notice that in the definition of Sombor coindex of G, the defining sums run over $E(\bar{G})$ but the degrees of the vertices are with respect to G. It is, therefore, not equal to the Sombor index of \bar{G}.

Remark 4. Deleting an edge in a graph increases the Sombor coindex of the graph whereas adding an edge will decrease the Sombor coindex.

Example 2. (i) In the case of complete graphs K_{n}, the defining sums in the Sombor coindex are taken over the empty set of edges and hence it has zero contribution to the Sombor coindex. And in the case of empty graphs, all degrees are zero. Thus

$$
\overline{S O}\left(K_{n}\right)=\overline{S O}\left(\overline{K_{n}}\right)=0 .
$$

(ii) Notice that the complement of the cycle $C_{n}(n \geq 3)$ has $n(n-3) / 2$ edges and since it is a 2 -regular graph, the Sombor coindex of the cycle C_{n} is given by

$$
\overline{S O}\left(C_{n}\right)=n(n-3) \sqrt{2} .
$$

(iii) By an (x, y)-edge of a complement graph \bar{G}, we mean an edge $e=u v$ where $d_{G}(u)=x$ and $d_{G}(v)=y$. Let $n \geq 3$. The complement of the path P_{n} has only one (1,1)-edge, $2(n-3)$ number of $(1,2)$-edges and $\binom{n-4}{2}$ number of $(2,2)$-edges. Thus

$$
\overline{S O}\left(P_{n}\right)=[(n-4)(n-3)+1] \sqrt{2}+2(n-3) \sqrt{5} .
$$

3. Properties of Sombor coindex of graphs

In this section, we give some basic properties of $\overline{S O}(G)$ and we also give several bounds on $\overline{S O}(G)$ in terms of some useful graph parameters. First we give an upper bound on $\overline{S O}(G)$ for a triangle-free graph G.

Theorem 1. Let G be a traingle-free graph on n vertices and m edges. Then

$$
\overline{S O}(G) \leq \begin{cases}\bar{m} \sqrt{\delta^{2}+(n-\delta)^{2}} & \text { if } \Delta+\delta \leq n, \\ \bar{m} \sqrt{\Delta^{2}+(n-\Delta)^{2}} & \text { if } \Delta+\delta \geq n .\end{cases}
$$

Proof. Since G is triangle-free, we have $d(u)+d(v) \leq n$ for any edge $u v$ in G. From the definition of the Sombor coindex, we have

$$
\begin{aligned}
\overline{S O}(G) & =\sum_{u v \notin E(G)} \sqrt{d(u)^{2}+d(v)^{2}} \\
& =\sum_{u v \in E(\bar{G})} \sqrt{d(u)^{2}+d(v)^{2}} \\
& \leq \sum_{u v \in E(\bar{G})} \sqrt{d(u)^{2}+(n-d(u))^{2}} .
\end{aligned}
$$

Let us consider a function $f(x)=x^{2}+(n-x)^{2}$ for $x \in[\delta, \Delta]$. Since $f^{\prime}(x)=2(2 x-n)$, we see that $f(x)$ is decreasing on $[\delta, n / 2]$ and increasing on $[n / 2, \Delta]$. Thus

$$
\overline{S O}(G) \leq \begin{cases}\bar{m} \sqrt{\delta^{2}+(n-\delta)^{2}} & \text { if } \Delta+\delta \leq n \\ \bar{m} \sqrt{\Delta^{2}+(n-\Delta)^{2}} & \text { if } \Delta+\delta \geq n\end{cases}
$$

Next, we give the upper and lower bounds on $\overline{S O}(G)$ in terms of n, Δ and δ.

Theorem 2. Let G be a graph on n vertices and m edges. Then

$$
\frac{\delta n}{\sqrt{2}}(n-1-\Delta) \leq \overline{S O}(G) \leq \frac{\Delta n}{\sqrt{2}}(n-1-\delta) .
$$

Equality holds if G is a regular graph.

Proof. We just prove the upper bound as the lower bound can be similarly obtained. From the definition of the Sombor coindex, we have

$$
\overline{S O}(G)=\sum_{u v \notin E(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}=\sum_{u v \in E(\bar{G})} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \leq \sqrt{2} \Delta \bar{m} .
$$

Notice that $2 \bar{m}=n(n-1)-2 m$. And by the Handshaking lemma, we have

$$
2 m=\sum_{u \in V(G)} d_{G}(u) \geq n \delta
$$

Thus, $2 \bar{m} \leq n(n-1-\delta)$. It follows that $\overline{S O}(G) \leq \frac{\Delta n}{\sqrt{2}}(n-1-\delta)$. Moreover it is easy to see that the equality holds for a regular graph.

As corollary we can compute the Somber coindex of r-regular graphs.

Corollary 1. Let G be an r-regular graph on n vertices. Then

$$
\overline{S O}(G)=\frac{n r(n-1-r)}{\sqrt{2}}
$$

Remark 5. Let G be a graph on n vertices. Since $\Delta \leq n-1$, we have

$$
\overline{S O}(G) \leq \frac{n(n-1)(n-1-\delta)}{\sqrt{2}}
$$

Next, we have another upper bound for the Sombor coindex in terms of \bar{m}, δ and $\bar{M}_{1}(G)$.

Theorem 3. Let G be a graph with m edges. Then

$$
\overline{S O}(G) \leq \bar{M}_{1}(G)-(2-\sqrt{2}) \delta \bar{m}
$$

Equality holds if G is a regular graph.

Proof. By the definition of the Sombor coindex, we have

$$
\overline{S O}(G)=\sum_{u v \notin E(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}=\sum_{u v \in E(\bar{G})} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}
$$

Notice that for any u and v with $d_{G}(u) \geq d_{G}(v)$, we have

$$
\sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \leq d_{G}(u)+(\sqrt{2}-1) d_{G}(v)
$$

Thus,

$$
\begin{aligned}
\overline{S O}(G) & \leq \sum_{\substack{u v \in E(\bar{G}) \\
d_{G}(u) \geq d_{G}(v)}}\left[d_{G}(u)+(\sqrt{2}-1) d_{G}(v)\right] \\
& =\sum_{u v \in E(\bar{G})}\left[d_{G}(u)+d_{G}(v)\right]-\sum_{\substack{u v \in E(\bar{G}) \\
d_{G}(u) \geq d_{G}(v)}}(2-\sqrt{2}) d_{G}(v) \\
& \leq \bar{M}_{1}(G)-(2-\sqrt{2}) \delta \bar{m} .
\end{aligned}
$$

Further, the above inequalities become equalities if G is a regular graph.

In [1], it is proven that $\bar{M}_{1}(G)=2 m(n-1)-M_{1}(G)$. Thus we have the following corollary.

Corollary 2. Let G be a graph on n vertices and m edges. Then

$$
\overline{S O}(G) \leq 2 m(n-1)-M_{1}(G)-\left(1-\frac{1}{\sqrt{2}}\right)[n(n-1)-2 m] \delta .
$$

Equality holds if G is a regular graph.

We remarked that the Sombor coindex of a graph G is not the same as the Sombor index of \bar{G}. However, they are related closely which is reflected in the bounds of the total Sombor index as follows.

Theorem 4. Let G be a graph on n vertices and m edges. Then
(i) $S O_{t}(G)=S O(G)+\overline{S O}(G) \leq \frac{n(n-1) \Delta}{\sqrt{2}}$. Equality holds if G is a regular graph.
(ii) $S O(\bar{G})+\overline{S O}(G) \leq \bar{m}(n-1+\Delta-\delta) \sqrt{2}$. Equality holds if G is a regular graph.

Proof. By the definition of the Sombor index and the Sombor coindex, we have

$$
\begin{align*}
& S O(G)=\sum_{u v \in E(G)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \leq m \sqrt{2} \Delta \tag{1}\\
& \overline{S O}(G)=\sum_{u v \in E(\bar{G})} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \leq \bar{m} \sqrt{2} \Delta \tag{2}
\end{align*}
$$

From (1) and (2), we have

$$
S O_{t}(G)=S O(G)+\overline{S O}(G) \leq(m+\bar{m}) \sqrt{2} \Delta \leq\binom{ n}{2} \sqrt{2} \Delta=\frac{n(n-1) \Delta}{\sqrt{2}}
$$

Further, it is easy to see that the equality holds if G is a regular graph. This proves the first part. For the second part, notice that $d_{\bar{G}}(u)=n-1-d_{G}(u)$. Hence

$$
\begin{align*}
S O(\bar{G}) & =\sum_{u v \in E(\bar{G})} \sqrt{d_{\bar{G}}(u)^{2}+d_{\bar{G}}(v)^{2}} \\
& =\sum_{u v \in E(\bar{G})} \sqrt{\left(n-1-d_{G}(u)\right)^{2}+\left(n-1-d_{G}(v)\right)^{2}} \\
& \leq \bar{m}(n-1-\delta) \sqrt{2} . \tag{3}
\end{align*}
$$

From (2) and (3), we have

$$
S O(\bar{G})+\overline{S O}(G) \leq \bar{m}(n-1+\Delta-\delta) \sqrt{2}
$$

Moreover, the equality holds if G is a regular graph. This completes the proof.
Theorem 5. Let G be a graph with m edges. Then

$$
\overline{S O}(G)+\overline{S O}(\bar{G}) \leq 2 \bar{M}_{1}(G)-\left(1-\frac{1}{\sqrt{2}}\right) n(n-1) \delta .
$$

Equality holds if G is a regular graph.

Proof. Applying Theorem 3 to \bar{G}, we have

$$
\overline{S O}(\bar{G}) \leq \bar{M}_{1}(\bar{G})-(2-\sqrt{2}) \delta m
$$

Equality holds if G is a regular graph. Now,

$$
\overline{S O}(G)+\overline{S O}(\bar{G}) \leq \bar{M}_{1}(G)-(2-\sqrt{2}) \delta \bar{m}+\bar{M}_{1}(\bar{G})-(2-\sqrt{2}) \delta m
$$

It is proven in [1] that $\bar{M}_{1}(G)=\bar{M}_{1}(\bar{G})$. It follows that

$$
\begin{aligned}
\overline{S O}(G)+\overline{S O}(\bar{G}) & \leq 2 \bar{M}_{1}(G)-(2-\sqrt{2})(\bar{m}+m) \delta \\
& =2 \bar{M}_{1}(G)-\left(1-\frac{1}{\sqrt{2}}\right) n(n-1) \delta .
\end{aligned}
$$

Moreover, the equality holds if G is a regular graph.

4. Relations between Sombor coindex and some topological coindices

In this section we present relations between Sombor coindex and some well-studied coindices: Zagreb coindices and forgotten coindex. First we recall the following wellknown inequalities which are needed for our results in this section.

Lemma 1 (Pólya-Szegö inequality [7]). Let $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{m}$ be two sequences of positive real numbers. If there exists real numbers A, a, B and b such that $0<a \leq a_{k} \leq A<\infty$ and $0<b \leq b_{k} \leq B<\infty$ for $k=1,2, \ldots, m$ then

$$
\frac{\sum_{k=1}^{m} a_{k}^{2} \sum_{k=1}^{m} b_{k}^{2}}{\left(\sum_{k=1}^{m} a_{k} b_{k}\right)^{2}} \leq \frac{(a b+A B)^{2}}{4 a b A B}
$$

where the equality holds if and only if

$$
p=m \frac{A}{a} /\left(\frac{A}{a}+\frac{B}{b}\right), q=m \frac{B}{b} /\left(\frac{A}{a}+\frac{B}{b}\right)
$$

are integers and if p of the numbers $a_{1}, a_{2}, \ldots, a_{m}$ are equal to a and q of these numbers are equal to A, and if the corresponding numbers b_{k} are equal to B and b, respectively.

Lemma 2 (Radon's inequality [4]). If $a_{k}, b_{k}>0$ for $k=1,2, \ldots, m$ and $p>0$, then

$$
\sum_{k=1}^{m} \frac{a_{k}^{p+1}}{b_{k}^{p}} \geq \frac{\left(\sum_{k=1}^{m} a_{k}\right)^{p+1}}{\left(\sum_{k=1}^{m} b_{k}\right)^{p}}
$$

Equality holds if $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\cdots=\frac{a_{m}}{b_{m}}$.
Remark 6. The upper bound of Sombor coindex involving forgotten coindex is an easy consequence of Cauchy-Schwarz inequality. More precisely, for a graph with m edges $\overline{S O}(G) \leq \sqrt{\bar{m} \bar{F}(G)}$, where the equality holds if G is a regular graph. Here, we present a lower bound for $\overline{S O}(G)$ which is still sharp for a regular graph.

Theorem 6. Let G be a graph on n vertices and m edges. Then

$$
\sqrt{\bar{m} \bar{F}(G)} \leq \frac{1}{2}\left(\frac{\delta}{\Delta}+\frac{\Delta}{\delta}\right) \overline{S O}(G)
$$

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let d_{i} denotes the degree of the vertex v_{i} in G. Letting $a_{k} \rightarrow \sqrt{d_{i}{ }^{2}+d_{j}{ }^{2}}$ and $b_{k}=\delta$ in Lemma 1 and choosing $a=\delta=b$ and $A=\Delta=B$, we have $0<a \leq a_{k} \leq A<\infty$ and $0<b \leq b_{k} \leq B<\infty$ for $k=1,2, \ldots, m$. Notice that $\frac{(a b+\bar{A} B)^{2}}{4 a b A B}=\frac{1}{4}\left(\frac{\delta}{\Delta}+\frac{\Delta}{\delta}\right)^{2}$. Applying Lemma 1 with the sums running over the edges in \bar{G}, we have

$$
\frac{\sum_{v_{i} v_{j} \in E(\bar{G})}\left[d_{i}^{2}+d_{j}^{2}\right] \sum_{v_{i} v_{j} \in E(\bar{G})} \delta^{2}}{\left(\sum_{v_{i} v_{j} \in E(\bar{G})} \delta \sqrt{d_{i}^{2}+d_{j}^{2}}\right)^{2}} \leq \frac{1}{4}\left(\frac{\delta}{\Delta}+\frac{\Delta}{\delta}\right)^{2} .
$$

So

$$
\frac{\bar{F}(G) \bar{m}}{\overline{S O}(G)^{2}} \leq \frac{1}{4}\left(\frac{\delta}{\Delta}+\frac{\Delta}{\delta}\right)^{2}
$$

Hence

$$
\sqrt{\bar{m} \bar{F}(G)} \leq \frac{1}{2}\left(\frac{\delta}{\Delta}+\frac{\Delta}{\delta}\right) \overline{S O}(G)
$$

We now present the relation between Sombor coindex and the first Zagreb coindex.

Theorem 7. Let G be a graph on n vertices and m edges. Then

$$
2 \sqrt{\bar{m} \Delta \bar{M}_{1}(G)} \leq\left(1+\frac{\Delta}{\delta}\right) \overline{S O}(G)
$$

and

$$
\overline{S O}(G) \leq \sqrt{\bar{m} \Delta \bar{M}_{1}(G)} .
$$

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let d_{i} denotes the degree of the vertex v_{i} in G. Letting $a_{k} \rightarrow \sqrt{d_{i}+d_{j}}$ and $b_{k} \rightarrow \sqrt{\frac{d_{i}{ }^{2}+d_{j}{ }^{2}}{d_{i}+d_{j}}}$ in Lemma 1 and choosing $a=\sqrt{2 \delta}, A=\sqrt{2 \Delta}, b=\sqrt{\delta}$ and $B=\sqrt{\Delta}$, we have $0<a \leq a_{k} \leq A<\infty$ and $0<b \leq b_{k} \leq B<\infty$ for $k=1,2, \ldots, m$. Notice that

$$
\frac{(a b+A B)^{2}}{4 a b A B}=\frac{1}{4 \delta \Delta}(\Delta+\delta)^{2} .
$$

Applying Lemma 1 with the sums running over the edges in \bar{G}, we have

$$
\frac{\sum_{v_{i} v_{j} \in E(\bar{G})}\left[d_{i}+d_{j}\right] \sum_{v_{i} v_{j} \in E(\bar{G})} \frac{d_{i}^{2}+d_{j}{ }^{2}}{d_{i}+d_{j}}}{\left(\sum_{v_{i} v_{j} \in E(\bar{G})} \sqrt{d_{i}^{2}+d_{j}^{2}}\right)^{2}} \leq \frac{1}{4 \delta \Delta}(\Delta+\delta)^{2} .
$$

Notice that $\frac{d_{i}^{2}+d_{j}^{2}}{d_{i}+d_{j}} \geq \delta$. So, $\sum_{v_{i} v_{j} \in E(\bar{G})} \frac{d_{i}^{2}+d_{j}{ }^{2}}{d_{i}+d_{j}} \geq \bar{m} \delta$. Thus

$$
\frac{\bar{M}_{1}(G) \bar{m} \delta}{\overline{S O}(G)^{2}} \leq \frac{1}{4 \delta \Delta}(\Delta+\delta)^{2}
$$

and so

$$
2 \sqrt{\bar{m} \Delta \bar{M}_{1}(G)} \leq\left(1+\frac{\Delta}{\delta}\right) \overline{S O}(G)
$$

For the upper bound, letting $a_{k} \rightarrow \sqrt{{d_{i}}^{2}+d_{j}{ }^{2}}$ and $b_{k} \rightarrow d_{i}+d_{j}$ in Lemma 2 with the sums running over the edges in \bar{G}, we have

$$
\begin{equation*}
\sum_{v_{i} v_{j} \in E(\bar{G})} \frac{d_{i}^{2}+d_{j}^{2}}{d_{i}+d_{j}} \geq \frac{\left(\sum_{v_{i} v_{j} \in E(\bar{G})} \sqrt{d_{i}^{2}+d_{j}^{2}}\right)^{2}}{\sum_{v_{i} v_{j} \in E(\bar{G})}\left[d_{i}+d_{j}\right]} \tag{4}
\end{equation*}
$$

Notice that $\frac{d_{i}^{2}+d_{j}^{2}}{d_{i}+d_{j}} \leq \Delta$. So, $\sum_{v_{i} v_{j} \in E(\bar{G})} \frac{d_{i}^{2}+d_{j}{ }^{2}}{d_{i}+d_{j}} \leq \bar{m} \Delta$. Thus (4) becomes $\frac{\overline{S O}(G)^{2}}{\bar{M}_{1}(G)} \leq \bar{m} \Delta$. Hence $\overline{S O}(G) \leq \sqrt{\bar{m} \Delta \bar{M}_{1}(G)}$.
Lastly, we present the relation of Sombor coindex and the second Zagreb coindex.
Theorem 8. Let G be a graph on n vertices and m edges. Then

$$
\overline{S O}(G) \leq \sqrt{\left(\frac{\delta}{\Delta}+\frac{\Delta}{\delta}\right) \bar{m}_{2}(G)}
$$

Proof. We first recall the Cauchy-Schwarz inequality. Let $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{m}$ be two sequences of real numbers. Then

$$
\left(\sum_{k=1}^{m} a_{k} b_{k}\right)^{2} \leq \sum_{k=1}^{m} a_{k}^{2} \sum_{k=1}^{m} b_{k}^{2}
$$

Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let d_{i} denotes the degree of the vertex v_{i} in G. Letting $a_{k} \rightarrow \sqrt{d_{i} d_{j}}$ and $b_{k} \rightarrow \sqrt{\frac{d_{i}^{2}+d_{j}^{2}}{d_{i} d_{j}}}$ in the Cauchy-Schwarz inequality with the sums running over the edges in \bar{G}, we have

$$
\begin{equation*}
\left(\sum_{v_{i} v_{j} \in E(\bar{G})} \sqrt{d_{i}^{2}+d_{j}^{2}}\right)^{2} \leq \sum_{v_{i} v_{j} \in E(\bar{G})} d_{i} d_{j} \sum_{v_{i} v_{j} \in E(\bar{G})} \frac{d_{i}^{2}+d_{j}^{2}}{d_{i} d_{j}} \tag{5}
\end{equation*}
$$

Since $0<\delta \leq d_{i} \leq \Delta$ for any v_{i}, we have $\frac{\delta}{\Delta} \leq \frac{d_{i}}{d_{j}} \leq \frac{\Delta}{\delta}$. Now for any edge $v_{i} v_{j}$ of G ($d_{i} \geq d_{j}$), we have

$$
\begin{aligned}
\left(\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}}\right)^{2} & =\left(\frac{d_{i}}{d_{j}}-\frac{d_{j}}{d_{i}}\right)^{2}+4 \\
& \leq\left(\frac{\Delta}{\delta}-\frac{\delta}{\Delta}\right)^{2}+4=\left(\frac{\Delta}{\delta}+\frac{\delta}{\Delta}\right)^{2}
\end{aligned}
$$

Thus (5) becomes $\overline{S O}(G) \leq \sqrt{\left(\frac{\delta}{\Delta}+\frac{\Delta}{\delta}\right) \bar{m} \bar{M}_{2}(G)}$.
Remark 7. We note that with some easy manipulations, lower bound of Sombor coindex in terms of second Zagreb coindex is obtained. More precisely, $\frac{\sqrt{2}}{\Delta} \bar{M}_{2}(G) \leq \overline{S O}(G)$, since

$$
\begin{aligned}
\overline{S O}(G) & =\sum_{u v \in E(\bar{G})} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\sum_{u v \in E(\bar{G})} d_{u}(G) d_{v}(G) \sqrt{\frac{1}{d_{G}(u)^{2}}+\frac{1}{d_{G}(v)^{2}}} \\
& \geq \sum_{u v \in E(\bar{G})} d_{u}(G) d_{v}(G) \sqrt{\frac{1}{\Delta^{2}}+\frac{1}{\Delta^{2}}}=\frac{\sqrt{2 M_{2}}(G)}{\Delta} .
\end{aligned}
$$

We give another upper bound following the same argument, $\overline{S O}(G) \leq \frac{\sqrt{2}}{\delta} \bar{M}_{2}(G)$.

5. Bounds on the Sombor coindex of graph operations

Since several complicated and important graphs often arise from simpler graphs via some graph operations, we also present the Sombor coindex of some graph operations in this section. We give the bounds on the Sombor coindex of some graph operations namely, union, sum, composition and Cartesian product. As an application, the Sombor coindex of some well-known (chemical) graphs are computed. First, we recall the definitions of the following operations which are found in standard references or [1].
A union $G_{1} \cup G_{2}$ of two graphs G_{1} and G_{2} with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ is the graph with the vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$.
A sum $G_{1}+G_{2}$ of two graphs G_{1} and G_{2} with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ is the graph with the vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u_{1} u_{2}\right.$: $\left.u_{1} \in V\left(G_{1}\right), u_{2} \in V\left(G_{2}\right)\right\}$. Hence, we keep all edges of both the graphs and also join each vertex of one graph to each vertex of the other graph.
The Cartesian product $G_{1} \square G_{2}$ of graphs G_{1} and G_{2} is the graph with the vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ in which $u=\left(u_{1}, u_{2}\right)$ is adjacent with $v=\left(v_{1}, v_{2}\right)$ whenever $\left(u_{1}=v_{1}\right.$ and $\left.u_{2} v_{2} \in E\left(G_{2}\right)\right)$ or ($u_{2}=v_{2}$ and $\left.u_{1} v_{1} \in E\left(G_{1}\right)\right)$. Notice that the number of edges in $G_{1} \square G_{2}$ is $n_{1} m_{2}+m_{1} n_{2}$ and the degree of a vertex (u_{1}, u_{2}) of $G_{1} \square G_{2}$ is $d_{G_{1}}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)$, where $n_{i}=\left|V\left(G_{i}\right)\right|$ and $m_{i}=\left|E\left(G_{i}\right)\right|$ for $i=1,2$.
The composition $G_{1}\left[G_{2}\right]$ of graphs G_{1} and G_{2} with disjoint vertex sets and edge sets is the graph with the vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ in which $u=\left(u_{1}, u_{2}\right)$ is adjacent with $v=\left(v_{1}, v_{2}\right)$ whenever (u_{1} is adjacent with v_{1}) or ($u_{1}=v_{1}$ and u_{2} is adjacent with v_{2}). Notice that the number of edges in $G_{1}\left[G_{2}\right]$ is $n_{1} m_{2}+m_{1} n_{2}^{2}$ and the degree of a vertex $\left(u_{1}, u_{2}\right)$ of $G_{1}\left[G_{2}\right]$ is $n_{2} d_{G_{1}}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)$, where $n_{i}=\left|V_{i}\right|$ and $m_{i}=\left|E_{i}\right|$ for $i=1,2$.

Theorem 9. Let G_{1} and G_{2} be two graphs on n_{1} and n_{2} vertices, respectively. Then we have the following.
(i) $\overline{S O}\left(G_{1} \cup G_{2}\right) \leq \overline{S O}\left(G_{1}\right)+\overline{S O}\left(G_{2}\right)+n_{1} n_{2} \sqrt{\Delta_{1}{ }^{2}+\Delta_{2}{ }^{2}}$.
(ii) $\overline{S O}\left(G_{1} \cup G_{2}\right) \geq \overline{S O}\left(G_{1}\right)+\overline{S O}\left(G_{2}\right)+n_{1} n_{2} \sqrt{\delta_{1}{ }^{2}+\delta_{2}{ }^{2}}$.

Here, Δ_{i} and δ_{i} denote the maximum degree vertex and the minimum degree vertex of G_{i}, respectively for $i=1,2$. Moreover, the equality holds if G_{1} and G_{2} are regular.

Proof. Let $G=G_{1} \cup G_{2}$. By the definition of Sombor coindex, we have

$$
\begin{aligned}
\overline{S O}(G) & =\sum_{u v \in E(\bar{G})} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\sum_{u v \in E\left(\bar{G}_{1}\right)} \sqrt{d_{G_{1}}(u)^{2}+d_{G_{1}}(v)^{2}}+\sum_{u v \in E\left(\bar{G}_{2}\right)} \sqrt{d_{G_{2}}(u)^{2}+d_{G_{2}}(v)^{2}} \\
& +\sum_{u \in V\left(G_{1}\right)}\left[\sum_{v \in V\left(G_{2}\right)} \sqrt{d_{G_{1}}(u)^{2}+d_{G_{2}}(v)^{2}}\right] .
\end{aligned}
$$

Notice that the last sum is the contribution to the Sombor coindex of the union from the missing edges between the components, which are the edges of the complete bipartite graph $K_{n_{1}, n_{2}}$. Thus,

$$
\overline{S O}\left(G_{1} \cup G_{2}\right) \leq \overline{S O}\left(G_{1}\right)+\overline{S O}\left(G_{2}\right)+n_{1} n_{2} \sqrt{\Delta_{1}^{2}+\Delta_{2}^{2}}
$$

Moreover, it is easy to notice that the equality holds if G_{1} and G_{2} are regular. Similarly, the lower bound follows.

Theorem 10. Let G_{1} and G_{2} be two graphs on n_{1} and n_{2} vertices and m_{1} and m_{2} edges, respectively. Then we have the following.
(i) $\overline{S O}\left(G_{1}+G_{2}\right) \leq \sqrt{2}\left[\bar{m}_{1}\left(\Delta_{1}+n_{2}\right)+\bar{m}_{2}\left(\Delta_{2}+n_{1}\right)\right]$.
(ii) $\overline{S O}\left(G_{1}+G_{2}\right) \geq \sqrt{2}\left[\bar{m}_{1}\left(\delta_{1}+n_{2}\right)+\bar{m}_{2}\left(\delta_{2}+n_{1}\right)\right]$.

Here, Δ_{i} and δ_{i} denote the maximum degree vertex and the minimum degree vertex of G_{i}, respectively for $i=1,2$. Moreover, the equality holds if G_{1} and G_{2} are regular.

Proof. Let $G=G_{1}+G_{2}$. Notice that $d_{G}(u)=d_{G_{1}}(u)+n_{2}$ and $d_{G}(v)=d_{G_{2}}(v)+n_{1}$ for $u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)$. Since all possible edges between G_{1} and G_{2} are present in
G, there are no missing edges, and hence their contribution is zero. Thus,

$$
\begin{aligned}
\overline{S O}(G) & =\sum_{u v \in E\left(\bar{G}_{1}\right)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}}+\sum_{u v \in E\left(\bar{G}_{2}\right)} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\sum_{u v \in E\left(\bar{G}_{1}\right)} \sqrt{\left(d_{G_{1}}(u)+n_{2}\right)^{2}+\left(d_{G_{1}}(v)+n_{2}\right)^{2}} \\
& +\sum_{u v \in E\left(\bar{G}_{2}\right)} \sqrt{\left(d_{G_{2}}(u)+n_{1}\right)^{2}+\left(d_{G_{2}}(v)+n_{1}\right)^{2}} \\
& \leq \sqrt{2}\left[\bar{m}_{1}\left(\Delta_{1}+n_{2}\right)+\bar{m}_{2}\left(\Delta_{2}+n_{1}\right)\right] .
\end{aligned}
$$

Moreover, the equality holds if G_{1} and G_{2} are regular. Similarly, the lower bound follows.

Corollary 3. The Sombor coindex of the complete bipartite graph $K_{p, q}$ is given by

$$
\overline{S O}\left(K_{p, q}\right)=\overline{S O}\left(\overline{K_{p}}+\overline{K_{q}}\right)=\frac{p q(p+q-2)}{\sqrt{2}} .
$$

Remark 8. We thus obtain explicit formulae for the Sombor coindex of the n-vertex star graph $S_{n}=K_{1, n-1}$ for $n \geq 2$ via Corollary 3, i.e.,

$$
\overline{S O}\left(S_{n}\right)=\frac{(n-1)(n-2)}{\sqrt{2}} .
$$

Theorem 11. Let G_{1} and G_{2} be two graphs on n_{1} and n_{2} vertices and m_{1} and m_{2} edges, respectively. Then

$$
\bar{m} \sqrt{2}\left(\delta_{1}+\delta_{2}\right) \leq \overline{S O}\left(G_{1} \square G_{2}\right) \leq \bar{m} \sqrt{2}\left(\Delta_{1}+\Delta_{2}\right) .
$$

Here, Δ_{i} and δ_{i} denote the maximum degree vertex and the minimum degree vertex of G_{i}, respectively for $i=1,2$; and \bar{m} is the number of edges in $\overline{G_{1} \square G_{2}}$. Moreover, the equality holds if G_{1} and G_{2} are regular.

Proof. Let $G=G_{1} \square G_{2}$. Let $n=|V(G)|$ and $m=|E(G)|$. Notice that $n=n_{1} n_{2}$ and $m=n_{1} m_{2}+m_{1} n_{2}$. So, the number of edges in $\bar{G}, \bar{m}=\binom{n_{1} n_{2}}{2}-n_{1} m_{2}-m_{1} n_{2}$. By the definition of the Sombor coindex, we have

$$
\begin{aligned}
\overline{S O}(G) & =\sum_{u v \in E(\bar{G})} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\sum_{u v \in E(\bar{G})} \sqrt{\left(d_{G_{1}}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)\right)^{2}+\left(d_{G_{1}}\left(v_{1}\right)+d_{G_{2}}\left(v_{2}\right)\right)^{2}} \\
& \leq \sum_{u v \in E(\bar{G})} \sqrt{2}\left(\Delta_{1}+\Delta_{2}\right)=\bar{m} \sqrt{2}\left(\Delta_{1}+\Delta_{2}\right) .
\end{aligned}
$$

Moreover, the equality holds if G_{1} and G_{2} are regular. Similarly, the lower bound follows.

The following corollary is immediate for the graph $G=C_{p} \square C_{q}$. This graph is called C_{4} nanotorus.

Corollary 4. The Sombor coindex of the C_{4} nanotorus is given by

$$
\overline{S O}\left(C_{p} \square C_{q}\right)=2 p q(p q-5) \sqrt{2} .
$$

Theorem 12. Let G_{1} and G_{2} be two graphs on n_{1} and n_{2} vertices, respectively. Then we have the following.

$$
\bar{m} \sqrt{2}\left(n_{2} \delta_{1}+\delta_{2}\right) \leq \overline{S O}\left(G_{1}\left[G_{2}\right]\right) \leq \bar{m} \sqrt{2}\left(n_{2} \Delta_{1}+\Delta_{2}\right)
$$

Here, Δ_{i} and δ_{i} denote the maximum degree vertex and the minimum degree vertex of G_{i}, respectively for $i=1,2$; and \bar{m} is the number of edges in $\overline{G_{1}\left[G_{2}\right]}$. Moreover, the equality holds if G_{1} and G_{2} are regular.

Proof. Let $G=G_{1}\left[G_{2}\right]$. Let $n=|V(G)|$ and $m=|E(G)|$. Notice that $n=n_{1} n_{2}$ and $m=n_{1} m_{2}+m_{1} n_{2}^{2}$. So, the number of edges in $\bar{G}, \bar{m}=\binom{n_{1} n_{2}}{2}-n_{1} m_{2}-m_{1} n_{2}^{2}$. By the definition of the Sombor coindex, we have

$$
\begin{aligned}
\overline{S O}(G) & =\sum_{u v \in E(\bar{G})} \sqrt{d_{G}(u)^{2}+d_{G}(v)^{2}} \\
& =\sum_{u v \in E(\bar{G})} \sqrt{\left(n_{2} d_{G_{1}}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)\right)^{2}+\left(n_{2} d_{G_{1}}\left(v_{1}\right)+d_{G_{2}}\left(v_{2}\right)\right)^{2}} \\
& \leq \sum_{u v \in E(\bar{G})} \sqrt{2}\left(n_{2} \Delta_{1}+\Delta_{2}\right)=\bar{m} \sqrt{2}\left(n_{2} \Delta_{1}+\Delta_{2}\right) .
\end{aligned}
$$

Moreover, the equality holds if G_{1} and G_{2} are regular. Similarly, the lower bound follows. This completes the proof.

As a corollary, the Sombor coindex of the closed fences $C_{n}\left[K_{2}\right]$ is immediate.
Corollary 5. The Sombor coindex of the closed fences $C_{n}\left[K_{2}\right]$ is given by

$$
\overline{S O}\left(C_{n}\left[K_{2}\right]\right)=5[2 n(n-3)+4] \sqrt{2} .
$$

6. Conclusion

Several vertex-degree-based graph invariants (topological indices) have been introduced and studied extensively in (chemical) graph theory and we continue further exploration in this direction based on the recently introduced Sombor (co)index. We give several properties of the Somber coindex and its relations to the Sombor index,
the Zagreb coindices, forgotten coindex and other important graph parameters. We also compute the bounds of the Sombor coindex of some graph operations and compute the Sombor coindex of some graphs as application. One could explore further relations between Sombor coindex and other well-known (co)indices. One could also explore Sombor coindex of derived graphs and other graph operations which are of interest in chemical graph theory, such as splices and links of two or more graphs.

Acknowledgements. The authors express sincere thanks to the reviewer for pointing out the works in paper [17] and many possible future works therein, of which the Sombor coindex is also one of them.

Conflict of interest. The authors declare that they have no conflict of interest.
Data Availibility Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] A.R. Ashrafi, T. Došlić, and A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math. 158 (2010), no. 15, 1571-1578.
[2] M. Azari and F. Falahati-Nezhed, Some results on forgotten topological coindex, Iranian J. Math. Chem. 10 (2019), no. 4, 307-318.
[3] R. Cruz, I. Gutman, and J. Rada, Sombor index of chemical graphs, Appl. Math. Comput. 399 (2021), ID: 126018.
[4] K.C. Das, A.S. Çevik, I.N. Cangul, and Y. Shang, On sombor index, Symmetry 13 (2021), no. 1, ID: 140.
[5] N. De, S. Nayeem, M. Abu, and A. Pal, The F-coindex of some graph operations, Springer Plus 5 (2016), no. 1, Art: 221.
[6] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Contemp. 1 (2008), no. 1, 66-80.
[7] S.S. Dragomir, A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities, J. Inequal. Pure Appl. Math. 4 (2003), no. 3, Art. 63.
[8] S. Filipovski, Relations between Sombor index and some degree-based topological indices, Iranian J. Math. Chem. 12 (2021), no. 1, 19-26.
[9] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021), no. 1, 11-16.
[10] I. Gutman, N.K. Gürsoy, A. Gürsoy, and A. Ülker, New bounds on sombor index, Commun. Comb. Optim. 8 (2023), no. 2, 305-311.
[11] D.J. Klein, T. Došlić, and D. Bonchev, Vertex-weightings for distance moments and thorny graphs, Discrete Appl. Math. 155 (2007), no. 17, 2294-2302.
[12] X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005), no. 1, 195-208.
[13] I. Milovanović, M. Matejić, E. Milovanović, and R. Khoeilar, A note on the first Zagreb index and coindex of graphs, Commun. Comb. Optim. 6 (2021), no. 1, 41-51.
[14] C. Phanjoubam and S.Mn. Mawiong, On Sombor index and some topological indices, Iranian J. Math. Chem. 12 (2021), no. 4, 209-215.
[15] H.S. Ramane, I. Gutman, K. Bhajantri, and D.V. Kitturmath, Sombor index of some graph transformations, Commun. Comb. Optim. (In press).
[16] I. Redžepović, Chemical applicability of Sombor indices, J. Serb. Chem. Soc. 86 (2021), no. 5, 445-457.
[17] T. Réti, T. Došlić, and A. Ali, On the sombor index of graphs, Contrib. Math. 3 (2021), 11-18.
[18] N.H.A.M. Saidi, M.N. Husin, and N.B. Ismail, Zagreb indices and Zagreb coindices of the line graphs of the subdivision graphs, J. Discrete Math. Sci. Cryptogr. 23 (2020), no. 6, 1253-1267.
[19] Z. Wang, Y. Mao, Y. Li, and B. Furtula, On relations between Sombor and other degree-based indices, J. Appl. Math. Comput. 68 (2022), no. 1, 1-17.
[20] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947), no. 1, 17-20.

[^0]: * Corresponding Author

