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Abstract: In this paper, we explore several properties of Sombor coindex of a finite

simple graph and we derive a bound for the total Sombor index. We also explore

its relations to the Sombor index, the Zagreb coindices, forgotten coindex and other
important graph parameters. We further compute the bounds of the Somber coindex

of some graph operations and derived explicit formulae of Sombor coindex for some

well-known graphs as application.
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1. Introduction

We consider only finite simple graph in this paper. Let G be a finite simple graph

on n vertices and m edges. We denote the vertex set and the edge set of G by V (G)

and E(G), respectively. The complement of G, denoted by G, is a simple graph on

V (G) in which two vertices u and v are adjacent, i.e., joined by an edge uv, if and

only if they are not adjacent in G. Hence, uv ∈ E(G) if and only if uv /∈ E(G).

Clearly, E(G) ∪ E(G) = E(Kn), where Kn is the complete graph on n vertices and

m = |E(G)| =
(
n
2

)
−m. The degree of a vertex u in G is denoted by dG(u). Then

dG(u) = n − 1 − dG(u). Let ∆ and δ denote the maximum vertex degree and the

minimum vertex degree of the graph G, respectively.

∗ Corresponding Author



514 On Sombor coindex of graphs

In chemical graph theory, one generally considers various graph-theoretical invariants

of molecular graphs (also known as topological indices or molecular descriptors), and

study how strongly are they correlated with various properties of the corresponding

molecules. The first such topological index was introduced in 1947 by Harry Wiener

and used for correlation with boiling points of alkanes [20]. Wiener’s index is related to

the distances in molecular graphs. Historically, the first vertex-degree-based topolog-

ical indices were the graph invariants that nowadays are called Zagreb indices. Along

this line of approach, numerous graph invariants have been employed with varying

degree of success in QSAR (quantitative structure-activity relationship) and QSPR

(quantitative structure-property relationship) studies. The Zagreb indices are among

the most studied invariants and they are defined as sums of contributions dependent

on the degrees of adjacent vertices over all edges of a graph. The Zagreb indices of a

graph G, i.e., the first Zagreb index M1(G) and the second Zagreb index M2(G), are

defined [11] as follows.

M1(G) =
∑

u∈V (G)

dG(u)
2

=
∑

uv∈E(G)

[dG(u) + dG(v)]; M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

The Zagreb indices can be viewed as the contributions of pairs of adjacent vertices to

additively and multiplicatively weighted versions of Wiener numbers and polynomials

[11]. When computing the weighted Wiener polynomials of certain composite graphs,

similar contributions of non-adjacent pairs of vertices had to be taken into account

[6]. These quantities were called Zagreb coindices since the defining sums run over the

edges of the complement of G although the degrees of the vertices are with respect

to the graph itself. The first Zagreb coindex M1(G) and the second Zagreb coindex

M2(G) are defined [6] as follows.

M1(G) =
∑

uv/∈E(G)

[dG(u) + dG(v)]; M2(G) =
∑

uv/∈E(G)

dG(u)dG(v).

Generalised version of the first Zagreb index has also been introduced [12] and is

known as the general first Zagreb index which is defined as

Mp
1 (G) =

∑
u∈V (G)

dG(u)
p
.

When p = 3, M3
1 (G) =

∑
u∈V (G)

dG(u)
3

is known as the forgotten index F (G) and is

also equal to

F (G) =
∑

uv∈E(G)

[dG(u)
2

+ dG(v)
2
].

The forgotten coindex of a graph G is defined [5] as

F (G) =
∑

uv/∈E(G)

[dG(u)
2

+ dG(v)
2
].
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Several properties of the Zagreb coindices have been explored and the Zagreb coindices

for some derived graphs and several graph operations have also been studied recently

in [1], [13] and [18]. In [5], forgotten coindex of some graph operations are obtained

and in [2] relations between this invariant and some well-known graph invariants are

explored. Motivated by such results, we consider in this paper the recently introduced

but much studied topological index of a graph, the Sombor index [9]. The chemical

applicability of Sombor index is explored and has shown good predictive potential [16].

Computations of Sombor index for chemical graphs are done in [3], basic properties

of Sombor index are obtained in [4, 10, 15] and its relations to some well known

topological indices are explored in [8], [14] and [19]. In [17], a structural result for

graphs with integer values of Sombor index and some bounds on the Sombor index

are derived among other results and it also indicates many possible future directions,

for instance the global or total Sombor index which is the sums of contributions√
dG(u)

2
+ dG(v)

2
for all pairs of vertices u, v, whether adjacent or not. It further

indicates another potentially interesting future work which is the difference between

the total and the classical Sombor index that corresponds to the Sombor coindex.

Following this direction, we explore the Sombor coindex of graphs as indicated in

[17]. We give several properties of the Sombor coindex and its relations to Sombor

index, Zagreb coindices, forgotten coindex and other important graph parameters.

Since several complicated (and important) graphs often arise from simpler graphs via

some graph operations, we also present the Sombor coindex of some graph operations.

The paper is arranged as follows: In section 2, we recall the definitions of the Sombor

index and the Sombor coindex along with some examples. In section 3, we give

several properties of the Sombor coindex and its bounds in terms of important graph

parameters. In section 4, we explore the relations between Sombor coindex and

other topological coindices: Zagreb coindices and forgotten coindex. In section 5,

we present the Sombor coindex of some graph operations and we also compute the

Sombor coindex of some (chemical) graphs as application. We end the paper with

some possible future work in the concluding section.

2. Sombor coindex of graphs

Motivated by the geometric interpretation of the degree radius of an edge uv, which is

the distance from the origin to the ordered pair (dG(u), dG(v)), where dG(u) ≤ dG(v),

Gutman recently introduced a new vertex-degree-based molecular structure descriptor

[9], the Sombor index, which is defined as

SO(G) =
∑

uv∈E(G)

√
dG(u)

2
+ dG(v)

2
.

We present some examples of the Somber index. For more details we refer the reader

to [9].
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Example 1. (i) SO(Kn) = n(n− 1)2/
√

2 and SO(Kn) = 0.

(ii) For the cycle Cn (n ≥ 3), SO(Cn) = 2
√

2n.

(iii) Notice that SO(P2) = SO(K2) =
√

2. For n ≥ 3, SO(Pn) = 2(n− 3)
√

2 + 2
√

5.

We now recall the Sombor coindex. It is defined by considering analogous contribu-

tions from the pairs of non-adjacent vertices to the formula of Sombor index which

was indicated in [17]. The Sombor coindex of G is defined as

SO(G) =
∑

uv/∈E(G)

√
dG(u)

2
+ dG(v)

2
.

Remark 1. Notice that the total Sombor index, denoted by SOt(G), is expressed as

SOt(G) = SO(G) + SO(G).

Remark 2. The Sombor coindex of G is also expressed as

SO(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2.

Remark 3. Notice that in the definition of Sombor coindex of G, the defining sums run
over E(G) but the degrees of the vertices are with respect to G. It is, therefore, not equal
to the Sombor index of G.

Remark 4. Deleting an edge in a graph increases the Sombor coindex of the graph
whereas adding an edge will decrease the Sombor coindex.

Example 2. (i) In the case of complete graphs Kn, the defining sums in the Sombor
coindex are taken over the empty set of edges and hence it has zero contribution to
the Sombor coindex. And in the case of empty graphs, all degrees are zero. Thus

SO(Kn) = SO(Kn) = 0.

(ii) Notice that the complement of the cycle Cn (n ≥ 3) has n(n− 3)/2 edges and since it
is a 2-regular graph, the Sombor coindex of the cycle Cn is given by

SO(Cn) = n(n− 3)
√

2.

(iii) By an (x, y)-edge of a complement graph G, we mean an edge e = uv where dG(u) = x
and dG(v) = y. Let n ≥ 3. The complement of the path Pn has only one (1, 1)-edge,
2(n− 3) number of (1, 2)-edges and

(
n−4
2

)
number of (2, 2)-edges. Thus

SO(Pn) = [(n− 4)(n− 3) + 1]
√

2 + 2(n− 3)
√

5.



C. Phanjoubam, S.Mn. Mawiong, A. Buhphang 517

3. Properties of Sombor coindex of graphs

In this section, we give some basic properties of SO(G) and we also give several

bounds on SO(G) in terms of some useful graph parameters. First we give an upper

bound on SO(G) for a triangle-free graph G.

Theorem 1. Let G be a traingle-free graph on n vertices and m edges. Then

SO(G) ≤

{
m
√
δ2 + (n− δ)2 if ∆ + δ ≤ n,

m
√

∆2 + (n−∆)2 if ∆ + δ ≥ n.

Proof. Since G is triangle-free, we have d(u) + d(v) ≤ n for any edge uv in G. From

the definition of the Sombor coindex, we have

SO(G) =
∑

uv/∈E(G)

√
d(u)

2
+ d(v)

2

=
∑

uv∈E(G)

√
d(u)

2
+ d(v)

2

≤
∑

uv∈E(G)

√
d(u)

2
+ (n− d(u))2.

Let us consider a function f(x) = x2 +(n−x)2 for x ∈ [δ,∆]. Since f ′(x) = 2(2x−n),

we see that f(x) is decreasing on [δ, n/2] and increasing on [n/2,∆]. Thus

SO(G) ≤

{
m
√
δ2 + (n− δ)2 if ∆ + δ ≤ n,

m
√

∆2 + (n−∆)2 if ∆ + δ ≥ n.

Next, we give the upper and lower bounds on SO(G) in terms of n, ∆ and δ.

Theorem 2. Let G be a graph on n vertices and m edges. Then

δn√
2

(n− 1−∆) ≤ SO(G) ≤ ∆n√
2

(n− 1− δ) .

Equality holds if G is a regular graph.

Proof. We just prove the upper bound as the lower bound can be similarly obtained.

From the definition of the Sombor coindex, we have

SO(G) =
∑

uv/∈E(G)

√
dG(u)

2
+ dG(v)

2
=

∑
uv∈E(G)

√
dG(u)

2
+ dG(v)

2 ≤
√

2∆m.
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Notice that 2m = n(n− 1)− 2m. And by the Handshaking lemma, we have

2m =
∑

u∈V (G)

dG(u) ≥ nδ.

Thus, 2m ≤ n(n − 1 − δ). It follows that SO(G) ≤ ∆n√
2

(n− 1− δ) . Moreover it is

easy to see that the equality holds for a regular graph.

As corollary we can compute the Somber coindex of r-regular graphs.

Corollary 1. Let G be an r-regular graph on n vertices. Then

SO(G) =
nr(n− 1− r)√

2
.

Remark 5. Let G be a graph on n vertices. Since ∆ ≤ n− 1, we have

SO(G) ≤ n(n− 1)(n− 1− δ)√
2

.

Next, we have another upper bound for the Sombor coindex in terms of m, δ and

M1(G).

Theorem 3. Let G be a graph with m edges. Then

SO(G) ≤M1(G)− (2−
√

2)δm.

Equality holds if G is a regular graph.

Proof. By the definition of the Sombor coindex, we have

SO(G) =
∑

uv/∈E(G)

√
dG(u)

2
+ dG(v)

2
=

∑
uv∈E(G)

√
dG(u)

2
+ dG(v)

2
.

Notice that for any u and v with dG(u) ≥ dG(v), we have√
dG(u)

2
+ dG(v)

2 ≤ dG(u) + (
√

2− 1)dG(v).

Thus,

SO(G) ≤
∑

uv∈E(G)
dG(u)≥dG(v)

[dG(u) + (
√

2− 1)dG(v)]

=
∑

uv∈E(G)

[dG(u) + dG(v)]−
∑

uv∈E(G)
dG(u)≥dG(v)

(2−
√

2)dG(v)

≤ M1(G)− (2−
√

2)δm.

Further, the above inequalities become equalities if G is a regular graph.
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In [1], it is proven that M1(G) = 2m(n − 1) −M1(G). Thus we have the following

corollary.

Corollary 2. Let G be a graph on n vertices and m edges. Then

SO(G) ≤ 2m(n− 1)−M1(G)−
(

1− 1√
2

)
[n(n− 1)− 2m]δ.

Equality holds if G is a regular graph.

We remarked that the Sombor coindex of a graph G is not the same as the Sombor

index of G. However, they are related closely which is reflected in the bounds of the

total Sombor index as follows.

Theorem 4. Let G be a graph on n vertices and m edges. Then

(i) SOt(G) = SO(G) + SO(G) ≤ n(n− 1)∆√
2

. Equality holds if G is a regular graph.

(ii) SO(G) + SO(G) ≤ m(n− 1 + ∆− δ)
√

2. Equality holds if G is a regular graph.

Proof. By the definition of the Sombor index and the Sombor coindex, we have

SO(G) =
∑

uv∈E(G)

√
dG(u)

2
+ dG(v)

2 ≤ m
√

2∆ (1)

SO(G) =
∑

uv∈E(G)

√
dG(u)

2
+ dG(v)

2 ≤ m
√

2∆ (2)

From (1) and (2), we have

SOt(G) = SO(G) + SO(G) ≤ (m+m)
√

2∆ ≤
(
n

2

)√
2∆ =

n(n− 1)∆√
2

.

Further, it is easy to see that the equality holds if G is a regular graph. This proves

the first part. For the second part, notice that dG(u) = n− 1− dG(u). Hence

SO(G) =
∑

uv∈E(G)

√
dG(u)

2
+ dG(v)

2

=
∑

uv∈E(G)

√
(n− 1− dG(u))2 + (n− 1− dG(v))2

≤ m(n− 1− δ)
√

2. (3)
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From (2) and (3), we have

SO(G) + SO(G) ≤ m(n− 1 + ∆− δ)
√

2.

Moreover, the equality holds if G is a regular graph. This completes the proof.

Theorem 5. Let G be a graph with m edges. Then

SO(G) + SO(G) ≤ 2M1(G)−
(

1− 1√
2

)
n(n− 1)δ.

Equality holds if G is a regular graph.

Proof. Applying Theorem 3 to G, we have

SO(G) ≤M1(G)− (2−
√

2)δm.

Equality holds if G is a regular graph. Now,

SO(G) + SO(G) ≤M1(G)− (2−
√

2)δm+M1(G)− (2−
√

2)δm.

It is proven in [1] that M1(G) = M1(G). It follows that

SO(G) + SO(G) ≤2M1(G)− (2−
√

2)(m+m)δ

=2M1(G)−
(

1− 1√
2

)
n(n− 1)δ.

Moreover, the equality holds if G is a regular graph.

4. Relations between Sombor coindex and some topological
coindices

In this section we present relations between Sombor coindex and some well-studied

coindices: Zagreb coindices and forgotten coindex. First we recall the following well-

known inequalities which are needed for our results in this section.

Lemma 1 (Pólya-Szegö inequality [7]). Let a1, a2, . . . , am and b1, b2, . . . , bm be
two sequences of positive real numbers. If there exists real numbers A, a,B and b such that
0 < a ≤ ak ≤ A <∞ and 0 < b ≤ bk ≤ B <∞ for k = 1, 2, . . . ,m then

m∑
k=1

a2k

m∑
k=1

b2k(
m∑

k=1

akbk

)2 ≤
(ab+AB)2

4abAB
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where the equality holds if and only if

p = m
A

a

/(
A

a
+
B

b

)
, q = m

B

b

/(
A

a
+
B

b

)

are integers and if p of the numbers a1, a2, . . . , am are equal to a and q of these numbers are
equal to A, and if the corresponding numbers bk are equal to B and b, respectively.

Lemma 2 (Radon’s inequality [4]). If ak, bk > 0 for k = 1, 2, . . . ,m and p > 0,
then

m∑
k=1

ak
p+1

bk
p ≥

(
m∑

k=1

ak

)p+1

(
m∑

k=1

bk

)p .

Equality holds if
a1
b1

=
a2
b2

= · · · = am
bm

.

Remark 6. The upper bound of Sombor coindex involving forgotten coindex is an
easy consequence of Cauchy-Schwarz inequality. More precisely, for a graph with m edges

SO(G) ≤
√
mF (G), where the equality holds if G is a regular graph. Here, we present a

lower bound for SO(G) which is still sharp for a regular graph.

Theorem 6. Let G be a graph on n vertices and m edges. Then

√
mF (G) ≤ 1

2

(
δ

∆
+

∆

δ

)
SO(G).

Proof. Let V (G) = {v1, v2, . . . , vn} and let di denotes the degree of the vertex vi

in G. Letting ak →
√
di

2 + dj
2 and bk = δ in Lemma 1 and choosing a = δ = b

and A = ∆ = B, we have 0 < a ≤ ak ≤ A < ∞ and 0 < b ≤ bk ≤ B < ∞ for

k = 1, 2, . . . ,m. Notice that
(ab+AB)2

4abAB
=

1

4

(
δ

∆
+

∆

δ

)2

. Applying Lemma 1 with

the sums running over the edges in G, we have

∑
vivj∈E(G)

[di
2 + dj

2]
∑

vivj∈E(G)

δ2

 ∑
vivj∈E(G)

δ

√
di

2 + dj
2

2 ≤ 1

4

(
δ

∆
+

∆

δ

)2

.

So
F (G)m

SO(G)2
≤ 1

4

(
δ

∆
+

∆

δ

)2

.



522 On Sombor coindex of graphs

Hence √
mF (G) ≤ 1

2

(
δ

∆
+

∆

δ

)
SO(G).

We now present the relation between Sombor coindex and the first Zagreb coindex.

Theorem 7. Let G be a graph on n vertices and m edges. Then

2

√
m∆M1(G) ≤

(
1 +

∆

δ

)
SO(G)

and

SO(G) ≤
√
m∆M1(G).

Proof. Let V (G) = {v1, v2, . . . , vn} and let di denotes the degree of the vertex vi

in G. Letting ak →
√
di + dj and bk →

√
di

2 + dj
2

di + dj
in Lemma 1 and choosing

a =
√

2δ, A =
√

2∆, b =
√
δ and B =

√
∆, we have 0 < a ≤ ak ≤ A < ∞ and

0 < b ≤ bk ≤ B <∞ for k = 1, 2, . . . ,m. Notice that

(ab+AB)2

4abAB
=

1

4δ∆
(∆ + δ)

2
.

Applying Lemma 1 with the sums running over the edges in G, we have

∑
vivj∈E(G)

[di + dj ]
∑

vivj∈E(G)

di
2 + dj

2

di + dj ∑
vivj∈E(G)

√
di

2 + dj
2

2 ≤ 1

4δ∆
(∆ + δ)

2
.

Notice that
di

2 + dj
2

di + dj
≥ δ. So,

∑
vivj∈E(G)

di
2 + dj

2

di + dj
≥ mδ. Thus

M1(G)mδ

SO(G)2
≤ 1

4δ∆
(∆ + δ)

2

and so

2

√
m∆M1(G) ≤

(
1 +

∆

δ

)
SO(G).
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For the upper bound, letting ak →
√
di

2 + dj
2 and bk → di + dj in Lemma 2 with

the sums running over the edges in G, we have

∑
vivj∈E(G)

di
2 + dj

2

di + dj
≥

 ∑
vivj∈E(G)

√
di

2 + dj
2

2

∑
vivj∈E(G)

[di + dj ]
. (4)

Notice that
di

2 + dj
2

di + dj
≤ ∆. So,

∑
vivj∈E(G)

di
2 + dj

2

di + dj
≤ m∆. Thus (4) becomes

SO(G)
2

M1(G)
≤ m∆. Hence SO(G) ≤

√
m∆M1(G).

Lastly, we present the relation of Sombor coindex and the second Zagreb coindex.

Theorem 8. Let G be a graph on n vertices and m edges. Then

SO(G) ≤

√(
δ

∆
+

∆

δ

)
mM2(G).

Proof. We first recall the Cauchy-Schwarz inequality. Let a1, a2, . . . , am and

b1, b2, . . . , bm be two sequences of real numbers. Then(
m∑

k=1

akbk

)2

≤
m∑

k=1

a2k

m∑
k=1

b2k.

Let V (G) = {v1, v2, . . . , vn} and let di denotes the degree of the vertex vi in G.

Letting ak →
√
didj and bk →

√
di

2 + dj
2

didj
in the Cauchy-Schwarz inequality with

the sums running over the edges in G, we have ∑
vivj∈E(G)

√
di

2 + dj
2

2

≤
∑

vivj∈E(G)

didj
∑

vivj∈E(G)

di
2 + dj

2

didj
. (5)

Since 0 < δ ≤ di ≤ ∆ for any vi, we have
δ

∆
≤ di
dj
≤ ∆

δ
. Now for any edge vivj of G

(di ≥ dj), we have(
di
dj

+
dj
di

)2

=

(
di
dj
− dj
di

)2

+ 4

≤
(

∆

δ
− δ

∆

)2

+ 4 =

(
∆

δ
+
δ

∆

)2

.
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Thus (5) becomes SO(G) ≤

√(
δ

∆
+

∆

δ

)
mM2(G).

Remark 7. We note that with some easy manipulations, lower bound of Sombor coindex

in terms of second Zagreb coindex is obtained. More precisely,

√
2

∆
M2(G) ≤ SO(G), since

SO(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2

=
∑

uv∈E(G)

du(G)dv(G)

√
1

dG(u)2
+

1

dG(v)2

≥
∑

uv∈E(G)

du(G)dv(G)

√
1

∆2
+

1

∆2
=

√
2M2(G)

∆
.

We give another upper bound following the same argument, SO(G) ≤
√

2

δ
M2(G).

5. Bounds on the Sombor coindex of graph operations

Since several complicated and important graphs often arise from simpler graphs via

some graph operations, we also present the Sombor coindex of some graph operations

in this section. We give the bounds on the Sombor coindex of some graph operations

namely, union, sum, composition and Cartesian product. As an application, the

Sombor coindex of some well-known (chemical) graphs are computed. First, we recall

the definitions of the following operations which are found in standard references or

[1].

A union G1∪G2 of two graphs G1 and G2 with disjoint vertex sets V (G1) and V (G2)

is the graph with the vertex set V (G1) ∪ V (G2) and the edge set E(G1) ∪ E(G2).

A sum G1+G2 of two graphs G1 and G2 with disjoint vertex sets V (G1) and V (G2) is

the graph with the vertex set V (G1)∪V (G2) and the edge set E(G1)∪E(G2)∪{u1u2 :

u1 ∈ V (G1), u2 ∈ V (G2)}. Hence, we keep all edges of both the graphs and also join

each vertex of one graph to each vertex of the other graph.

The Cartesian product G1�G2 of graphs G1 and G2 is the graph with the vertex set

V (G1)×V (G2) in which u = (u1, u2) is adjacent with v = (v1, v2) whenever (u1 = v1
and u2v2 ∈ E(G2)) or (u2 = v2 and u1v1 ∈ E(G1)). Notice that the number of

edges in G1�G2 is n1m2 + m1n2 and the degree of a vertex (u1, u2) of G1�G2 is

dG1
(u1) + dG2

(u2), where ni = |V (Gi)| and mi = |E(Gi)| for i = 1, 2.

The composition G1[G2] of graphs G1 and G2 with disjoint vertex sets and edge sets

is the graph with the vertex set V (G1)×V (G2) in which u = (u1, u2) is adjacent with

v = (v1, v2) whenever (u1 is adjacent with v1) or (u1 = v1 and u2 is adjacent with

v2). Notice that the number of edges in G1[G2] is n1m2 +m1n
2
2 and the degree of a

vertex (u1, u2) of G1[G2] is n2dG1
(u1) + dG2

(u2), where ni = |Vi| and mi = |Ei| for

i = 1, 2.
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Theorem 9. Let G1 and G2 be two graphs on n1 and n2 vertices, respectively. Then we
have the following.

(i) SO(G1 ∪G2) ≤ SO(G1) + SO(G2) + n1n2

√
∆1

2 + ∆2
2.

(ii) SO(G1 ∪G2) ≥ SO(G1) + SO(G2) + n1n2

√
δ1

2 + δ2
2.

Here, ∆i and δi denote the maximum degree vertex and the minimum degree vertex of Gi,
respectively for i = 1, 2. Moreover, the equality holds if G1 and G2 are regular.

Proof. Let G = G1 ∪G2. By the definition of Sombor coindex, we have

SO(G) =
∑

uv∈E(G)

√
dG(u)

2
+ dG(v)

2

=
∑

uv∈E(G1)

√
dG1

(u)
2

+ dG1
(v)

2
+

∑
uv∈E(G2)

√
dG2

(u)
2

+ dG2
(v)

2

+
∑

u∈V (G1)

 ∑
v∈V (G2)

√
dG1(u)

2
+ dG2(v)

2

 .
Notice that the last sum is the contribution to the Sombor coindex of the union

from the missing edges between the components, which are the edges of the complete

bipartite graph Kn1,n2 . Thus,

SO(G1 ∪G2) ≤ SO(G1) + SO(G2) + n1n2

√
∆1

2 + ∆2
2.

Moreover, it is easy to notice that the equality holds if G1 and G2 are regular. Simi-

larly, the lower bound follows.

Theorem 10. Let G1 and G2 be two graphs on n1 and n2 vertices and m1 and m2 edges,
respectively. Then we have the following.

(i) SO(G1 +G2) ≤
√

2[m1(∆1 + n2) +m2(∆2 + n1)].

(ii) SO(G1 +G2) ≥
√

2[m1(δ1 + n2) +m2(δ2 + n1)].

Here, ∆i and δi denote the maximum degree vertex and the minimum degree vertex of Gi,
respectively for i = 1, 2. Moreover, the equality holds if G1 and G2 are regular.

Proof. Let G = G1 +G2. Notice that dG(u) = dG1
(u)+n2 and dG(v) = dG2

(v)+n1
for u ∈ V (G1), v ∈ V (G2). Since all possible edges between G1 and G2 are present in
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G, there are no missing edges, and hence their contribution is zero. Thus,

SO(G) =
∑

uv∈E(G1)

√
dG(u)

2
+ dG(v)

2
+

∑
uv∈E(G2)

√
dG(u)

2
+ dG(v)

2

=
∑

uv∈E(G1)

√
(dG1(u) + n2)2 + (dG1(v) + n2)2

+
∑

uv∈E(G2)

√
(dG2

(u) + n1)2 + (dG2
(v) + n1)2

≤
√

2[m1(∆1 + n2) +m2(∆2 + n1)].

Moreover, the equality holds if G1 and G2 are regular. Similarly, the lower bound

follows.

Corollary 3. The Sombor coindex of the complete bipartite graph Kp,q is given by

SO(Kp,q) = SO(Kp +Kq) =
pq(p+ q − 2)√

2
.

Remark 8. We thus obtain explicit formulae for the Sombor coindex of the n-vertex star
graph Sn = K1,n−1 for n ≥ 2 via Corollary 3, i.e.,

SO(Sn) =
(n− 1)(n− 2)√

2
.

Theorem 11. Let G1 and G2 be two graphs on n1 and n2 vertices and m1 and m2 edges,
respectively. Then

m
√

2(δ1 + δ2) ≤ SO(G1�G2) ≤ m
√

2(∆1 + ∆2).

Here, ∆i and δi denote the maximum degree vertex and the minimum degree vertex of Gi,
respectively for i = 1, 2; and m is the number of edges in G1�G2. Moreover, the equality
holds if G1 and G2 are regular.

Proof. Let G = G1�G2. Let n = |V (G)| and m = |E(G)|. Notice that n = n1n2
and m = n1m2 + m1n2. So, the number of edges in G, m =

(
n1n2

2

)
− n1m2 −m1n2.

By the definition of the Sombor coindex, we have

SO(G) =
∑

uv∈E(G)

√
dG(u)

2
+ dG(v)

2

=
∑

uv∈E(G)

√
(dG1

(u1) + dG2
(u2))2 + (dG1

(v1) + dG2
(v2))2

≤
∑

uv∈E(G)

√
2(∆1 + ∆2) = m

√
2(∆1 + ∆2).

Moreover, the equality holds if G1 and G2 are regular. Similarly, the lower bound

follows.
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The following corollary is immediate for the graph G = Cp�Cq. This graph is called

C4 nanotorus.

Corollary 4. The Sombor coindex of the C4 nanotorus is given by

SO(Cp�Cq) = 2pq(pq − 5)
√

2.

Theorem 12. Let G1 and G2 be two graphs on n1 and n2 vertices, respectively. Then
we have the following.

m
√

2(n2δ1 + δ2) ≤ SO(G1[G2]) ≤ m
√

2(n2∆1 + ∆2).

Here, ∆i and δi denote the maximum degree vertex and the minimum degree vertex of Gi,
respectively for i = 1, 2; and m is the number of edges in G1[G2]. Moreover, the equality
holds if G1 and G2 are regular.

Proof. Let G = G1[G2]. Let n = |V (G)| and m = |E(G)|. Notice that n = n1n2
and m = n1m2 + m1n

2
2. So, the number of edges in G, m =

(
n1n2

2

)
− n1m2 −m1n

2
2.

By the definition of the Sombor coindex, we have

SO(G) =
∑

uv∈E(G)

√
dG(u)

2
+ dG(v)

2

=
∑

uv∈E(G)

√
(n2dG1(u1) + dG2(u2))2 + (n2dG1(v1) + dG2(v2))2

≤
∑

uv∈E(G)

√
2(n2∆1 + ∆2) = m

√
2(n2∆1 + ∆2).

Moreover, the equality holds if G1 and G2 are regular. Similarly, the lower bound

follows. This completes the proof.

As a corollary, the Sombor coindex of the closed fences Cn[K2] is immediate.

Corollary 5. The Sombor coindex of the closed fences Cn[K2] is given by

SO(Cn[K2]) = 5[2n(n− 3) + 4]
√

2.

6. Conclusion

Several vertex-degree-based graph invariants (topological indices) have been intro-

duced and studied extensively in (chemical) graph theory and we continue further

exploration in this direction based on the recently introduced Sombor (co)index. We

give several properties of the Somber coindex and its relations to the Sombor index,
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the Zagreb coindices, forgotten coindex and other important graph parameters.

We also compute the bounds of the Sombor coindex of some graph operations and

compute the Sombor coindex of some graphs as application. One could explore

further relations between Sombor coindex and other well-known (co)indices. One

could also explore Sombor coindex of derived graphs and other graph operations

which are of interest in chemical graph theory, such as splices and links of two or

more graphs.
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