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Abstract: For a graph G = (V,E), a triple Roman dominating function (3RD-
function) is a function f : V → {0, 1, 2, 3, 4} having the property that (i) if f(v) = 0

then v must have either one neighbor u with f(u) = 4, or two neighbors u,w with

f(u) + f(w) ≥ 5 or three neighbors u,w, z with f(u) = f(w) = f(z) = 2, (ii) if
f(v) = 1 then v must have one neighbor u with f(u) ≥ 3 or two neighbors u,w with

f(u) = f(w) = 2, and (iii) if f(v) = 2 then v must have one neighbor u with f(u) ≥ 2.

The weight of a 3RDF f is the sum f(V ) =
∑

v∈V f(v), and the minimum weight of a
3RD-function on G is the triple Roman domination number of G, denoted by γ[3R](G).

In this paper, we prove that for any connected graph G of order n with minimum degree

at least two, γ[3R](G) ≤ 3n
2
.

Keywords: triple Roman dominating function, triple Roman domination number

AMS Subject classification: 05C69

1. Introduction

Let G be a graph with vertex set V (G) = V and edge set E(G) = E. The integers

n = |V (G)| and m = |E(G)| are the order and the size of the graph G, respectively.
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The open neighborhood of vertex v is NG(v) = N(v) = {u ∈ V (G)|uv ∈ E(G)}, and

the closed neighborhood of v is NG[v] = N [v] = N(v) ∪ {v}. The degree of a vertex

v is degG(v) = deg(v) = |N(v)|. The minimum and maximum degree of a graph G

are denoted by δ(G) = δ and ∆(G) = ∆, respectively. Let Cn the cycle of order

n and Pn the path of order n. A set S of vertices of G is called a dominating set

if N [S] =
⋃

v∈S N [v] = V (G). The domination number γ(G) equals the minimum

cardinality of a dominating set in G.

Let k be a positive integer and let f be a function that assigns labels from the set

{0, 1, . . . , k + 1} to the vertices of the graph G. Given a vertex v ∈ V (G), the active

neighborhood of v, denoted by AN(v), is the set of vertices w ∈ NG(v) such that

f(w) ≥ 1. Let AN [v] = AN(v) ∪ {v}. A [k]-Roman dominating function is defined

in [1] as a function f : V → {0, 1, . . . , k + 1} such that for every vertex v ∈ V with

f(v) < k,

f
(
AN [v]

)
≥ |AN(v)|+ k.

The weight of a [k]-Roman dominating function is the value f(V ) =
∑

v∈V f(v), and

the minimum weight of such a function is the [k]-Roman domination number of G,

denoted by γ[kR](G). Let us point out that for k = 1 the definition matches that of the

Roman domination. Roman domination was introduced by Cockayne et al. in [8] and

was inspired by the marvelous paper of Arquilla and Fredricksen [2] and the work of

ReVelle and Rosing [9] and Stewart [10]. Furthermore, for k = 2 the above definition

matches that of the double Roman domination which was introduced by Beeler et al.

in [3]. Roman domination and its variants have many applications in the areas such

as facility location problems, planning of defence strategies and surveillance related

problems, etc. The literature on this topic has been detailed in two book chapters

and two surveys [4–7].

For any function f : V (G) → {0, 1, 2, . . . , k}, define Vi = {u ∈ V (G) | f(u) = i}
for each i ∈ {0, 1, . . . , k}. Since these k + 1-sets determine f uniquely, we write

f = (V0, V1, . . . , Vk). The weight of f is defined as ω(f) =
∑

v∈V (G) f(v). In this

paper we focus on k = 3.

Not that, for a graph G = (V,E), a triple Roman dominating function (3RD-function)

is a function f : V → {0, 1, 2, 3, 4} having the property that

1. If f(v) = 0 then v must have either one neighbor in V4, or either two neighbors

u and w in V2 ∪ V3 such that f(u) + f(w) ≥ 5 or either three neighbors in V2,

2. If f(v) = 1 then v must have either one neighbor in V3 ∪ V4 or either two

neighbors in V2,

3. If f(v) = 2 then v must have one neighbor in V2 ∪ V3 ∪ V4.

The weight of a 3RD-function f is the sum f(V ) =
∑

v∈V f(v). The minimum weight

of a 3RD-function on G is the triple Roman domination number of G, denoted by

γ[3R](G). The authors of [1] proved that for any connected graph G of order n,

γ[3R](G) ≤ 7n
4 . In this paper, we prove that for any connected graph G of order n

with minimum degree at least two γ[3R](G) ≤ 3n
2 .
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We make use of the following results in this paper.

Proposition A. [1] Let G be a graph of order n and maximum degree ∆(G). Then

γ[3R](G) ≤ 3n− 3∆(G) + 1.

Proposition B. [1] For any integer n ≥ 3,

γ[3R](Cn) =

 d 4n
3
e if either n = 4, 5, 7, 10 or n ≡ 0 mod 3,

d 4n
3
e+ 1 if n 6= 4, 5, 7, 10 and n ≡ 1, 2 mod 3.

Proposition C. [1] Let n be a positive integer. Then γ[3R]Pn = Mn, such that

Mn =



4

⌊
n

3

⌋
, if n ≡ 0 mod 3

4

⌊
n

3

⌋
+ 3, if n ≡ 1 mod 3

4

⌊
n

3

⌋
+ 4, if n ≡ 2 mod 3.

2. Main results

In this section we establish an upper bound on the triple Roman domination number

of graphs with minimum degree 2. We first construct the graph Cm,k as follows.

For integers m ≥ 3 and k ≥ 1, let Cm,k be the graph obtained from a cycle Cm =

(x1x2 . . . xm) by adding a pendant path x1y1y2 . . . yk, with yi /∈ V (Cm) for all possible

i.

Proposition 1. For integers m ≥ 3 and k ≥ 1 with m+ k ≥ 4, γ[3R](Cm,k) ≤ 3(m+k)
2

.

Proof. If m + k = 4, then clearly γ[3R](Cm,k) ≤ γ[3R](C3,1) = 4 < 3(m+k)
2 . Let

m + k ≥ 5. Since Cm,k has a Hamilton path and since adding an edge cannot

increase the triple Roman domination number, we deduce from Proposition B that

γ[3R](Cm,k) ≤
⌈
4(m+k)

3

⌉
+ 1 ≤ 3(m+k)

2 for m + k 6= 5, 7. In the cases m + k = 5 or

m+ k = 7, it is straightforward to verify the desired bound. 2

Let F1 be the family of all loopless connected multigraphs G with δ(G) ≥ 3 and let

F be the family of all graphs obtained from some graph in F1 by subdividing any

edge at least once and at most seven times. Observe that any graph in F has order

at least 5.

Proposition 2. If G ∈ F , then there exists a 3RD-function f of G such that ω(f) ≤
3|V (G)|

2
and f assigns a weight at least three to each vertex of degree at least 3.
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Proof. Let G ∈ F be a graph of order n. The proof is by the induction on n.

The result is immediate for n = 5. Suppose n ≥ 6 and let the result hold for all

graphs in F of order smaller than n. Let G ∈ F be a graph of order n ≥ 6. Let

V≥3 = {v ∈ V (G) | deg(v) ≥ 3} and V≤2 = {v ∈ V (G) | deg(v) = 2}. A path P of

G is called a V≥3-ear path if V (P ) ⊆ V≤2 and each end-vertex of P is adjacent to a

vertex of V≥3. For each i ≥ 1, let Pi = {P | P is a V≥3-ear path with |V (P )| = i}.
Let P =

⋃
i≥1 Pi. Note that V≥3 ∪

⋃
P∈P V (P ) is a partition of V (G). For each

V≥3-ear path P ∈ P, let XP = {u ∈ V≥3 | u is adjacent to an end-vertex of P}. Then

V≥3 =
⋃

P∈P XP and |XP | = 2 for each P ∈ P. Hence |V≥3| ≥ 2. We consider the

following cases.

Case 1. P3 ∪ P5 ∪ P7 6= ∅.
Suppose P = x1x2 · · ·x2k+1 ∈ P3 ∪ P5 ∪ P7 and let XP = {a1, a2} where

a1x1, a2x2k+1 ∈ E(G). Assume that G′ = (G − (V (P ) − {x2, x3, . . . , x2k+1}))
+{x1a2}. Clearly G′ ∈ F . By induction hypothesis, there exists a 3RD-function

f = (V0, V1, V2, V3, V4) of G′ such that a1, a2 ∈ V3 ∪ V4, and ω(f) ≤ 3(n−2k)
2 .

Then the function g : V (G) → {0, 1, 2, 3, 4} defined by g(x2i) = 3 for 1 ≤ i ≤ k,

g(x2i+1) = 0 for 1 ≤ i ≤ k and g(x) = f(x) otherwise, is a 3RD-function of G

such that g assigns the weight at least three to every vertex of degree at least 3, and

ω(g) = ω(f) + 3k ≤ 3(n−2k)
2 + 3k = 3n

2 .

Case 2. P4 ∪ P6 6= ∅.
Suppose P = x1x2 . . . x2k ∈ P4 ∪ P6 and XP = {a1, a2} where a1x1, a2x2k ∈ E(G).

Assume that G′ = (G − {x2, x3, . . . , x2k−2}) + {x1x2k−1}. Clearly G′ ∈ F . By

induction hypothesis, there exists a 3RD-function f of G′ such that f(a1), f(a2) ≥ 3,

and ω(f) ≤ 3(n−(2k−1))
2 . To triple Roman dominate x2k−1, we may assume that

f(x2k−1) ≥ 3 and f(x1) = f(x2k) = 0. Then the function g : V (G) → {0, 1, 2, 3, 4}
defined by g(x2) = g(x3) = 2 and g(x) = f(x) otherwise, if k = 2, and by g(x2) =

g(x3) = 2, g(x4) = 0 and g(x) = f(x) otherwise, when k = 3, is a 3RDF of G such

that g assigns a weight at least three to every vertex in V≥3, and for k = 2 we have

ω(g) = ω(f) + 1 ≤ 3(n−1)
2 + 1 < 3n

2 and for k = 3 we have ω(g) = ω(f) + 4 ≤
3(n−3)

2 + 4 < 3n
2 .

Case 3.
⋃7

i=3 Pi = ∅.
Therefore P = P1 ∪ P2. Note that n = |V≥3| + m1 + 2m2 and m1 + m2 ≥ 3,

where mi = |Pi| for i ∈ {1, 2}. If |V≥3| = 2, then let P2 = {vi1vi2|1 ≤ i ≤ m2}
if P2 6= ∅ and P1 = {wj

1|1 ≤ j ≤ m1} if P1 6= ∅. If P2 6= ∅, then the function

g : V (G) → {0, 1, 2, 3, 4} defined by g(x) = 4 for x ∈ V≥3, g(vi1) = g(vi2) = 0 for

each 1 ≤ i ≤ m2, g(wj
1) = 0 for each 1 ≤ j ≤ m1, is a 3RD-function of G such

that g assigns a weight at least three to every vertex of degree at least 3, and we

have ω(g) ≤ 8 ≤ 3(2+2m2+m1)
2 = 3n

2 . Assume that P2 = ∅. Then m1 ≥ 3 and the

function g : V (G)→ {0, 1, 2, 3, 4} defined by g(x) = 3 for x ∈ V≥3, g(wj
1) = 0 for each

1 ≤ j ≤ m1, is a 3RD-function of G such that g assigns a weight at least three to every

in V≥3, and we have ω(g) ≤ 6 ≤ 3(2+m1)
2 = 3n

2 . Henceforth, we assume |V≥3| ≥ 3. Let

u be a vertex in V≥3 such that |N(u)∩ (
⋃

P∈P2
V (P ))| is maximum. We consider the

following subcases.
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Subcase 3.1. u is adjacent to at least two ear-paths in P2.

Let P ′ = x1x2 and P ′′ = y1y2 be two ear-paths in P2 such that ux1, uy1 ∈ E(G)

and let ax2, by2 ∈ E(G) where a, b ∈ V≥3 \ {u}. First let a 6= b. Assume that G′

is the graph obtained from G by removing the vertices u, y1, x1 and joining x2 to y2
and joining every vertex x in N(u) − {x1, y1} to either a or b provided a or b is not

adjacent to the end-vertex of the ear-path containing x. Clearly G′ ∈ F . By the

induction hypothesis, there exists a 3RD-function f = (V0, V1, V2, V3, V4) of G′ such

that (V≥3−{u}) ⊆ V3∪V4, and ω(f) ≤ 3(n−3)
2 . We may assume that f(a) = f(b) = 4.

Define the function g : V (G) → {0, 1, 2, 3, 4} by g(u) = 4, g(y1) = g(x1) = 0 and

g(x) = f(x) otherwise. Clearly, g is a 3RD-function of G such that g assigns a weight

at least three to every vertex in V≥3, and ω(g) = ω(f) + 4 ≤ 3(n−3)
2 + 4 < 3n

2 .

Now let a = b. Suppose G′ is the graph obtained from G − {x2} by joining x1 to

a. Clearly G′ ∈ F and by the induction hypothesis, there exists a 3RD-function

f = (V0, V1, V2, V3, V4) of G′ such that V≥3 ⊆ V3 ∪ V4, and ω(f) ≤ 3(n−1)
2 . We may

assume that f(u) = f(a) = 4. Define the function g : V (G) → {0, 1, 2, 3, 4} by

g(x2) = 0 and g(x) = f(x) otherwise. Clearly, g is a 3RD-function of G such that g

assigns a weight at least three to every vertex in V≥3, and ω(g) = ω(f) ≤ 3(n−1)
2 < 3n

2 .

Subcase 3.2. u is adjacent to exactly one V≥3-ear path in P2.

Let P ′ = x1x2 be a V≥3-ear path in P2 such that ux1 ∈ E(G) and let ax2 ∈ E(G)

where a ∈ V≥3 − {u}. By the choice of u, we deduce that each vertex in V≥3 is

adjacent to at most one V≥3-ear path in P2 and so each vertex in V≥3 is adjacent to

at least two V≥3-ear paths in P1. Simple verification on the number of edges between

V≥3 and
⋃

P∈P1
V (P ) imply that |V≥3| ≤ m1. Let A′ = {u ∈ V≥3 | u is adjacent to an

end-vertex of a V≥3-ear path in P2} and A′′ = V≥3−A′. Again, by simple verification

on the number of edges between A′ and
⋃

P∈P2
V (P ), we imply that |A′| ≤ 2m2.

Define the function g : V (G) → {0, 1, 2, 3, 4} by g(x) = 4 for x ∈ A′, g(x) = 3 for

x ∈ A′′ and g(x) = 0 otherwise. It is easy to see that g is a 3RD-function of G that

assigns a weight at least three to every vertex in V≥3 and we have

ω(g) ≤ 4|A′|+ 3|A′′|

= 3|V≥3|+ |A′|

≤ 3
2 |V≥3|+

3
2m1 + 2m2

<
3(|V≥3|+m1+2m2)

2

= 3n
2 .

Subcase 3.3. P = P1.

Since G ∈ F , G is obtained from a connected loopless multigraph G′ with minimum

degree at least 3, by subdividing each edge of G′ once. Clearly |E(G′)| ≥ 3
2 |V (G′)|

and so n(G) = |V (G′)| + |E(G′)| ≥ 5
2 |V (G′)|. Define f : V (G) → {0, 1, 2, 3, 4} by

f(x) = 3 for x ∈ V (G′) and f(x) = 0 otherwise. Clearly f is a 3RD-function of G
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such that f assigns a weight at least three to every vertex in V≥3, and

ω(f) = 3|V (G′)| < 15

4
|V (G′)| ≤ 3n

2
,

and this completes the proof. 2

Theorem 1. For any connected n-vertex graph G with δ(G) ≥ 2,

γ[3R](G) ≤ 3n

2
.

This bound is sharp for C4, C8.

Proof. The proof is by induction on n. If n = 6 and ∆(G) 6= 3, then the result

follows by Propositions A and B. If n = 6, ∆(G) = 3, then let v be a vertex with

degree 3 and V (G) − N [v] = {a, b}. If a and b are not adjacent, then (V (G) −
N(v), ∅, ∅, N(v), ∅) is a 3RD-function of weight 9. If a and b are not adjacent, then

(V (G)−{a, v}, ∅, ∅, ∅, {a, v}) is a 3RD-function of weight 8. In both cases γ[3R](G) ≤
3n
2 . Suppose n ≥ 7 and the result holds for all graphs G for order smaller than n

with δ(G) ≥ 2. Let G be a graph of order n ≥ 7 and δ(G) ≥ 2. Since γ[3R](G) ≤
γ[3R](G− e) for every e ∈ E(G), we may assume that |E(G)| is as small as possible.

If G is disconnected and G1, G2, . . . , Gt are the components of G, then it follows

from the induction hypothesis that γ[3R](Gi) ≤ 3|V (Gi)|
2 for each i and so γ[3R](G) =∑t

i=1 γ[3R](Gi) ≤
∑t

i=1
3|V (Gi)|

2 = 3n
2 . Let G be connected. If ∆(G) = 2, then the

result follows by Proposition B. Assume that ∆(G) ≥ 3. Let V≥3 = {v ∈ V (G) |
deg(v) ≥ 3} and V≤2 = {v ∈ V (G) | deg(v) = 2}. Consider the V≥3-ear paths

and associated notations defined in the proof of by Proposition 2. Note that V≥3 =⋃
P∈P XP , V≥3∪

⋃
P∈P V (P ) is a partition of V (G) and 1 ≤ |XP | ≤ 2 for each P ∈ P.

We consider the following cases.

Case 1. There exists a V≥3-ear path P such that δ(G− V (P )) ≤ 1.

This implies that |XP | = 1 and since G is simple we have |V (P )| ≥ 2. Suppose

that XP = {a} and NG(a) − V (P ) = {b}. Then there exists the unique V≥3-ear

path P ′ such that b is an end-vertex of P ′. Let G′ = G − (V (P ) ∪ V (P ′) ∪ {a}).
Then δ(G′) ≥ 2 and by the induction hypothesis γ[3R](G

′) ≤ 3|V (G′)|
2 . On the other

hand, since G′′ = G[V (P )∪V (P ′)∪{a}] ∼= C|V (P )|+1,|V (P ′)|, we have γ[3R](G[V (P )∪
V (P ′)∪{a}]) ≤ 3|V (P )∪V (P ′)∪{a}|

2 , By Proposition 1. If f is a γ[3R](G
′)−function and

g is a γ[3R](G
′′)-function, then the function h defined on V (G) by h(x) = f(x) for

x ∈ V (G′) and h(x) = g(x) for x ∈ V (G′′), is a 3RD-function on G and we have

γ[3R](G) ≤ γ[3R](G
′) + γ[3R](G

′′)

≤ 3|V (G′)|
2 + 3|V (P )∪V (P ′)∪{a}|

2

= 3n
2 .
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Case 2. For each V≥3-ear path P ∈ P, δ(G− V (P )) ≥ 2.

It follows that |XP | = 2 for each V≥3-ear path P ∈ P. If P =
⋃7

i=1 Pi, then G ∈ F
and the result follows from Proposition 2. Assume that P 6=

⋃7
i=1 Pi and let Q ∈

P\
⋃7

i=1 Pi. Suppose G′ = G−V (Q). By Proposition C and the induction hypothesis

we have γ[3R](Q) ≤ 3|V (Q)|
2 and γ[3R](G

′) ≤ 3|V (G′)|
2 . If f is a γ[3R](G

′)-function

and g is a γ[3R](Q)-function, then the function h defined on V (G) by h(x) = f(x)

for x ∈ V (G′) and h(x) = g(x) for x ∈ V (Q), is a 3RD-function of G and hence

γ[3R](G) ≤ γ[3R](G
′) + γ[3R](Q) ≤ 3n

2 . 2
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