Weak Roman domination stable graphs upon edge addition

P. Roushini Leely Pushpam ${ }^{\dagger}$, N. Srilakshmi*
Department of Mathematics, D.B. Jain College (Affiliated to University of Madras), Chennai - 600 097, Tamil Nadu, India
${ }^{\dagger}$ roushinip@yahoo.com
*srilakshmi_murali@yahoo.com

Received: 11 April 2022; Accepted: 14 June 2022
Published Online: 20 June 2022

Abstract

A Roman dominating function (RDF) on a graph G is a function f : $V(G) \rightarrow\{0,1,2\}$ such that every vertex with label 0 has a neighbor with label 2 . A vertex u with $f(u)=0$ is said to be undefended if it is not adjacent to a vertex with $f(v)>0$. The function $f: V(G) \rightarrow\{0,1,2\}$ is a weak Roman dominating function (WRDF) if each vertex u with $f(u)=0$ is adjacent to a vertex v with $f(v)>0$ such that the function $f^{\prime}: V(G) \rightarrow\{0,1,2\}$ defined by $f^{\prime}(u)=1, f^{\prime}(v)=f(v)-1$ and $f^{\prime}(w)=f(w)$ if $w \in V-\{u, v\}$, has no undefended vertex. A graph G is said to be Roman domination stable upon edge addition, or just γ_{R}-EA-stable, if $\gamma_{R}(G+e)=$ $\gamma_{R}(G)$ for any edge $e \notin E(G)$. We extend this concept to a weak Roman dominating function as follows: A graph G is said to be weak Roman domination stable upon edge addition, or just γ_{r}-EA-stable, if $\gamma_{r}(G+e)=\gamma_{r}(G)$ for any edge $e \notin E(G)$. In this paper, we study γ_{r}-EA-stable graphs, obtain bounds for γ_{r}-EA-stable graphs and characterize γ_{r}-EA-stable trees which attain the bound.

Keywords: Weak Roman dominating function, weak Roman domination, stable
AMS Subject classification: 05C69

1. Introduction

Cockayne et al. [6] defined a Roman dominating function (RDF) in a graph G to be a function $f: V(G) \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of a Roman dominating function is the value $w(f)=\sum_{u \in V} f(u)$. The minimum weight of a Roman dominating function of a graph G is called the Roman domination number

[^0]of G and denoted by $\gamma_{R}(G)$. For more details on Roman domination and its variations we refer the reader to the recent two book chapters $[2,5]$ and survey paper [3, 4]. Henning et al. [9] defined a weak Roman dominating function as follows: For a graph G, let $f: V(G) \rightarrow\{0,1,2\}$ be a function. A vertex u with $f(u)=0$ is said to be undefended with respect to f if it is not adjacent to a vertex v with the positive weight. A function $f: V(G) \rightarrow\{0,1,2\}$ is said to be a weak Roman dominationg function (WRDF) if each vertex u with $f(u)=0$ is adjacent to a vertex v with $f(v)>0$ such that the function $f^{\prime}: V(G) \rightarrow\{0,1,2\}$ defined by $f^{\prime}(u)=1, f^{\prime}(v)$ $=f(v)-1$ and $f^{\prime}(w)=f(w)$ if $w \in V-\{u, v\}$, has no undefended vertex. We say that v defends u. The weight $w(f)$ of f is defined to be $\sum_{u \in V} f(u)$. The minimum weight of a weak Roman dominating function of a graph G is called the weak Roman domination number of G and denoted by $\gamma_{r}(G)$. A WRDF with weight $\gamma_{r}(G)$ is called a $\gamma_{r}(G)$-function. This concept of weak Roman domination as suggested by Henning et al. [9] is an attractive alternative for Roman domination as it further reduces the weight of the Roman dominating function. Weak Roman domination in graphs has been studied in [10-12]. A weak Roman dominating function f can also be written as $f=\left(V_{0}, V_{1}, V_{2}\right)$ where $V_{i}=\{v \mid f(v)=i\}, i=0,1,2$. Let $v \in V_{1} \cup V_{2}$. A vertex $w \in N(v) \cap V_{0}$ is said to be in the dependent set of v, denoted by $D_{G}(v)$ if w is defended by v alone.
M. Chellali and N. J. Rad [1] introduced the concept of Roman domination stable graphs upon edge addition or just γ_{R}-EA-stable, if addition of any extra edge does not affect the Roman domination number, that is $\gamma_{R}(G+e)=\gamma_{R}(G)$ for any edge $e \notin E(G)$. We extend this concept to a weak Roman dominating function as follows. A graph G is said to be weak Roman domination stable upon edge addition, or just γ_{r}-EA-stable, if $\gamma_{r}(G+e)=\gamma_{r}(G)$ for any edge $e \notin E(G)$. It is clear that $\gamma_{r}(G)-1 \leq$ $\gamma_{r}(G+e) \leq \gamma_{r}(G)$. In this paper, we study γ_{r}-EA-stable graphs, obtain bounds for γ_{r}-EA-stable graphs and characterize γ_{r}-EA-stable trees which attain the bound.

2. Notation

For notation and graph theoretic terminology, we in general follow [7, 8]. Throughout this paper, we consider only simple and connected graphs. Let G be a graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ of G is denoted by n. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V(G) \mid u v \in E(G)\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. The degree of a vertex v in a graph G is the number of edges that are incident to the vertex v and is denoted by $\operatorname{deg}(v)$. The minimum and maximum degree of a graph G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$. A set S of vertices is called independent if no two vertices in S are adjacent. A simple graph in which every pair of distinct vertices are adjacent is called a complete graph. A clique of a simple graph G is a subset S of V such that $G[S]$ is complete. A connected graph with exactly one cycle is called an unicyclic graph. For two positive integers m, n, the complete bipartite graph $K_{m, n}$ is the graph with partition $V(G)=V_{1} \cup V_{2}$ such that $\left|V_{1}\right|=m,\left|V_{2}\right|=n$ and such that $G\left[V_{i}\right]$ has no
edges for $i=1,2$, and every two vertices belonging to different partition sets are adjacent to each other. A maximal path is a path in which no vertex can be added further to make it longer.

3. Some Standard Graphs

In this section we investigate paths, cycles and complete bipartite graphs that are γ_{r}-EA-stable. We state the following theorem proved in [9]

Theorem 1. [9] For $n \geq 4, \gamma_{r}\left(C_{n}\right)=\gamma_{r}\left(P_{n}\right)=\left\lceil\frac{3 n}{7}\right\rceil$.

In order to investigate paths and cycles that are γ_{r}-EA-stable, we first define a family \mathcal{G} of unicyclic graphs and subsequently prove two lemmas. A unicyclic graph $G \in \mathcal{G}$ if the following holds.
(i) $\Delta(G)=3$.
(ii) At most two vertices in G are of degree 3 .
(iii) If two vertices are of degree 3, then both are in the cycle and are adjacent.

We also define two subfamilies \mathcal{G}_{1} and \mathcal{G}_{2} of \mathcal{G} as follows. A unicyclic graph G with cycle C_{k} is in \mathcal{G}_{1} if $k=n-2$ and is in \mathcal{G}_{2} if $k=n-1$.

Lemma 1. Let $G \in \mathcal{G}_{1}$. Then $\gamma_{r}(G)=\left\lceil\frac{3 n}{7}\right\rceil$.
Proof. It is a simple exercise to verify the result for $n \leq 14$. Suppose that $n \geq 15$. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{k}, x, y\right\}$ where $v_{i}, 1 \leq i \leq k$ are on the cycle C_{k} and x, y are not in C_{k} and are adjacent to v_{1} and v_{k} respectively. Let f be the γ_{r}-function of G. Since P_{n} is a spanning subgraph of $G, \gamma_{r}(G) \leq \gamma_{r}\left(P_{n}\right)$. Thus, $\gamma_{r}(G) \leq\left\lceil\frac{3 n}{7}\right\rceil$. Now to safeguard the vertices $v_{i}, 1 \leq i \leq 6$ and $v_{j}, k-5 \leq j \leq k$ and x, y, f will assign a total weight of at least 6 . Hence, $\gamma_{r}(G) \geq 6+\gamma_{r}\left(P_{k-12}\right) \geq\left\lceil\frac{3(k-12)}{7}\right\rceil+6 \geq$ $\left\lceil\frac{3(n-14)}{7}\right\rceil+6=\left\lceil\frac{3 n}{7}\right\rceil$. Thus, $\gamma_{r}(G)=\left\lceil\frac{3 n}{7}\right\rceil$.

Lemma 2. Let $G \in \mathcal{G}_{2}$. Then $\gamma_{r}(G)=\left\{\begin{array}{l}\left\lfloor\frac{3 n}{7}\right\rfloor, \text { if } n \equiv 5(\bmod 7), n \geq 12 \\ \left\lceil\frac{3 n}{7}\right\rceil, \text { if } n \not \equiv 5(\bmod 7), n \geq 11 .\end{array}\right.$
Proof. It is a simple exercise to verify the result for $n \leq 11$. Suppose that $n \geq 12$. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{k}, x\right\}$, where $v_{i}, 1 \leq i \leq k$, are on the cycle C_{k} and x is not in C_{k} adjacent to v_{1}. Since P_{n} is a spanning subgraph of $G, \gamma_{r}(G) \leq\left\lceil\frac{3 n}{7}\right\rceil$. Let f be a γ_{r}-function of G. Now, to safeguard the vertices $v_{i}, 1 \leq i \leq 6, v_{j}, k-4 \leq j \leq k$
and x, f will assign a total weight of at least 5 . Hence, $\gamma_{r}(G) \geq 5+\gamma_{r}\left(P_{k-11}\right) \geq$ $5+\left\lceil\frac{3(k-11)}{7}\right\rceil \geq 5+\left\lceil\frac{3(n-12)}{7}\right\rceil$.
When $n \equiv 5(\bmod 7), \gamma_{r}(G) \geq\left\lfloor\frac{3 n}{7}\right\rfloor$ and when $n \not \equiv 5(\bmod 7), \gamma_{r}(G) \geq\left\lceil\frac{3 n}{7}\right\rceil$. Hence,

$$
\gamma_{r}(G)=\left\{\begin{array}{ll}
\left\lfloor\frac{3 n}{7}\right\rfloor, & \text { if } n \equiv 5 \\
(\bmod 7), n \geq 12 \\
\left\lceil\frac{3 n}{7}\right\rceil, & \text { if } n \not \equiv 5
\end{array}(\bmod 7), n \geq 11 .\right.
$$

Lemma 3. Let $G \in \mathcal{G} \backslash\left(\mathcal{G}_{1} \cup \mathcal{G}_{2}\right)$, where $n \equiv 0,2,4,6(\bmod 7)$. Then $\gamma_{r}(G)=\left\lceil\frac{3 n}{7}\right\rceil$

Proof. We prove the result by induction on n. It is a simple exercise to verify that the result is true for graphs with $n \leq 11$. Suppose that the result is true for graphs of order at most $n-1, n \geq 12$. Let G be a graph of order n. Since P_{n} is a spanning subgraph of $G, \gamma_{r}(G) \leq\left\lceil\frac{3 n}{7}\right\rceil$.
Case (i). $n \equiv 0(\bmod 7)$.
In this case, $\gamma_{r}(G) \leq \frac{3 n}{7}$. Remove a leaf vertex from G to obtain a graph G^{\prime}. Then, $\left|V\left(G^{\prime}\right)\right|=n-1 \equiv 6(\bmod 7)$ and $G^{\prime} \in \mathcal{G}$ or G^{\prime} is a cycle. If either $G^{\prime} \in \mathcal{G}_{1} \cup \mathcal{G}_{2}$ or G^{\prime} is a cycle, then by Theorem $1, \gamma_{r}\left(G^{\prime}\right)=\left\lceil\frac{3(n-1)}{7}\right\rceil$. If $G^{\prime} \in \mathcal{G} \backslash\left(\mathcal{G}_{1} \cup \mathcal{G}_{2}\right)$, then by induction hypothesis, $\gamma_{r}\left(G^{\prime}\right)=\left\lceil\frac{3(n-1)}{7}\right\rceil$. Hence, $\gamma_{r}(G) \geq\left\lceil\frac{3(n-1)}{7}\right\rceil=\frac{3(n-1)+3}{7}=\frac{3 n}{7}$. Thus, $\gamma_{r}(G)=\frac{3 n}{7}$.
Case (ii). $n \equiv 2(\bmod 7)$.
In this case, $\gamma_{r}(G) \leq \frac{3 n+1}{7}$. Remove a leaf vertex and a vertex adjacent to it from G to obtain a graph G^{\prime}. Then, $\left|V\left(G^{\prime}\right)\right|=n-2 \equiv 0(\bmod 7)$ and $G^{\prime} \in \mathcal{G}$ or G^{\prime} is a cycle. If either $G^{\prime} \in \mathcal{G}_{1} \cup \mathcal{G}_{2}$ or G^{\prime} is a cycle, then by Theorem $1, \gamma_{r}\left(G^{\prime}\right)=\left\lceil\frac{3(n-2)}{7}\right\rceil$. If $G^{\prime}=\mathcal{G} \backslash\left(\mathcal{G}_{1} \cup \mathcal{G}_{2}\right)$, then by induction hypothesis, $\gamma_{r}\left(G^{\prime}\right)=\left\lceil\frac{3(n-2)}{7}\right\rceil$. Hence, $\gamma_{r}(G) \geq\left\lceil\frac{3(n-2)}{7}\right\rceil+1=\frac{3 n+1}{7}$. Thus, $\gamma_{r}(G)=\frac{3 n+1}{7}=\left\lceil\frac{3 n}{7}\right\rceil$.
Case (iii). $n \equiv 4(\bmod 7)$.
In this case, $\gamma_{r}(G) \leq \frac{3 n+2}{7}$. As discussed in Case (ii), we obtain a graph G^{\prime} by removing a leaf vertex and a vertex adjacent to it. Also, $\gamma_{r}(G) \geq \gamma_{r}\left(G^{\prime}\right)+1 \geq$ $\left\lceil\frac{3(n-2)}{7}\right\rceil+1=\frac{3 n+2}{7}$. Thus, $\gamma_{r}(G)=\frac{3 n+2}{7}=\left\lceil\frac{3 n}{7}\right\rceil$.
Case (iv). $n \equiv 6(\bmod 7)$.
In this case, $\gamma_{r}(G) \leq \frac{3 n+2}{7}$. A similar argument as in Case (ii) holds and hence $\gamma_{r}(G) \geq \gamma_{r}\left(G^{\prime}\right)+1 \geq\left\lceil\frac{3(n-2)}{7}\right\rceil+1=\frac{3 n+3}{7}$. Thus, $\gamma_{r}(G)=\frac{3 n+3}{7}=\left\lceil\frac{3 n}{7}\right\rceil$.

Theorem 2. Paths P_{n} are γ_{r} - EA-stable if and only if $n \equiv 0,2,4,6(\bmod 7)$.

Proof. Let $n \equiv 1,3,5(\bmod 7)$ and $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Clearly, P_{3} is not $\gamma_{r^{-}}$ EA-Stable. When $n=5,8,10$, join the vertices v_{1} and v_{3}. Clearly, $\gamma_{r}\left(P_{n}+v_{1} v_{3}\right)=2,3$ or 4 according as $n=5,8$ or 10 . Thus, $\gamma_{r}\left(P_{n}+v_{1} v_{3}\right)<\gamma_{r}\left(P_{n}\right)$ which implies that P_{n} is not γ_{r}-EA-stable. When $n \geq 11$, join the vertices v_{2} and v_{n}. Then $P_{n}+v_{2} v_{n} \in \mathcal{G}_{2}$ and $\gamma_{r}\left(P_{n}+v_{2} v_{n}\right)<\left\lfloor\frac{3 n}{7}\right\rfloor<\gamma_{r}\left(P_{n}\right)$. Thus, P_{n} is not γ_{r}-EA-stable. Let $n \equiv 0,2,4,6(\bmod 7)$. Joining any two vertices of P_{n} by an edge e will result in a graph which will be in \mathcal{G}. If $P_{n}+e \in \mathcal{G}_{1} \cup \mathcal{G}_{2}$, then by Lemma 1 and Lemma 2, $\gamma_{r}\left(P_{n}+e\right)=\gamma_{r}\left(P_{n}\right)=\left\lceil\frac{3 n}{7}\right\rceil$. If $P_{n}+e \in \mathcal{G} \backslash\left(\mathcal{G}_{1} \cup \mathcal{G}_{2}\right)$, then by Lemma 3 we have $\gamma_{r}\left(P_{n}+e\right)=\gamma_{r}\left(P_{n}\right)=\left\lceil\frac{3 n}{7}\right\rceil$. Thus, P_{n} is γ_{r}-EA-stable when $n \equiv 0,2,4,6$ $(\bmod 7)$.

Theorem 3. Cycles C_{n} are γ_{r}-EA-stable if and only if $n \equiv 0,2,4,6(\bmod 7)$.
Proof. Let $C_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right)$. If $n \equiv 1,3,5(\bmod 7)$, join the vertices v_{1} and v_{n-1} by an edge e. Then, $\gamma_{r}\left(C_{n}\right)=\left\lceil\frac{3 n}{7}\right\rceil$. In $C_{n}+e$, any γ_{r}-function of $C_{n}+e$ will assign a total weight of 1 to the vertices v_{1}, v_{n}, v_{n-1}. Considering the path $Q=\left(v_{n}, v_{1}, v_{2}, \ldots, v_{n-2}\right)$ on $n-1$ vertices, any γ_{r}-function of $C_{n}+e$ will assign a total weight of $\left\lceil\frac{3(n-1)}{7}\right\rceil$ to Q. Thus, $\gamma_{r}\left(C_{n}+e\right)=\left\lceil\frac{3(n-1)}{7}\right\rceil=\frac{3(n-1)}{7}$ or $\frac{3(n-1)+1}{7}$ or $\frac{3(n-1)+2}{7}$. That is $\gamma_{r}\left(C_{n}+e\right)=\frac{3 n-3}{7}$ or $\frac{3 n-2}{7}$ or $\frac{3 n-1}{7}$ according as $n \equiv 1$ or 3 or 5 $(\bmod 7)$. But $\gamma_{r}\left(C_{n}\right)=\frac{3 n+4}{7}$ or $\frac{3 n+5}{7}$ or $\frac{3 n+6}{7}$ according as $n \equiv 1$ or 3 or $5(\bmod 7)$. Thus, $\gamma_{r}\left(C_{n}+e\right)<\gamma_{r}\left(C_{n}\right)$ when $n \equiv 1,3,5(\bmod 7)$.
Let $n \equiv 0,2,4,6(\bmod 7)$. Join any two non adjacent vertices of P_{n} by an edge e. Since C_{n} is a spanning subgraph of $C_{n}+e, \gamma_{r}\left(C_{n}+e\right) \leq\left\lceil\frac{3 n}{7}\right\rceil$.
Case (i). $n \equiv 0(\bmod 7)$.
In this case $\gamma_{r}\left(C_{n}+e\right) \leq \frac{3 n}{7}$. Remove a vertex of degree 2 from $C_{n}+e$ to obtain a graph G^{\prime}. Then, $\left|V\left(G^{\prime}\right)\right|=n-1 \equiv 6(\bmod 7)$ and $G^{\prime} \in \mathcal{G}$ or G^{\prime} is C_{n-1}. By Lemma 1, Lemma 2 and Theorem 1, $\gamma_{r}\left(G^{\prime}\right)=\left\lceil\frac{3(n-1)}{7}\right\rceil$. Hence, $\gamma_{r}\left(C_{n}+e\right) \geq\left\lceil\frac{3(n-1)}{7}\right\rceil=$ $\frac{3(n-1)+3}{7}=\frac{3 n}{7}$. Thus, $\gamma_{r}\left(C_{n}+e\right)=\frac{3 n}{7}$.
Case (ii). $n \equiv 2(\bmod 7)$.
In this case $\gamma_{r}\left(C_{n}+e\right) \leq \frac{3 n+1}{7}$. Remove two adjacent vertices of degree two in $C_{n}+e$ to obtain a graph G^{\prime}. Then $\left|V\left(G^{\prime}\right)\right|=n-2 \equiv 0(\bmod 7)$ and $G^{\prime} \in \mathcal{G}$ or G^{\prime} is C_{n-2}. By Lemma 1, Lemma 2 and Theorem 1, $\gamma_{r}\left(G^{\prime}\right)=\left\lceil\frac{3(n-2)}{7}\right\rceil$. Hence, $\gamma_{r}\left(C_{n}+e\right) \geq\left\lceil\frac{3(n-2)}{7}\right\rceil+1 \geq \frac{3(n-2)}{7}+1=\frac{3 n+1}{7}$. Thus, $\gamma_{r}\left(C_{n}+e\right)=\frac{3 n+1}{7}$.
A similar argument holds for $n \equiv 4,6(\bmod 7)$. When $n \equiv 4(\bmod 7), \gamma_{r}\left(C_{n}\right)=$ $\gamma_{r}\left(C_{n}+e\right)=\frac{3 n+2}{7}$. When $n \equiv 6(\bmod 7), \gamma_{r}\left(C_{n}\right)=\gamma_{r}\left(C_{n}+e\right)=\frac{3 n+3}{7}$. This completes the proof.

Theorem 4. The complete bipartite graphs $G=K_{m, n}, m \leq n, m+n \geq 4$ are γ_{r}-EAstable if and only if $m \neq 3,4$.

Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be a bipartition of $V(G)$. Now, $\gamma_{r}(G)=3$ if $m=3$ and $\gamma_{r}(G)=4$ if $m=4$. Adding the edge $e=x_{1} x_{2}$ in G, we see that $\gamma_{r}(G+e)=2$ if $m=3$ and $\gamma_{r}(G+e)=3$ if $m=4$. Thus, $\gamma_{r}(G+e)<\gamma_{r}(G)$ and G is not γ_{r}-EA-stable.
Suppose that $m \leq 2$. Then, $\gamma_{r}(G)=2$. Since $m+n \geq 4, G \neq P_{3}$. Thus, adding any edge in $K_{m, n}$ will not result in a complete graph. Thus, G is γ_{r}-EA-stable. If $m \geq 5, \gamma_{r}(G)=4$ and adding any edge in G will not decrease the value of $\gamma_{r}(G)$. Hence $\gamma_{r}(G+e)=\gamma_{r}(G)$ for every $e \in E(G)$. Thus G is γ_{r}-EA-stable.

Theorem 5. If G is a γ_{r}-EA-stable graph of order $n \geq 3$, then $\gamma_{r}(G) \leq \frac{n}{2}$.

Proof. Let G be a γ_{r}-EA-stable graph of order $n \geq 3$. Then, clearly $\left|D_{G}(x)\right| \geq 3$ for every $x \in V_{2}$. Hence, $\left|V_{0}\right| \geq 3\left|V_{2}\right|+\left|V_{1}\right|$. Thus

$$
n=\left|V_{2}\right|+\left|V_{0}\right|+\left|V_{1}\right| \geq\left|V_{2}\right|+3\left|V_{2}\right|+2\left|V_{1}\right| \geq 2\left(2\left|V_{2}\right|+\left|V_{1}\right|\right) \geq 2 \gamma_{r}(G)
$$

which leads to the desired bound.

Theorem 6. Paths P_{n} and cycles C_{n} are γ_{r}-EA-stable with $\gamma_{r}(G)=\frac{n}{2}$ if and only if $n=4,6$.

Proof. Suppose that the given graphs are γ_{r}-EA-stable with $\gamma_{r}(G)=\frac{n}{2}$. Since $\gamma_{r}\left(P_{n}\right)=\gamma_{r}\left(C_{n}\right)=\left\lceil\frac{3 n}{7}\right\rceil, 4 \leq n \leq 12$. By Theorems 2 and 3 , we see that $n=4,6$. For $n=4,6, P_{n}$ and C_{n} are clearly γ_{r}-EA-stable and $\gamma_{r}\left(P_{n}\right)=\gamma_{r}\left(C_{n}\right)=\frac{n}{2}$.

4. Split Graphs

In this section we characterize split graphs which are γ_{r}-EA-stable. A graph G with bipartition (X, Y), where X forms a complete graph and the vertices in Y are independent is called a split graph. We also assume that $|X|=r$ and $|Y|=s$. For convenience we define the following: Two vertices u, v in X with $N(u) \cap Y=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $N(v) \cap Y=\left\{v_{1}, v_{2}, v_{3}\right\}$ are said to be associate vertices if the following holds (Refer Figure 1).
(i) Exactly one vertex in $N(u) \cap Y$ say u_{1} and exactly two vertices in $N(v) \cap Y$ say v_{1} and v_{2} have a common neighbor in X.
(ii) $N\left(u_{2}\right)=N\left(u_{3}\right)$ and each vertex in $N\left(u_{2}\right) \backslash\{u\}$ is of degree $r+1$ and each vertex in $N\left(v_{3}\right) \backslash\{v\}$ is of degree r.
(iii) $N\left(u_{1}\right) \backslash\{u\}=N\left(v_{1}\right) \backslash\{v\}=N\left(v_{2}\right) \backslash\{v\}$ and each vertex of $N\left(u_{1}\right) \backslash\{u\}$ is of degree $r+2$.

Figure 1. A split graph illustrating associate vertices

First, we define a family \mathcal{G}_{3} of split graphs as follows. Let $G=G_{1}=\left(X, Y_{1}\right)$ be a split graph with $|X|=r, \Delta\left(G_{1}\right) \geq r+2$ and no associate vertices. Let $x_{1} \in X$ in G_{1} with $\operatorname{deg}\left(x_{1}\right)=\Delta\left(G_{1}\right)$. Remove all the neighbors of x_{1} in Y_{1}. Let $G_{2}=\left(X, Y_{2}\right)$ be the resulting graph. Let $x_{2} \in X$ in G_{2} with $\operatorname{deg}\left(x_{2}\right)=\Delta\left(G_{2}\right) \geq r+2$. Remove all the neighbors of x_{2} in Y_{2} to obtain a graph $G_{3}=\left(X, Y_{3}\right)$. Repeat the process until we get a graph G_{k} such that $\Delta\left(G_{k}\right)<r+2$. Then $G \in \mathcal{G}_{3}$ if G_{k} is K_{r}.

Theorem 7. Let G be a split graph with $\Delta(G) \geq r+2$. Then G is γ_{r}-EA-stable if and only if $G \in \mathcal{G}_{3}$.

Proof. Let G be γ_{r}-EA-stable and let f be a γ_{r}-function of G. Suppose that G has a pair of associate vertices say u, v with $N(u) \cap Y=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $N(v) \cap$ $Y=\left\{v_{1}, v_{2}, v_{3}\right\}$ where $u_{i}, v_{i}, i=1,2,3$ satisfy the conditions given in the definition of associate vertices. Now f will assign a total weight of 4 to the vertices u_{i}, v_{i}, $i=1,2,3$ and their neighbors in X. Now join u_{2} and u_{3} in G. Then define a function $g: V\left(G+u_{2} u_{3}\right) \rightarrow\{0,1,2\}$ by $g(u)=g(v)=g(z)=1$, where $z \in N\left(u_{1}\right) \backslash\{u\}$ and $g(x)=0$ if $x \in\left\{u_{i}, v_{i}, N\left(u_{i}\right) \backslash\{u\}, N\left(v_{i}\right) \backslash\{v\}\right\}$ and $g(x)=f(x)$ otherwise. Now u defends u_{2}, u_{3} and all their neighbors in X, v defends v_{3} and all its neighbors in X and z defends u_{1}, v_{1}, v_{2} and all their neighbors in X. Hence $\gamma_{r}\left(G+u_{2} u_{3}\right)<\gamma_{r}(G)$, which implies that G is not γ_{r}-EA-stable, a contradiction. Hence G has no associate vertices. Now remove the vertices successively as described in the procedure. Let $G_{k}=\left(X_{k}, Y_{k}\right)$ be the final graph. We claim that $G_{k}=K_{r}$. Equivalently, we prove that $Y=\emptyset$ in G_{k}. Suppose to the contrary that $G_{k} \neq K_{r}$. Suppose that there exists a vertex x in X such that $\operatorname{deg}_{G_{k}}(x)=r+1$. Let y_{1}, y_{2} be the neighbors of x in Y_{k}. Then, there exists a γ_{r}-function f of G_{k} such that $f(x)+f\left(y_{1}\right)+f\left(y_{2}\right)=2$. Since $\Delta(G) \geq r+2$, there is a vertex in X say z such that $\operatorname{deg}_{G}(z) \geq r+2$ and $f(z)=2$. Hence by adding an edge e between z and y_{1} or z and y_{2}, we see that $\gamma_{r}(G+e)<\gamma_{r}(G)$. Hence, G is not γ_{r}-EA-stable, a contradiction.
Suppose that $\operatorname{deg}_{G_{k}}(x) \leq r$ for every $x \in X$. Let $x \in X$ be such that $\operatorname{deg}_{G_{k}}(x)=r$ and y be its neighbor in Y_{k}. Then for any γ_{r}-function f will assign a weight 1 either
to x or to y. In any case adding an edge e between y and z (as mentioned earlier) we see that $\gamma_{r}(G+e)<\gamma_{r}(G)$. Hence G is not γ_{r}-EA-stable, a contradiction. Thus, $G_{k}=K_{r}$ and hence $G \in \mathcal{G}_{3}$.
Conversely, suppose that $G \in \mathcal{G}_{3}$. From the description of \mathcal{G}_{3}, one can easily observe that every time the neighbors of a vertex $x \in X$ in Y with $\operatorname{deg}(x) \geq r+2$ are removed, x is adjacent to at least three vertices in Y. Therefore, any γ_{r}-function f will assign 2 to x and 0 to the neighbors of x which are removed. Hence adding a single edge between any two non adjacent vertices will not alter the γ_{r}-value of G. Hence G is γ_{r}-EA-stable.

Theorem 8. Let G be a split graph with $\Delta(G)=r+1$ and $n \geq 4$. Then G is γ_{r}-EA-stable if and only if the following holds.
(i) If some component H of $G[X, Y]$ is either a P_{3} or a $K_{2, t}, t \geq 2$ then $G[X, Y]=H$.
(ii) $G[X, Y]$ does not contain maximal paths P_{5} (with both ends in Y), P_{7} (with both ends in X) and P_{6}.
(iii) If a maximal path P_{5} (with both ends in X) exists in $G[X, Y]$, then Y does not contain a vertex, where all its neighbors in X are of degree r.

Proof. Suppose that G is γ_{r}-EA-stable. Let f be a γ_{r}-function of G. To prove (i), suppose that H of $G[X, Y]$ is either a P_{3} or a $K_{2, t}, t \geq 2$. Choose f such that $f(v)=2$, where v is a vertex of the P_{3} or $K_{2, t}$ which is in X. Suppose that X contains a vertex of degree $r-1$. If some vertex in $X \backslash\{v\}$ is assigned the value 2 by f, then joining the two vertics of P_{3} or $K_{2, t}$ in X by an edge e, we see that $\gamma_{r}(G+e)=\gamma_{r}(G)-1$ which implies that G is not γ_{r}-EA-stable. Otherwise some vertex of $X \backslash\{v\}$, say x is assigned the value 1 by f such that $\left|D_{G}(x)\right|=1$. Let $D_{G}(x)=\{z\}$. If x is not a guarding vertex, then joining z and v by an edge we see that $\gamma_{r}(G+e)<\gamma_{r}(G)$, as any γ_{r}-function g of $G+e$ will assign 0 to x and $g(w)=f(w)$ for every vertex $w \in V(G) \backslash\{x\}$. Hence G is not γ_{r}-EA-stable, a contradiction. If x is a guarding vertex then some vertex, say y in X exists such that $\left|D_{G}(y)\right|=2$. Then joining y and a vertex of P_{3} or $K_{2, t}$, say u which is in Y by an edge e, we see that $\gamma_{r}(G+e)<\gamma_{r}(G)$, as any γ_{r}-function of $G+e$ will assign 0 to u and 1 to v and $g(w)=f(w)$ for every $w \in V(G) \backslash\{u, v\}$. Hence G is not γ_{r}-EA-stable, a contradiction. Suppose that X contains no vertex of degree $r-1$, then by joining the 2 vertices of P_{3} or $K_{2, t}$ in Y by an edge we see that $\gamma_{r}(G+e)=\gamma_{r}(G)-1$ which implies that G is not γ_{r}-EA-stable, a contradiction. Thus, $G[X, Y]=H$ and hence (i) is proved.
To prove (ii), suppose to the contrary that either a maximal path P_{5} (with both ends in Y) or a maximal path P_{7} (with both ends in X) exist in $G[X, Y]$. Then f will assign a total weight of 3 to the vertices of P_{5} or P_{7}. Joining the $2 n d$ and 5 th vertices in P_{5} or joining the $3 r d$ and 6 th vertices of $P_{7}\left(P_{6}\right)$ will reduce the total weight of these vertices to 2 . Hence G is not γ_{r}-EA-stable, a contradiction. Thus, $(i i)$ is proved.
To prove (iii), suppose to the contrary that a maximal path P_{5} (with both ends in $X)$ exists and Y contains a vertex z such that all its neighbors in X are of degree r. Now f will assign a total weight 2 to the vertices of P_{5}. Choose f such that $f(v)=2$,
where v is the central vertex of P_{5} which is in X. Now f will assign a total weight 1 to all its neighbors in X. Now joining v and z we see that the value of $\gamma_{r}(G+e)$ will reduce by 1 as v defends z and all its neighbors in X. Thus G is not γ_{r}-EA-stable, a contradiction. Hence (iii) is proved.
Conversely suppose the given conditions hold. One can choose a γ_{r}-function $f=$ $\left(V_{0}, V_{1}, V_{2}\right)$ of G such that $V_{2}=\emptyset$ and $D_{G}(x) \neq \emptyset$ for every $x \in V_{1}$. Hence G is γ_{r}-EA-stable.

Theorem 9. Let G be a split graph with $\Delta(G)=r$. Then, G is γ_{r}-EA-stable if and only if either each vertex of X is of degree r or at least two vertices in X are of degree $r-1$.

Proof. If every vertex of X is of degree r, we are through. Otherwise, at least one vertex of X is of degree $r-1$. Since $\Delta(G)=r$, every vertex $y \in Y$ along with its neighbors will induce a complete graph and the vertices in X of degree $r-1$ will induce a complete graph. Hence, clearly, $\gamma_{r}(G)=|Y|+1$. If exactly one vertex in X is of degree $r-1$, then joining that vertex to any vertex in Y by an edge e, we see that $\gamma_{r}(G+e)=|Y|$. Thus, G is not γ_{r}-EA-stable, a contradiction. Thus, the condition given in theorem holds.
Conversely, suppose that one of the conditions hold. Then, it is clear that addition of any edge will not alter the value of $\gamma_{r}(G)$. Hence, G is γ_{r}-EA-stable.

5. Trees

In this section we characterize γ_{r}-EA-stable trees T with $\gamma_{r}(T)=\frac{n}{2}$. For this purpose we first define a family \mathcal{A} of trees as follows. A tree $T \in \mathcal{A}$ if T satisfies the following conditions.
(i) A strong support vertex is adjacent to at most three leaf vertices.
(ii) The length of a pendant path is at most 4 and the length of a non-pendant path is at most 5 .
(iii) The non leaf neighbor of a strong support vertex of degree three is not a support vertex.
(iv) The non leaf neighbor of a weak support vertex of degree two is not a strong support vertex.

We next define a family \Im of trees as follows. Let $T=T_{1} \in \mathcal{A}$. We perform the following operations successively in T_{1}.
\mathcal{O}_{1} : Consider a weak support vertex w of degree two. Remove the edge between w and its non-leaf neighbor.
\mathcal{O}_{2} : Consider a strong support vertex w of degree 3. Remove all the edges incident with its non-leaf neighbor (except the edge which is incident with w).
\mathcal{O}_{3} : Consider a strong support vertex w which is adjacent to exactly 3 leaf vertices where at least one neighbor of w is a non strong support adjacent to exactly three leaf vertices. Remove all the non pendant edges incident with w such that the other end of these edges are non strong supports adjacent to exactly three leaf vertices. If some component of the resulting graph, say T_{2} is either not in \mathcal{A} or a path P_{m}, $m \neq 2,4$, then we stop the process. Also if some component of T_{2} is a $H \circ K_{1}$, then operation \mathcal{O}_{1} is not performed in that component. We repeat the process until no such edge (the edges which are mentioned in the operations) remains. Let T_{k} be the final graph. Then $T \in \Im$ if each component of T_{k} is either a K_{2} or a $H \circ K_{1}$ or a $H \circ 3 K_{1}$ subject to the following conditions.
(1) A leaf vertex of a $K_{1,3}$ is not adjacent to the head vertex of a $K_{1,3}$.
(2) For a $K_{1,3}$, at least one leaf vertex is not adjacent to a vertex in a K_{2}.
(3) A vertex in a $H \circ K_{1}$ is not adjacent to the head vertex of a $K_{1,3}$. Further, a leaf vertex of a $H \circ K_{1}$ is not adjacent to a leaf vertex of a $K_{1,3}$.
(4) If for some K_{2} with $V\left(K_{2}\right)=\{a, b\}, a$ is adjacent to a vertex of another K_{2}, then every neighbor of b is a vertex of some K_{2}. None of the vertices of a K_{2} is adjacent to the vertex of a $K_{1,3}$.

Figure 2. A tree $T \in \Im$

In the above figure, the edges that are labeled 1 are removed first and secondly the edges that are labeled 2 are removed and finally the edges that are labeled 3 are removed.

Theorem 10. Let T be a tree of order n. Then T is γ_{r} - EA-stable with $\gamma_{r}(T)=\frac{n}{2}$ if and only if $T \in \Im$.

Proof. Let T be a tree which is γ_{r}-EA-stable and $\gamma_{r}(T)=\frac{n}{2}$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{r}(T)$-function. First, we claim that $T \in \mathcal{A}$. Now, we prove the following claims.

Claim 1. A strong support junction vertex x is adjacent to at most three leaf vertices. Suppose to the contrary that x is adjacent to at least four leaf vertices, then $\left|D_{T}(x)\right| \geq$ 4, which implies that $\gamma_{r}(T) \leq \frac{n}{2}$, a contradiction.
Claim 2. The length of a non-pendant path is at most 5 and the length of a pendant path is at most 4.
Let $Q=\left(x, x_{1}, x_{2}, \ldots, x_{m}, y\right)$ be a non-pendant path. Suppose to the contrary that $l(Q) \geq 6$, then $m+1 \geq 6$. Let $f(x)=f(y)=2$. It is clear that x and y can defend x_{1} and x_{m} respectively. Since $\gamma_{r}(T)=\frac{n}{2}, \sum_{i=2}^{m-1} f\left(x_{i}\right)=\left\lceil\frac{3(m-2)}{7}\right\rceil=\frac{m-2}{2}$ which implies that $m=2 j+2,0 \leq j \leq 6$. Since, $m \geq 5,2 \leq j \leq 6$. If $x_{1} \notin D_{T}(x)$, then when $m=2 j, 3 \leq j \leq 7$, we see that $x_{1} \notin D_{T}(w)$ for any $w \in V_{1} \cup V_{2}$ which implies that $\gamma_{r}(T)<\frac{n}{2}$, a contradiction. Thus, $x_{1} \in D_{T}(x)$. Similarly, $x_{m} \in D_{T}(y)$. Let z_{1} and z_{2} be the members of $D_{T}(x)$ not in Q. Now, join the vertices z_{1} and z_{2} and let g be a γ_{r}-function of the resulting graph. Then, $\sum_{i=1}^{m} f\left(x_{i}\right)+f(x)+f(y)+f\left(z_{1}\right)+f\left(z_{2}\right)=$ $\left\lceil\frac{3(m-2)}{7}\right\rceil+4$ and $\sum_{i=1}^{m} g\left(x_{i}\right)+g(x)+g(y)+g\left(z_{1}\right)+g\left(z_{2}\right)=\left\lceil\frac{3(m+1)}{7}\right\rceil+2$ as x will receive the weight 1 under g. Now, for $m=2 j+2,2 \leq j \leq 6$, the above weights will be respectively $\{6,5\},\{7,6\},\{8,7\},\{9,8\},\{10,9\}$. Hence, we see that the value of $\gamma_{r}(T)$ changes upon the addition of the edge z_{1}, z_{2}. Hence, T is not γ_{r}-EA-stable, a contradiction.
Suppose that $f(x)=2, f(y)=1$. It is clear that x can defend x_{1}. As before only 2 members of $D_{T}(x)$ are not in Q. Since $\gamma_{r}(T)=\frac{n}{2},\left|D_{T}(y)\right|=1$ and clearly the members w of $D_{T}(y)$ is not in Q. Further $\sum_{i=2}^{m} f\left(x_{i}\right)+f(y)+f(w)=\left\lceil\frac{3(m+1)}{7}\right\rceil=$ $\frac{m+1}{2}$ implies that $m=2 j-1,0 \leq j \leq 6$. Since $m \geq 5,3 \leq j \leq 6$. Now, join the vertices z_{1} and z_{2} and let g be a γ_{r}-function of the resulting graph. Then, $\sum_{i=1}^{m} f\left(x_{i}\right)+f(x)+f(y)+f\left(z_{1}\right)+f\left(z_{2}\right)+f(w)=\left\lceil\frac{3(m+1)}{7}\right\rceil+2$ and $\sum_{i=1}^{m} g\left(x_{i}\right)+$ $g(x)+g(y)+g\left(z_{1}\right)+g\left(z_{2}\right)+g(w)=\left\lceil\frac{3(m+4)}{7}\right\rceil$ as x will receive the weight 1 under g. Now, for $m=2 j+1,2 \leq j \leq 5$, the above weight will be $\{5,4\},\{6,5\},\{7,6\},\{8,7\}$ respectively. Thus, we see that $\gamma_{r}(T)$ reduces upon the addition of the edge $z_{1} z_{2}$. Hence, T is not γ_{r}-EA-stable, a contradiction.
Suppose that $f(x)=f(y)=1$. Since, $\gamma_{r}(T)=\frac{n}{2},\left|D_{T}(y)\right|=\left|D_{T}(x)\right|=1$ and clearly the members say w_{1}, w_{2} of $D_{T}(x)$ and $D_{T}(y)$ respectively are not in Q. Further $\sum_{i=1}^{m} f\left(x_{i}\right)+f(x)+f(y)+f\left(w_{1}\right)+f\left(w_{2}\right)=\left\lceil\frac{3(m+4)}{7}\right\rceil=\frac{m+4}{2}$ implies that $m=2 j-4$, $0 \leq j \leq 6$. Since $m \geq 5, j=5,6$. Now, join the vertices x_{m} and w_{2} and let g be a γ_{r}-function of the resulting graph. Then $\sum_{i=1}^{m} f\left(x_{i}\right)+f(x)+f(y)+f\left(w_{1}\right)+f\left(w_{2}\right)=$ $\left\lceil\frac{3(m+4)}{7}\right\rceil$ and $g(x)+g(y)+g\left(w_{1}\right)+g\left(w_{2}\right)+\sum_{i=1}^{m} g\left(x_{i}\right)=\left\lceil\frac{3(m+3)}{7}\right\rceil$ where y will defend both w_{2} and x_{m} under the function g. Now, for $m=2 j-4, j=5,6$, the above weights will be $\{5,4\},\{6,5\}$ respectively. Thus, we see that $\gamma_{r}(T)$ reduces upon the addition of the edge $x_{m} w_{2}$. Hence, T is not γ_{r}-EA-stable, a contradiction.
Suppose that $f(x)=2$ and $f(y)=0$. Then x defends x_{1} and choose f such that $f\left(x_{m}\right)=1$ and x_{m} defends y. (If some vertex not in Q defends y, then one can choose f such that $f(y)=1$ which has already been discussed). Since $\gamma_{r}(T)=\frac{n}{2}$, $\sum_{i=2}^{m} f\left(x_{i}\right)+f(y)=\left\lceil\frac{3 m}{7}\right\rceil=\frac{m}{2}$ which implies that $m=2 j, 3 \leq j \leq 6$. Now,
join the vertices z_{1} and z_{2} and let g be a γ_{r}-function of the resulting graph. Then, $\sum_{i=1}^{m} f\left(x_{i}\right)+f(x)+f(y)+f\left(z_{1}\right)+f\left(z_{2}\right)=\left\lceil\frac{3 m}{7}\right\rceil+2$ and $\sum_{i=1}^{m} g\left(x_{i}\right)+g(x)+g(y)+$ $g\left(z_{1}\right)+g\left(z_{2}\right)=\left\lceil\frac{3(m+3)}{7}\right\rceil$. Now for $m=2 j, 3 \leq j \leq 6$, the above weights will be respectively $\{5,4\},\{6,5\},\{7,6\},\{8,7\}$ respectively. Hence $\gamma_{r}\left(T+z_{1} z_{2}\right)<\gamma_{r}(T)$. Thus, we see that $\gamma_{r}(T)$ reduces upon the addition of the edge $z_{1} z_{2}$. Hence, T is not γ_{r}-EA-stable, a contradiction.
Suppose that $f(x)=1$ and $f(y)=0$. Since $\gamma_{r}(T)=\frac{n}{2},\left|D_{T}(x)\right|=1$ and clearly the member $w \in D_{T}(x)$ is not in Q. Also choose f such that $f\left(x_{m}\right)=1$ and x_{m} defends y. Since $\gamma_{r}(T)=\frac{n}{2}, \sum_{i=1}^{m} f\left(x_{i}\right)+f(x)+f(y)+f(w)=\left\lceil\frac{3(m+3)}{7}\right\rceil=\frac{m+3}{2}$ implies that $m=2 j-3,4 \leq j \leq 6$. Now, join the vertices w and x_{1} and let g be a $\gamma_{r^{-}}$ function of the resulting graph. Then $\sum_{i=1}^{m} f\left(x_{i}\right)+f(x)+f(y)+f(w)=\left\lceil\frac{3(m+3)}{7}\right\rceil$, $\sum_{i=1}^{m} g\left(x_{i}\right)+g(x)+g(y)+g(w)=\left\lceil\frac{3(m+2)}{7}\right\rceil$ and $g(v)=f(v)$ for the rest of the vertices. Now for $m=2 j-3,4 \leq j \leq 6$, the above weights are $\{4,3\},\{5,4\}$ and $\{6,5\}$ respectively. Hence, $\gamma_{r}\left(T+w x_{1}\right)<\gamma_{r}(T)$ and thus T is not γ_{r}-EA-stable, a contradiction.
Suppose that $f(x)=f(y)=0$. Choose f such that x_{1} and x_{m} defends x and y respectively. Since $\gamma_{r}(T)=\frac{n}{2}, \sum_{i=1}^{m} f\left(x_{i}\right)+f(x)+f(y)=\left\lceil\frac{3(m+2)}{7}\right\rceil=\frac{m+2}{2}$ implies that, $m=2 j-2,4 \leq j \leq 6$. Now, join the vertices x_{2} and x and let g be a γ_{r}-function of $T+x x_{2}$. Then, $\sum_{i=1}^{m} f\left(x_{i}\right)+f(x)+f(y)=\left\lceil\frac{3(m+2)}{7}\right\rceil, \sum_{i=1}^{m} g\left(x_{i}\right)+g(x)+g(y)=$ $\left\lceil\frac{3(m+1)}{7}\right\rceil$ and $g(v)=f(v)$ for the rest of the vertices. Now, for $m=2 j-2,4 \leq j \leq 6$, the above weights are $\{4,3\},\{5,4\}$ and $\{6,5\}$ respectively. Hence, $\gamma_{r}\left(T+w x_{1}\right)<$ $\gamma_{r}(T)$ and thus T is not γ_{r}-EA-stable, a contradiction.
Next, we claim that the length of a pendant path is at most 4.
Let $Q=\left(x, x_{1}, x_{2}, \ldots, x_{m}=y\right)$ be a pendant path incident at x, where x is a junction vertex and y is a leaf vertex. We claim that $l(Q) \leq 4$. That is $m \leq 4$. Suppose to the contrary that $m \geq 5$. Let $f(x)=2$, then as discussed earlier $x_{1} \in D_{T}(x)$. Let z_{1}, z_{2} be the members of $D_{T}(x)$, not in Q. Since $\gamma_{r}(T)=\frac{n}{2}, \sum_{i=1}^{m} f\left(x_{i}\right)=\left\lceil\frac{3(m-1)}{7}\right\rceil=$ $\frac{m-1}{2}$ implies that $m=2 j+1,2 \leq j \leq 6$. Now join z_{1} and z_{2} and let g be a $\gamma_{r^{-}}$ function of $T+z_{1} z_{2}$. Then, $\sum_{i=1}^{m} f\left(x_{i}\right)+f(x)+f\left(z_{1}\right)+f\left(z_{2}\right)=\left\lceil\frac{3(m-1)}{7}\right\rceil+2$ and $\sum_{i=1}^{m} g\left(x_{i}\right)+g(x)+g\left(z_{1}\right)+g\left(z_{2}\right)=\left\lceil\frac{3(m+2)}{7}\right\rceil$ as x will receive the weight 1 under g, and f and g coincide at all other vertices. Now, for $m=2 j+1,1 \leq j \leq 6$, the above weights will be $\{4,3\},\{5,4\}$ and $\{6,5\},\{7,6\},\{8,7\}$ respectively. Hence, $\gamma_{r}\left(T+z_{1} z_{2}\right)<\gamma_{r}(T)$ and thus T is not γ_{r}-EA-stable, a contradiction.
Suppose that $f(x)=1$, since $\gamma_{r}(T)=\frac{n}{2},\left|D_{T}(x)\right|=1$ and clearly, the member $w \in D_{T}(x)$ is not in Q. Again $\sum_{i=1}^{m} f\left(x_{i}\right)+f(x)+f(w)=\left\lceil\frac{3(m+2)}{7}\right\rceil=\frac{m+2}{2}$ implies that $m=2 j-2,4 \leq j \leq 6$. Now, join the vertices w and x_{1} and let g be a $\gamma_{r^{-}}$ function of $T+w x_{1}$. Then, $\sum_{i=1}^{m} f\left(x_{i}\right)+f(x)+f(w)=\left\lceil\frac{3(m+2)}{7}\right\rceil$ and $\sum_{i=1}^{m} g\left(x_{i}\right)+$ $g(x)+g(w)=\left\lceil\frac{3(m+1)}{7}\right\rceil$ and $g(v)=f(v)$ for the rest of the vertices. Now, for $m=2 j-2,4 \leq j \leq 6$, the above weights are $\{4,3\},\{5,4\}$ and $\{6,5\}$ respectively.

Hence, $\gamma_{r}\left(T+w x_{1}\right)<\gamma_{r}(T)$ and thus T is not γ_{r}-EA-stable, a contradiction.
If $f(x)=0$, then some vertex not in Q defends x and one can choose f such that $f(x)=1$ which has already been discussed.
Claim 3. If x is a strong support vertex of degree 3, then its non-leaf neighbor is not a support vertex.
Suppose to the contrary that x is adjacent to a support vertex y, then join the two leaf vertices of x by an edge e. Clearly, $\gamma_{r}(T+e)<\gamma_{r}(T)$, a contradiction. which implies that T is not γ_{r}-EA-stable.
Claim 4. If x is a weak support vertex of degree 2, then its non-leaf neighbor is not a strong support vertex.
Suppose to the contrary that x is adjacent to a strong support vertex y, then add an edge e between the leaf vertex incident with x and the head vertex of y. Clearly, $\gamma_{r}(T+e)<\gamma_{r}(T)$, a contradiction. which implies that T is not γ_{r}-EA-stable. Hence, $T=T_{1} \in \mathcal{A}$.
Now we perform the operations $\mathcal{O}_{1}, \mathcal{O}_{2}$ and \mathcal{O}_{3} in T_{1}. Let T_{2} be the resulting graph. Suppose that some component of T_{2} say, T^{*} is such that either $T^{*} \notin \mathcal{A}$ or $T^{*}=P_{m}$, $m \neq 2$, 4. If $T^{*} \notin \mathcal{A}$, then either there exist two non adjacent vertices x and y such that $\gamma_{r}\left(T^{*}+x y\right)<\gamma_{r}\left(T^{*}\right)$ or $\gamma_{r}\left(T^{*}\right)<\frac{n}{2}$. Hence, either $\gamma_{r}(T+x y)<\gamma_{r}(T)$ or $\gamma_{r}(T)<\frac{n}{2}$. Thus, in either case we get a contradiction. Suppose that $T^{*}=P_{m}$, $m \neq 2,4$. Let $P_{m}=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$. If m is odd and $m \geq 7$, then clearly $\gamma_{r}(T)<\frac{n}{2}$, a contradiction. If $m=3$ or 5 , then joining u_{1} and u_{3} by an edge e, we see that $\gamma_{r}(T+e)<\gamma_{r}(T)$, a contradiction. Suppose that m is even and $m \geq 8$. If $m \geq 14$, then as $\gamma_{r}\left(P_{m}\right)=\left\lceil\frac{3 m}{7}\right\rceil$, we see that $\gamma_{r}(T)<\frac{n}{2}$, a contradiction. If $m=6$, then one end of P_{m} say z is either adjacent to a vertex in a K_{2} or a vertex of a $K_{1,3}$. If z is adjacent to a vertex in a K_{2} with $V\left(K_{2}\right)=\{a, b\}$, where a and z are adjacent, then $\gamma_{r}(T+z b)<\gamma_{r}(T)$, a contradiction. If z is adjacent to the head vertex of a $K_{1,3}$, say a, then there exists a vertex in P_{6}, say b such that $b \in V_{1}$ and $D_{T}(b)=\emptyset$. Now $\gamma_{r}(T+a b)<\gamma_{r}(T)$, a contradiction. If z is adjacent to the leaf vertex of a $K_{1,3}$, then $\gamma_{r}(T+a b)<\gamma_{r}(T)$, where a and b are the leaf vertices not adjacent to z, a contradiction.
If $8 \leq m \leq 12$, then by Theorem $3, P_{m}$ is not γ_{r}-EA-stable which implies that T is not γ_{r}-EA-stable, a contradiction. Thus, each component of T_{2} is in \mathcal{A}. Again we perform the operations $\mathcal{O}_{1}, \mathcal{O}_{2}$ and \mathcal{O}_{3} in T_{2} to obtain a graph T_{3} and check whether each component of T_{3} is in \mathcal{A} and none of the components of T_{3} is a $P_{m}, m \neq 2,4$. If so, as before either $\gamma_{r}(T)<\frac{n}{2}$ or T is not γ_{r}-EA-stable. Otherwise, we repeat the process until no such edges remain (as mentioned in the operations). Let T_{k} be the final graph. We claim that T_{k} is either a $H \circ 3 K_{1}$ or a $H \circ K_{1}$ or a K_{2}.
Suppose to the contrary that some component of T_{k} is a $P_{m}, m \neq 2,4$. If $m \neq 1$, then as before we get a contradiction. Suppose that $m=1$. Let $V\left(P_{1}\right)=\{w\}$. If $f(w)=1$, then every neighbor of w is either a leaf vertex of a $H \circ 3 K_{1}$ or a K_{2}. Then joining w to a leaf vertex of a K_{2} or a head vertex of the $K_{1,3}$, we see that $\gamma_{r}(T+e)$ reduces by 1 and hence $\gamma_{r}(T+e)<\gamma_{r}(T)$, a contradiction. Suppose that $f(w)=0$. If w is adjacent to the head vertex of the $K_{1,3}$, then $\gamma_{r}(T)<\frac{n}{2}$, a contradiction.

Otherwise there exists another P_{1} in T_{k} with $V\left(P_{1}\right)=\{z\}$ such that $f(z)=0$ and both w and z are adjacent to a leaf vertex of a $K_{1,3}$. Then joining the other two leaf vertices of the said $K_{1,3}$ will reduce the γ_{r}-value by 1 , a contradiction. Hence, each component of T_{k} is either a $H \circ 3 K_{1}$ or a $H \circ K_{1}$ or K_{2}.
Now we claim that at least one leaf vertex of a $K_{1,3}$ is not adjacent to a vertex in a K_{2}. If not, all the leaf vertices are adjacent to a K_{2} and the head vertex of the said $K_{1,3}$ will receive a weight 1 and all its leaf vertices will receive a weight 0 under f which implies that $\gamma_{r}(T)<\frac{n}{2}$, a contradiction.
Next we claim that a leaf vertex of a $K_{1,3}$, say H is not adjacent to the head vertex of a $K_{1,3}$. If so, then joining the two leaf vertices of H by an edge e, we see that $\gamma_{r}(T+e)<\gamma_{r}(T)$, as the sum of the weights of the vertices in H is 2 under f and in $T+e$ the above said weight will be 1 under any γ_{r}-function of $T+e$. Hence T is not γ_{r}-EA-stable, a contradiction.
Next we claim that a vertex in a $H \circ K_{1}$ is not adjacent to the head vertex of a $K_{1,3}$. Suppose to the contrary that a vertex in a $H \circ K_{1}$, say x is adjacent to a head vertex of a $K_{1,3}$, say y. Let z be the leaf neighbor or support neighbor of x according as x is a support vertex or a leaf vertex of $H \circ K_{1}$. Then $\gamma_{r}(T+z y)<\gamma_{r}(T)$, a contradiction. Next we claim that a leaf vertex of a $H \circ K_{1}$ is not adjacent to a leaf vertex of a $K_{1,3}$. If so, join the two leaf vertices of $K_{1,3}$ by an edge e and any γ_{r}-function of the resultant graph will assign 1 the leaf vertex of $H \circ K_{1}$ and to the head vertex of the said $K_{1,3}$ and 0 to the corresponding support vertex of $H \circ K_{1}$ and to all the leaf vertices of the said $K_{1,3}$ which implies that $\gamma_{r}(T+e)<\gamma_{r}(T)$, which is a contradiction to the fact that T is γ_{r}-EA-stable.
Finally, we claim that if for some K_{2} with $V\left(K_{2}\right)=\{a, b\}, a$ is adjacent to a vertex of another K_{2}, then every neighbor of b is a vertex of some K_{2}. Suppose to the contrary, that some neighbor say, w of b is not a vertex of a K_{2}. Then, w is a vertex of some $K_{1,3}$. If w is the head vertex of a $K_{1,3}$, then joining w and a, we see that $\gamma_{r}(T+w a)<\gamma_{r}(T)$, as $f(a)+f(b)+f(w)=3$ and in $T+w a$, this weight will be reduced by 1 . Hence T is not γ_{r}-EA-stable, a contradiction. If w is a leaf vertex of a $K_{1,3}$, then joining the other two leaf vertices of the said $K_{1,3}$ by an edge e, we see that $\gamma_{r}(T+e)<\gamma_{r}(T)$ as $f(a)+f(b)+f(w)=3$ and in $T+e$ this weight will be 2 under any γ_{r}-function of $T+e$. Hence T is not γ_{r}-EA-stable, a contradiction. Thus, $T \in \Im$.
Conversely, suppose that $T \in \Im$. Let f be a γ_{r}-function of T. Each time we perform the operations \mathcal{O}_{1} and \mathcal{O}_{2}, we see that either a subgraph $K_{1,3}$ or a K_{2} is removed and a weight of 2 or 1 is associated with these subgraphs. Since each component of T_{k} is either a K_{2} or a $H \circ K_{1}$ or a $H \circ 3 K_{1}$, then clearly a weight of half the order of each component is associated. Hence $f(V)=\frac{n}{2}$ which implies that $\gamma_{r}(T)=\frac{n}{2}$. Further since $T \in \Im,\left|D_{T}(x)\right|=3$ for every $x \in V_{2}$ and $\left|D_{T}(x)\right|=1$ for every $x \in V_{1}$. Hence T is γ_{r}-EA-stable.

References

[1] M. Chellali and N. Jafari Rad, Roman domination stable graphs upon edgeaddition, Util. Math. 96 (2015), 165-178.
[2] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Roman domination in graphs, Topics in Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2020, pp. 365-409.
[3] , A survey on Roman domination parameters in directed graphs, J. Combin. Math. Combin. Comput. 115 (2020), 141-171.
[4] , Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17 (2020), no. 3, 966-984.
[5] _, Varieties of Roman domination, Structures of Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2021, pp. 273-307.
[6] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11-22.
[7] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs; Advanced Topics, Marcel Dekker, Inc., New York, 1998.
[8] , Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[9] M.A. Henning and S.T. Hedetniemi, Defending the Roman empire-A new strategy, Discrete Math. 266 (2003), no. 1-3, 239-251.
[10] P. Roushini Leely Pushpam and M Kamalam, Efficient weak Roman domination in graphs, Int. J. Pure Appl. Math. 101 (2015), no. 5, 701-710.
[11] P. Roushini Leely Pushpam and M. Kamalam, Efficient weak Roman domination in Myscielski graphs, Int. J. Pure Eng. Math. 3 (2015), no. 2, 93-100.
[12] P. Roushini Leely Pushpam and T. Malini Mai, Weak Roman domination in graphs, Discuss. Math. Graph Theory 31 (2011), no. 1, 161-170.

[^0]: * Corresponding Author

