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Abstract: A Roman dominating function (RDF) on a graph G is a function f :

V (G) → {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. A

vertex u with f(u) = 0 is said to be undefended if it is not adjacent to a vertex with
f(v) > 0. The function f : V (G) → {0, 1, 2} is a weak Roman dominating function

(WRDF) if each vertex u with f(u) = 0 is adjacent to a vertex v with f(v) > 0 such

that the function f ′ : V (G) → {0, 1, 2} defined by f ′(u) = 1, f ′(v) = f(v) − 1 and
f ′(w) = f(w) if w ∈ V − {u, v}, has no undefended vertex. A graph G is said to be

Roman domination stable upon edge addition, or just γR-EA-stable, if γR(G + e) =

γR(G) for any edge e /∈ E(G). We extend this concept to a weak Roman dominating
function as follows: A graph G is said to be weak Roman domination stable upon

edge addition, or just γr-EA-stable, if γr(G + e) = γr(G) for any edge e /∈ E(G). In

this paper, we study γr-EA-stable graphs, obtain bounds for γr-EA-stable graphs and
characterize γr-EA-stable trees which attain the bound.
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1. Introduction

Cockayne et al. [6] defined a Roman dominating function (RDF) in a graph G to be

a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which

f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight of a

Roman dominating function is the value w(f )=
∑

u∈V f (u). The minimum weight of

a Roman dominating function of a graph G is called the Roman domination number
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of G and denoted by γR(G). For more details on Roman domination and its variations

we refer the reader to the recent two book chapters [2, 5] and survey paper [3, 4].

Henning et al. [9] defined a weak Roman dominating function as follows: For a graph

G, let f : V (G) → {0, 1, 2} be a function. A vertex u with f (u) = 0 is said to be

undefended with respect to f if it is not adjacent to a vertex v with the positive

weight. A function f : V (G) → {0, 1, 2} is said to be a weak Roman dominationg

function (WRDF) if each vertex u with f (u) = 0 is adjacent to a vertex v with

f(v) > 0 such that the function f ′: V (G) → {0, 1, 2} defined by f ′(u) = 1, f ′(v)

= f (v)− 1 and f ′(w) = f (w) if w ∈ V− {u, v}, has no undefended vertex. We say

that v defends u. The weight w(f ) of f is defined to be
∑

u∈V f (u). The minimum

weight of a weak Roman dominating function of a graph G is called the weak Roman

domination number of G and denoted by γr(G). A WRDF with weight γr(G) is called

a γr(G)-function. This concept of weak Roman domination as suggested by Henning

et al. [9] is an attractive alternative for Roman domination as it further reduces the

weight of the Roman dominating function. Weak Roman domination in graphs has

been studied in [10–12]. A weak Roman dominating function f can also be written

as f = (V0, V1, V2) where Vi = {v | f(v) = i}, i = 0, 1, 2. Let v ∈ V1 ∪ V2. A vertex

w ∈ N(v) ∩ V0 is said to be in the dependent set of v, denoted by DG(v) if w is

defended by v alone.

M. Chellali and N. J. Rad [1] introduced the concept of Roman domination stable

graphs upon edge addition or just γR-EA-stable, if addition of any extra edge does

not affect the Roman domination number, that is γR(G + e) = γR(G) for any edge

e /∈ E(G). We extend this concept to a weak Roman dominating function as follows.

A graph G is said to be weak Roman domination stable upon edge addition, or just

γr-EA-stable, if γr(G+e) = γr(G) for any edge e /∈ E(G). It is clear that γr(G)−1 ≤
γr(G + e) ≤ γr(G). In this paper, we study γr-EA-stable graphs, obtain bounds for

γr-EA-stable graphs and characterize γr-EA-stable trees which attain the bound.

2. Notation

For notation and graph theoretic terminology, we in general follow [7, 8]. Throughout

this paper, we consider only simple and connected graphs. Let G be a graph with

vertex set V = V (G) and edge set E = E(G). The order |V | of G is denoted by n. For

every vertex v ∈ V , the open neighborhood N(v) is the set {u ∈ V (G) | uv ∈ E(G)}
and the closed neighborhood of v is the set N [v] = N(v)∪{v}. The degree of a vertex

v in a graph G is the number of edges that are incident to the vertex v and is denoted

by deg(v). The minimum and maximum degree of a graph G are denoted by δ = δ(G)

and ∆ = ∆(G). A set S of vertices is called independent if no two vertices in S are

adjacent. A simple graph in which every pair of distinct vertices are adjacent is called

a complete graph. A clique of a simple graph G is a subset S of V such that G[S]

is complete. A connected graph with exactly one cycle is called an unicyclic graph.

For two positive integers m,n, the complete bipartite graph Km,n is the graph with

partition V (G) = V1 ∪ V2 such that |V1| = m, |V2| = n and such that G[Vi] has no
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edges for i = 1, 2, and every two vertices belonging to different partition sets are

adjacent to each other. A maximal path is a path in which no vertex can be added

further to make it longer.

3. Some Standard Graphs

In this section we investigate paths, cycles and complete bipartite graphs that are

γr-EA-stable. We state the following theorem proved in [9]

Theorem 1. [9] For n ≥ 4, γr(Cn) = γr(Pn) = d 3n
7
e.

In order to investigate paths and cycles that are γr-EA-stable, we first define a family

G of unicyclic graphs and subsequently prove two lemmas. A unicyclic graph G ∈ G
if the following holds.

(i) ∆(G) = 3.

(ii) At most two vertices in G are of degree 3.

(iii) If two vertices are of degree 3, then both are in the cycle and are adjacent.

We also define two subfamilies G1 and G2 of G as follows. A unicyclic graph G with

cycle Ck is in G1 if k = n− 2 and is in G2 if k = n− 1.

Lemma 1. Let G ∈ G1. Then γr(G) =
⌈
3n
7

⌉
.

Proof. It is a simple exercise to verify the result for n ≤ 14. Suppose that n ≥ 15.

Let V (G) = {v1, v2, . . . , vk, x, y} where vi, 1 ≤ i ≤ k are on the cycle Ck and x, y

are not in Ck and are adjacent to v1 and vk respectively. Let f be the γr-function

of G. Since Pn is a spanning subgraph of G, γr(G) ≤ γr(Pn). Thus, γr(G) ≤
⌈
3n
7

⌉
.

Now to safeguard the vertices vi, 1 ≤ i ≤ 6 and vj , k − 5 ≤ j ≤ k and x, y, f will

assign a total weight of at least 6. Hence, γr(G) ≥ 6 + γr(Pk−12) ≥
⌈
3(k−12)

7

⌉
+ 6 ≥⌈

3(n−14)
7

⌉
+ 6 =

⌈
3n
7

⌉
. Thus, γr(G) =

⌈
3n
7

⌉
.

Lemma 2. Let G ∈ G2. Then γr(G) =


⌊
3n
7

⌋
, if n ≡ 5 (mod 7), n ≥ 12

⌈
3n
7

⌉
, if n 6≡ 5 (mod 7), n ≥ 11.

Proof. It is a simple exercise to verify the result for n ≤ 11. Suppose that n ≥ 12.

Let V (G) = {v1, v2, . . . , vk, x}, where vi, 1 ≤ i ≤ k, are on the cycle Ck and x is not

in Ck adjacent to v1. Since Pn is a spanning subgraph of G, γr(G) ≤
⌈
3n
7

⌉
. Let f be

a γr-function of G. Now, to safeguard the vertices vi, 1 ≤ i ≤ 6, vj , k − 4 ≤ j ≤ k
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and x, f will assign a total weight of at least 5. Hence, γr(G) ≥ 5 + γr(Pk−11) ≥
5 +

⌈
3(k−11)

7

⌉
≥ 5 +

⌈
3(n−12)

7

⌉
.

When n ≡ 5 (mod 7), γr(G) ≥
⌊
3n
7

⌋
and when n 6≡ 5 (mod 7), γr(G) ≥

⌈
3n
7

⌉
. Hence,

γr(G) =


⌊
3n
7

⌋
, if n ≡ 5 (mod 7), n ≥ 12

⌈
3n
7

⌉
, if n 6≡ 5 (mod 7), n ≥ 11.

Lemma 3. Let G ∈ G \ (G1 ∪ G2), where n ≡ 0, 2, 4, 6 (mod 7). Then γr(G) =
⌈
3n
7

⌉
Proof. We prove the result by induction on n. It is a simple exercise to verify that

the result is true for graphs with n ≤ 11. Suppose that the result is true for graphs

of order at most n− 1, n ≥ 12. Let G be a graph of order n. Since Pn is a spanning

subgraph of G, γr(G) ≤
⌈
3n
7

⌉
.

Case (i). n ≡ 0 (mod 7).

In this case, γr(G) ≤ 3n
7 . Remove a leaf vertex from G to obtain a graph G′. Then,

|V (G′)| = n − 1 ≡ 6 (mod 7) and G′ ∈ G or G′ is a cycle. If either G′ ∈ G1 ∪ G2 or

G′ is a cycle, then by Theorem 1, γr(G′) =
⌈
3(n−1)

7

⌉
. If G′ ∈ G \ (G1 ∪ G2), then by

induction hypothesis, γr(G′) =
⌈
3(n−1)

7

⌉
. Hence, γr(G) ≥

⌈
3(n−1)

7

⌉
= 3(n−1)+3

7 = 3n
7 .

Thus, γr(G) = 3n
7 .

Case (ii). n ≡ 2 (mod 7).

In this case, γr(G) ≤ 3n+1
7 . Remove a leaf vertex and a vertex adjacent to it from

G to obtain a graph G′. Then, |V (G′)| = n − 2 ≡ 0 (mod 7) and G′ ∈ G or G′ is a

cycle. If either G′ ∈ G1 ∪ G2 or G′ is a cycle, then by Theorem 1, γr(G′) =
⌈
3(n−2)

7

⌉
.

If G′ = G \ (G1 ∪ G2), then by induction hypothesis, γr(G′) =
⌈
3(n−2)

7

⌉
. Hence,

γr(G) ≥
⌈
3(n−2)

7

⌉
+ 1 = 3n+1

7 . Thus, γr(G) = 3n+1
7 =

⌈
3n
7

⌉
.

Case (iii). n ≡ 4 (mod 7).

In this case, γr(G) ≤ 3n+2
7 . As discussed in Case (ii), we obtain a graph G′ by

removing a leaf vertex and a vertex adjacent to it. Also, γr(G) ≥ γr(G′) + 1 ≥⌈
3(n−2)

7

⌉
+ 1 = 3n+2

7 . Thus, γr(G) = 3n+2
7 =

⌈
3n
7

⌉
.

Case (iv). n ≡ 6 (mod 7).

In this case, γr(G) ≤ 3n+2
7 . A similar argument as in Case (ii) holds and hence

γr(G) ≥ γr(G′) + 1 ≥
⌈
3(n−2)

7

⌉
+ 1 = 3n+3

7 . Thus, γr(G) = 3n+3
7 =

⌈
3n
7

⌉
.

Theorem 2. Paths Pn are γr-EA-stable if and only if n ≡ 0, 2, 4, 6 (mod 7).



P. Roushini Leely Pushpam, N. Srilakshmi 471

Proof. Let n ≡ 1, 3, 5 (mod 7) and V (Pn) = {v1, v2, . . . , vn}. Clearly, P3 is not γr-

EA-Stable. When n = 5, 8, 10, join the vertices v1 and v3. Clearly, γr(Pn+v1v3) = 2, 3

or 4 according as n = 5, 8 or 10. Thus, γr(Pn + v1v3) < γr(Pn) which implies

that Pn is not γr-EA-stable. When n ≥ 11, join the vertices v2 and vn. Then

Pn + v2vn ∈ G2 and γr(Pn + v2vn) <
⌊
3n
7

⌋
< γr(Pn). Thus, Pn is not γr-EA-stable.

Let n ≡ 0, 2, 4, 6 (mod 7). Joining any two vertices of Pn by an edge e will result

in a graph which will be in G. If Pn + e ∈ G1 ∪ G2, then by Lemma 1 and Lemma

2, γr(Pn + e) = γr(Pn) =
⌈
3n
7

⌉
. If Pn + e ∈ G \ (G1 ∪ G2), then by Lemma 3 we

have γr(Pn + e) = γr(Pn) =
⌈
3n
7

⌉
. Thus, Pn is γr-EA-stable when n ≡ 0, 2, 4, 6

(mod 7).

Theorem 3. Cycles Cn are γr-EA-stable if and only if n ≡ 0, 2, 4, 6 (mod 7).

Proof. Let Cn = (v1, v2, . . . , vn, v1). If n ≡ 1, 3, 5 (mod 7), join the vertices v1 and

vn−1 by an edge e. Then, γr(Cn) =
⌈
3n
7

⌉
. In Cn + e, any γr-function of Cn + e

will assign a total weight of 1 to the vertices v1, vn, vn−1. Considering the path

Q = (vn, v1, v2, . . . , vn−2) on n − 1 vertices, any γr-function of Cn + e will assign a

total weight of
⌈
3(n−1)

7

⌉
to Q. Thus, γr(Cn + e) =

⌈
3(n−1)

7

⌉
= 3(n−1)

7 or 3(n−1)+1
7 or

3(n−1)+2
7 . That is γr(Cn + e) = 3n−3

7 or 3n−2
7 or 3n−1

7 according as n ≡ 1 or 3 or 5

(mod 7). But γr(Cn) = 3n+4
7 or 3n+5

7 or 3n+6
7 according as n ≡ 1 or 3 or 5 (mod 7).

Thus, γr(Cn + e) < γr(Cn) when n ≡ 1, 3, 5 (mod 7).

Let n ≡ 0, 2, 4, 6 (mod 7). Join any two non adjacent vertices of Pn by an edge e.

Since Cn is a spanning subgraph of Cn + e, γr(Cn + e) ≤
⌈
3n
7

⌉
.

Case (i). n ≡ 0 (mod 7).

In this case γr(Cn + e) ≤ 3n
7 . Remove a vertex of degree 2 from Cn + e to obtain a

graph G′. Then, |V (G′)| = n− 1 ≡ 6 (mod 7) and G′ ∈ G or G′ is Cn−1. By Lemma

1, Lemma 2 and Theorem 1, γr(G′) =
⌈
3(n−1)

7

⌉
. Hence, γr(Cn + e) ≥

⌈
3(n−1)

7

⌉
=

3(n−1)+3
7 =

3n

7
. Thus, γr(Cn + e) = 3n

7 .

Case (ii). n ≡ 2 (mod 7).

In this case γr(Cn + e) ≤ 3n+1
7 . Remove two adjacent vertices of degree two in

Cn + e to obtain a graph G′. Then |V (G′)| = n − 2 ≡ 0 (mod 7) and G′ ∈ G or

G′ is Cn−2. By Lemma 1, Lemma 2 and Theorem 1, γr(G′) =
⌈
3(n−2)

7

⌉
. Hence,

γr(Cn + e) ≥
⌈
3(n−2)

7

⌉
+ 1 ≥ 3(n−2)

7 + 1 = 3n+1
7 . Thus, γr(Cn + e) = 3n+1

7 .

A similar argument holds for n ≡ 4, 6 (mod 7). When n ≡ 4 (mod 7), γr(Cn) =

γr(Cn + e) = 3n+2
7 . When n ≡ 6 (mod 7), γr(Cn) = γr(Cn + e) = 3n+3

7 . This

completes the proof.

Theorem 4. The complete bipartite graphs G = Km,n, m ≤ n, m + n ≥ 4 are γr-EA-
stable if and only if m 6= 3, 4.
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Proof. Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} be a bipartition of V (G).

Now, γr(G) = 3 if m = 3 and γr(G) = 4 if m = 4. Adding the edge e = x1x2 in G, we

see that γr(G+ e) = 2 if m = 3 and γr(G+ e) = 3 if m = 4. Thus, γr(G+ e) < γr(G)

and G is not γr-EA-stable.

Suppose that m ≤ 2. Then, γr(G) = 2. Since m + n ≥ 4, G 6= P3. Thus, adding

any edge in Km,n will not result in a complete graph. Thus, G is γr-EA-stable. If

m ≥ 5, γr(G) = 4 and adding any edge in G will not decrease the value of γr(G).

Hence γr(G+ e) = γr(G) for every e ∈ E(G). Thus G is γr-EA-stable.

Theorem 5. If G is a γr-EA-stable graph of order n ≥ 3, then γr(G) ≤ n
2
.

Proof. Let G be a γr-EA-stable graph of order n ≥ 3. Then, clearly |DG(x)| ≥ 3

for every x ∈ V2. Hence, |V0| ≥ 3|V2|+ |V1|. Thus

n = |V2|+ |V0|+ |V1| ≥ |V2|+ 3|V2|+ 2|V1| ≥ 2(2|V2|+ |V1|) ≥ 2γr(G)

which leads to the desired bound.

Theorem 6. Paths Pn and cycles Cn are γr-EA-stable with γr(G) = n
2

if and only if
n = 4, 6.

Proof. Suppose that the given graphs are γr-EA-stable with γr(G) = n
2 . Since

γr(Pn) = γr(Cn) =
⌈
3n
7

⌉
, 4 ≤ n ≤ 12. By Theorems 2 and 3, we see that n = 4, 6.

For n = 4, 6, Pn and Cn are clearly γr-EA-stable and γr(Pn) = γr(Cn) = n
2 .

4. Split Graphs

In this section we characterize split graphs which are γr-EA-stable. A graph G with

bipartition (X,Y ), where X forms a complete graph and the vertices in Y are inde-

pendent is called a split graph. We also assume that |X| = r and |Y | = s. For conve-

nience we define the following: Two vertices u, v in X with N(u) ∩ Y = {u1, u2, u3}
and N(v) ∩ Y = {v1, v2, v3} are said to be associate vertices if the following holds

(Refer Figure 1).

(i) Exactly one vertex in N(u) ∩ Y say u1 and exactly two vertices in N(v) ∩ Y say

v1 and v2 have a common neighbor in X.

(ii) N(u2) = N(u3) and each vertex in N(u2) \ {u} is of degree r+ 1 and each vertex

in N(v3) \ {v} is of degree r.

(iii) N(u1) \ {u} = N(v1) \ {v} = N(v2) \ {v} and each vertex of N(u1) \ {u} is of

degree r + 2.
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u1u2u3 v1 v2 v3

u v

Figure 1. A split graph illustrating associate vertices

First, we define a family G3 of split graphs as follows. Let G = G1 = (X,Y1) be a

split graph with |X| = r, ∆(G1) ≥ r+ 2 and no associate vertices. Let x1 ∈ X in G1

with deg(x1) = ∆(G1). Remove all the neighbors of x1 in Y1. Let G2 = (X,Y2) be

the resulting graph. Let x2 ∈ X in G2 with deg(x2) = ∆(G2) ≥ r + 2. Remove all

the neighbors of x2 in Y2 to obtain a graph G3 = (X,Y3). Repeat the process until

we get a graph Gk such that ∆(Gk) < r + 2. Then G ∈ G3 if Gk is Kr.

Theorem 7. Let G be a split graph with ∆(G) ≥ r + 2. Then G is γr-EA-stable if and
only if G ∈ G3.

Proof. Let G be γr-EA-stable and let f be a γr-function of G. Suppose that G

has a pair of associate vertices say u, v with N(u) ∩ Y = {u1, u2, u3} and N(v) ∩
Y = {v1, v2, v3} where ui, vi, i = 1, 2, 3 satisfy the conditions given in the definition

of associate vertices. Now f will assign a total weight of 4 to the vertices ui, vi,

i = 1, 2, 3 and their neighbors in X. Now join u2 and u3 in G. Then define a function

g : V (G + u2u3) → {0, 1, 2} by g(u) = g(v) = g(z) = 1, where z ∈ N(u1) \ {u} and

g(x) = 0 if x ∈ {ui, vi, N(ui) \ {u}, N(vi) \ {v}} and g(x) = f(x) otherwise. Now u

defends u2, u3 and all their neighbors in X, v defends v3 and all its neighbors in X

and z defends u1, v1, v2 and all their neighbors in X. Hence γr(G + u2u3) < γr(G),

which implies that G is not γr-EA-stable, a contradiction. Hence G has no associate

vertices. Now remove the vertices successively as described in the procedure. Let

Gk = (Xk, Yk) be the final graph. We claim that Gk = Kr. Equivalently, we prove

that Y = ∅ in Gk. Suppose to the contrary that Gk 6= Kr. Suppose that there exists

a vertex x in X such that degGk
(x) = r + 1. Let y1, y2 be the neighbors of x in

Yk. Then, there exists a γr-function f of Gk such that f(x) + f(y1) + f(y2) = 2.

Since ∆(G) ≥ r + 2, there is a vertex in X say z such that degG(z) ≥ r + 2 and

f(z) = 2. Hence by adding an edge e between z and y1 or z and y2, we see that

γr(G+ e) < γr(G). Hence, G is not γr-EA-stable, a contradiction.

Suppose that degGk
(x) ≤ r for every x ∈ X. Let x ∈ X be such that degGk

(x) = r

and y be its neighbor in Yk. Then for any γr-function f will assign a weight 1 either
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to x or to y. In any case adding an edge e between y and z (as mentioned earlier)

we see that γr(G+ e) < γr(G). Hence G is not γr-EA-stable, a contradiction. Thus,

Gk = Kr and hence G ∈ G3.

Conversely, suppose that G ∈ G3. From the description of G3, one can easily observe

that every time the neighbors of a vertex x ∈ X in Y with deg(x) ≥ r+2 are removed,

x is adjacent to at least three vertices in Y . Therefore, any γr-function f will assign

2 to x and 0 to the neighbors of x which are removed. Hence adding a single edge

between any two non adjacent vertices will not alter the γr-value of G. Hence G is

γr-EA-stable.

Theorem 8. Let G be a split graph with ∆(G) = r+1 and n ≥ 4. Then G is γr-EA-stable
if and only if the following holds.

(i) If some component H of G[X,Y ] is either a P3 or a K2,t, t ≥ 2 then G[X,Y ] = H.

(ii) G[X,Y ] does not contain maximal paths P5 (with both ends in Y ), P7 (with both ends
in X) and P6.

(iii) If a maximal path P5 (with both ends in X) exists in G[X,Y ], then Y does not contain
a vertex, where all its neighbors in X are of degree r.

Proof. Suppose that G is γr-EA-stable. Let f be a γr-function of G. To prove (i),

suppose that H of G[X,Y ] is either a P3 or a K2,t, t ≥ 2. Choose f such that f(v) = 2,

where v is a vertex of the P3 or K2,t which is in X. Suppose that X contains a vertex

of degree r − 1. If some vertex in X \ {v} is assigned the value 2 by f , then joining

the two vertics of P3 or K2,t in X by an edge e, we see that γr(G + e) = γr(G) − 1

which implies that G is not γr-EA-stable. Otherwise some vertex of X \ {v}, say x

is assigned the value 1 by f such that |DG(x)| = 1. Let DG(x) = {z}. If x is not

a guarding vertex, then joining z and v by an edge we see that γr(G + e) < γr(G),

as any γr-function g of G + e will assign 0 to x and g(w) = f(w) for every vertex

w ∈ V (G) \ {x}. Hence G is not γr-EA-stable, a contradiction. If x is a guarding

vertex then some vertex, say y in X exists such that |DG(y)| = 2. Then joining y and

a vertex of P3 or K2,t, say u which is in Y by an edge e, we see that γr(G+e) < γr(G),

as any γr-function of G + e will assign 0 to u and 1 to v and g(w) = f(w) for every

w ∈ V (G) \ {u, v}. Hence G is not γr-EA-stable, a contradiction. Suppose that X

contains no vertex of degree r−1, then by joining the 2 vertices of P3 or K2,t in Y by

an edge we see that γr(G+ e) = γr(G)− 1 which implies that G is not γr-EA-stable,

a contradiction. Thus, G[X,Y ] = H and hence (i) is proved.

To prove (ii), suppose to the contrary that either a maximal path P5 (with both ends

in Y ) or a maximal path P7 (with both ends in X) exist in G[X,Y ]. Then f will

assign a total weight of 3 to the vertices of P5 or P7. Joining the 2nd and 5th vertices

in P5 or joining the 3rd and 6th vertices of P7(P6) will reduce the total weight of these

vertices to 2. Hence G is not γr-EA-stable, a contradiction. Thus, (ii) is proved.

To prove (iii), suppose to the contrary that a maximal path P5 (with both ends in

X) exists and Y contains a vertex z such that all its neighbors in X are of degree r.

Now f will assign a total weight 2 to the vertices of P5. Choose f such that f(v) = 2,
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where v is the central vertex of P5 which is in X. Now f will assign a total weight 1

to all its neighbors in X. Now joining v and z we see that the value of γr(G+ e) will

reduce by 1 as v defends z and all its neighbors in X. Thus G is not γr-EA-stable, a

contradiction. Hence (iii) is proved.

Conversely suppose the given conditions hold. One can choose a γr-function f =

(V0, V1, V2) of G such that V2 = ∅ and DG(x) 6= ∅ for every x ∈ V1. Hence G is

γr-EA-stable.

Theorem 9. Let G be a split graph with ∆(G) = r. Then, G is γr-EA-stable if and only
if either each vertex of X is of degree r or at least two vertices in X are of degree r − 1.

Proof. If every vertex of X is of degree r, we are through. Otherwise, at least one

vertex of X is of degree r − 1. Since ∆(G) = r, every vertex y ∈ Y along with its

neighbors will induce a complete graph and the vertices in X of degree r − 1 will

induce a complete graph. Hence, clearly, γr(G) = |Y | + 1. If exactly one vertex in

X is of degree r − 1, then joining that vertex to any vertex in Y by an edge e, we

see that γr(G + e) = |Y |. Thus, G is not γr-EA-stable, a contradiction. Thus, the

condition given in theorem holds.

Conversely, suppose that one of the conditions hold. Then, it is clear that addition

of any edge will not alter the value of γr(G). Hence, G is γr-EA-stable.

5. Trees

In this section we characterize γr-EA-stable trees T with γr(T ) = n
2 . For this purpose

we first define a family A of trees as follows. A tree T ∈ A if T satisfies the following

conditions.

(i) A strong support vertex is adjacent to at most three leaf vertices.

(ii) The length of a pendant path is at most 4 and the length of a non-pendant path

is at most 5.

(iii) The non leaf neighbor of a strong support vertex of degree three is not a support

vertex.

(iv) The non leaf neighbor of a weak support vertex of degree two is not a strong

support vertex.

We next define a family = of trees as follows. Let T = T1 ∈ A. We perform the

following operations successively in T1.

O1: Consider a weak support vertex w of degree two. Remove the edge between w

and its non-leaf neighbor.

O2: Consider a strong support vertex w of degree 3. Remove all the edges incident

with its non-leaf neighbor (except the edge which is incident with w).
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O3: Consider a strong support vertex w which is adjacent to exactly 3 leaf vertices

where at least one neighbor of w is a non strong support adjacent to exactly three

leaf vertices. Remove all the non pendant edges incident with w such that the other

end of these edges are non strong supports adjacent to exactly three leaf vertices.

If some component of the resulting graph, say T2 is either not in A or a path Pm,

m 6= 2, 4, then we stop the process. Also if some component of T2 is a H ◦K1, then

operation O1 is not performed in that component. We repeat the process until no

such edge (the edges which are mentioned in the operations) remains. Let Tk be the

final graph. Then T ∈ = if each component of Tk is either a K2 or a H ◦ K1 or a

H ◦ 3K1 subject to the following conditions.

(1) A leaf vertex of a K1,3 is not adjacent to the head vertex of a K1,3.

(2) For a K1,3, at least one leaf vertex is not adjacent to a vertex in a K2.

(3) A vertex in a H ◦K1 is not adjacent to the head vertex of a K1,3. Further, a leaf

vertex of a H ◦K1 is not adjacent to a leaf vertex of a K1,3.

(4) If for some K2 with V (K2) = {a, b}, a is adjacent to a vertex of another K2,

then every neighbor of b is a vertex of some K2. None of the vertices of a K2 is

adjacent to the vertex of a K1,3.

1

2
2

2

2 2

3

3

3

1

Figure 2. A tree T ∈ =

In the above figure, the edges that are labeled 1 are removed first and secondly the

edges that are labeled 2 are removed and finally the edges that are labeled 3 are

removed.

Theorem 10. Let T be a tree of order n. Then T is γr-EA-stable with γr(T ) = n
2
if and

only if T ∈ =.

Proof. Let T be a tree which is γr-EA-stable and γr(T ) = n
2 . Let f = (V0, V1, V2)

be a γr(T )-function. First, we claim that T ∈ A. Now, we prove the following claims.
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Claim 1. A strong support junction vertex x is adjacent to at most three leaf vertices.

Suppose to the contrary that x is adjacent to at least four leaf vertices, then |DT (x)| ≥
4, which implies that γr(T ) ≤ n

2 , a contradiction.

Claim 2. The length of a non-pendant path is at most 5 and the length of a pendant

path is at most 4.

Let Q = (x, x1, x2, . . . , xm, y) be a non-pendant path. Suppose to the contrary that

l(Q) ≥ 6, then m+1 ≥ 6. Let f(x) = f(y) = 2. It is clear that x and y can defend x1

and xm respectively. Since γr(T ) = n
2 ,
∑m−1

i=2 f(xi) =
⌈
3(m−2)

7

⌉
= m−2

2 which implies

that m = 2j + 2, 0 ≤ j ≤ 6. Since, m ≥ 5,2 ≤ j ≤ 6. If x1 /∈ DT (x), then when

m = 2j, 3 ≤ j ≤ 7, we see that x1 /∈ DT (w) for any w ∈ V1 ∪ V2 which implies that

γr(T ) < n
2 , a contradiction. Thus, x1 ∈ DT (x). Similarly, xm ∈ DT (y). Let z1 and

z2 be the members of DT (x) not in Q. Now, join the vertices z1 and z2 and let g be a

γr-function of the resulting graph. Then,
∑m

i=1 f(xi) + f(x) + f(y) + f(z1) + f(z2) =⌈
3(m−2)

7

⌉
+ 4 and

∑m
i=1 g(xi) + g(x) + g(y) + g(z1) + g(z2) =

⌈
3(m+1)

7

⌉
+ 2 as x will

receive the weight 1 under g. Now, for m = 2j + 2, 2 ≤ j ≤ 6, the above weights

will be respectively {6, 5}, {7, 6}, {8, 7}, {9, 8}, {10, 9}. Hence, we see that the value

of γr(T ) changes upon the addition of the edge z1, z2. Hence, T is not γr-EA-stable,

a contradiction.

Suppose that f(x) = 2, f(y) = 1. It is clear that x can defend x1. As before only

2 members of DT (x) are not in Q. Since γr(T ) = n
2 , |DT (y)| = 1 and clearly the

members w of DT (y) is not in Q. Further
∑m

i=2 f(xi) + f(y) + f(w) =
⌈
3(m+1)

7

⌉
=

m+1
2 implies that m = 2j − 1, 0 ≤ j ≤ 6. Since m ≥ 5, 3 ≤ j ≤ 6. Now, join

the vertices z1 and z2 and let g be a γr-function of the resulting graph. Then,∑m
i=1 f(xi) + f(x) + f(y) + f(z1) + f(z2) + f(w) =

⌈
3(m+1)

7

⌉
+ 2 and

∑m
i=1 g(xi) +

g(x) + g(y) + g(z1) + g(z2) + g(w) =
⌈
3(m+4)

7

⌉
as x will receive the weight 1 under g.

Now, for m = 2j + 1, 2 ≤ j ≤ 5, the above weight will be {5, 4}, {6, 5}, {7, 6}, {8, 7}
respectively. Thus, we see that γr(T ) reduces upon the addition of the edge z1z2.

Hence, T is not γr-EA-stable, a contradiction.

Suppose that f(x) = f(y) = 1. Since, γr(T ) = n
2 , |DT (y)| = |DT (x)| = 1 and clearly

the members say w1, w2 of DT (x) and DT (y) respectively are not in Q. Further∑m
i=1 f(xi)+f(x)+f(y)+f(w1)+f(w2) =

⌈
3(m+4)

7

⌉
= m+4

2 implies that m = 2j−4,

0 ≤ j ≤ 6. Since m ≥ 5, j = 5, 6. Now, join the vertices xm and w2 and let g be a

γr-function of the resulting graph. Then
∑m

i=1 f(xi) + f(x) + f(y) + f(w1) + f(w2) =⌈
3(m+4)

7

⌉
and g(x) + g(y) + g(w1) + g(w2) +

∑m
i=1 g(xi) =

⌈
3(m+3)

7

⌉
where y will

defend both w2 and xm under the function g. Now, for m = 2j − 4, j = 5, 6, the

above weights will be {5, 4}, {6, 5} respectively. Thus, we see that γr(T ) reduces upon

the addition of the edge xmw2. Hence, T is not γr-EA-stable, a contradiction.

Suppose that f(x) = 2 and f(y) = 0. Then x defends x1 and choose f such that

f(xm) = 1 and xm defends y. (If some vertex not in Q defends y, then one can

choose f such that f(y) = 1 which has already been discussed). Since γr(T ) = n
2 ,∑m

i=2 f(xi) + f(y) =
⌈
3m
7

⌉
= m

2 which implies that m = 2j, 3 ≤ j ≤ 6. Now,
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join the vertices z1 and z2 and let g be a γr-function of the resulting graph. Then,∑m
i=1 f(xi) + f(x) + f(y) + f(z1) + f(z2) =

⌈
3m
7

⌉
+ 2 and

∑m
i=1 g(xi) + g(x) + g(y) +

g(z1) + g(z2) =
⌈
3(m+3)

7

⌉
. Now for m = 2j, 3 ≤ j ≤ 6, the above weights will

be respectively {5, 4}, {6, 5}, {7, 6}, {8, 7} respectively. Hence γr(T + z1z2) < γr(T ).

Thus, we see that γr(T ) reduces upon the addition of the edge z1z2. Hence, T is not

γr-EA-stable, a contradiction.

Suppose that f(x) = 1 and f(y) = 0. Since γr(T ) = n
2 , |DT (x)| = 1 and clearly the

member w ∈ DT (x) is not in Q. Also choose f such that f(xm) = 1 and xm defends

y. Since γr(T ) = n
2 ,
∑m

i=1 f(xi) + f(x) + f(y) + f(w) =
⌈
3(m+3)

7

⌉
= m+3

2 implies

that m = 2j − 3, 4 ≤ j ≤ 6. Now, join the vertices w and x1 and let g be a γr-

function of the resulting graph. Then
∑m

i=1 f(xi) + f(x) + f(y) + f(w) =
⌈
3(m+3)

7

⌉
,∑m

i=1 g(xi) + g(x) + g(y) + g(w) =
⌈
3(m+2)

7

⌉
and g(v) = f(v) for the rest of the

vertices. Now for m = 2j − 3, 4 ≤ j ≤ 6, the above weights are {4, 3}, {5, 4} and

{6, 5} respectively. Hence, γr(T + wx1) < γr(T ) and thus T is not γr-EA-stable, a

contradiction.

Suppose that f(x) = f(y) = 0. Choose f such that x1 and xm defends x and y

respectively. Since γr(T ) = n
2 ,
∑m

i=1 f(xi) + f(x) + f(y) =
⌈
3(m+2)

7

⌉
= m+2

2 implies

that, m = 2j−2, 4 ≤ j ≤ 6. Now, join the vertices x2 and x and let g be a γr-function

of T + xx2. Then,
∑m

i=1 f(xi) + f(x) + f(y) =
⌈
3(m+2)

7

⌉
,
∑m

i=1 g(xi) + g(x) + g(y) =⌈
3(m+1)

7

⌉
and g(v) = f(v) for the rest of the vertices. Now, for m = 2j−2, 4 ≤ j ≤ 6,

the above weights are {4, 3}, {5, 4} and {6, 5} respectively. Hence, γr(T + wx1) <

γr(T ) and thus T is not γr-EA-stable, a contradiction.

Next, we claim that the length of a pendant path is at most 4.

Let Q = (x, x1, x2, . . . , xm = y) be a pendant path incident at x, where x is a junction

vertex and y is a leaf vertex. We claim that l(Q) ≤ 4. That is m ≤ 4. Suppose to the

contrary that m ≥ 5. Let f(x) = 2, then as discussed earlier x1 ∈ DT (x). Let z1, z2

be the members of DT (x), not in Q. Since γr(T ) = n
2 ,
∑m

i=1 f(xi) =
⌈
3(m−1)

7

⌉
=

m−1
2 implies that m = 2j + 1, 2 ≤ j ≤ 6. Now join z1 and z2 and let g be a γr-

function of T + z1z2. Then,
∑m

i=1 f(xi) + f(x) + f(z1) + f(z2) =
⌈
3(m−1)

7

⌉
+ 2 and∑m

i=1 g(xi) + g(x) + g(z1) + g(z2) =
⌈
3(m+2)

7

⌉
as x will receive the weight 1 under

g, and f and g coincide at all other vertices. Now, for m = 2j + 1, 1 ≤ j ≤ 6,

the above weights will be {4, 3}, {5, 4} and {6, 5}, {7, 6}, {8, 7} respectively. Hence,

γr(T + z1z2) < γr(T ) and thus T is not γr-EA-stable, a contradiction.

Suppose that f(x) = 1, since γr(T ) = n
2 , |DT (x)| = 1 and clearly, the member

w ∈ DT (x) is not in Q. Again
∑m

i=1 f(xi) + f(x) + f(w) =
⌈
3(m+2)

7

⌉
= m+2

2 implies

that m = 2j − 2, 4 ≤ j ≤ 6. Now, join the vertices w and x1 and let g be a γr-

function of T +wx1. Then,
∑m

i=1 f(xi) + f(x) + f(w) =
⌈
3(m+2)

7

⌉
and

∑m
i=1 g(xi) +

g(x) + g(w) =
⌈
3(m+1)

7

⌉
and g(v) = f(v) for the rest of the vertices. Now, for

m = 2j − 2, 4 ≤ j ≤ 6, the above weights are {4, 3}, {5, 4} and {6, 5} respectively.
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Hence, γr(T + wx1) < γr(T ) and thus T is not γr-EA-stable, a contradiction.

If f(x) = 0, then some vertex not in Q defends x and one can choose f such that

f(x) = 1 which has already been discussed.

Claim 3. If x is a strong support vertex of degree 3, then its non-leaf neighbor is not

a support vertex.

Suppose to the contrary that x is adjacent to a support vertex y, then join the two

leaf vertices of x by an edge e. Clearly, γr(T + e) < γr(T ), a contradiction. which

implies that T is not γr-EA-stable.

Claim 4. If x is a weak support vertex of degree 2, then its non-leaf neighbor is not

a strong support vertex.

Suppose to the contrary that x is adjacent to a strong support vertex y, then add

an edge e between the leaf vertex incident with x and the head vertex of y. Clearly,

γr(T + e) < γr(T ), a contradiction. which implies that T is not γr-EA-stable. Hence,

T = T1 ∈ A.

Now we perform the operations O1, O2 and O3 in T1. Let T2 be the resulting graph.

Suppose that some component of T2 say, T ∗ is such that either T ∗ /∈ A or T ∗ = Pm,

m 6= 2, 4. If T ∗ /∈ A, then either there exist two non adjacent vertices x and y such

that γr(T ∗ + xy) < γr(T ∗) or γr(T ∗) < n
2 . Hence, either γr(T + xy) < γr(T ) or

γr(T ) < n
2 . Thus, in either case we get a contradiction. Suppose that T ∗ = Pm,

m 6= 2, 4. Let Pm = (u1, u2, . . . , um). If m is odd and m ≥ 7, then clearly γr(T ) < n
2 ,

a contradiction. If m = 3 or 5, then joining u1 and u3 by an edge e, we see that

γr(T + e) < γr(T ), a contradiction. Suppose that m is even and m ≥ 8. If m ≥ 14,

then as γr(Pm) =
⌈
3m
7

⌉
, we see that γr(T ) < n

2 , a contradiction. If m = 6, then one

end of Pm say z is either adjacent to a vertex in a K2 or a vertex of a K1,3. If z is

adjacent to a vertex in a K2 with V (K2) = {a, b}, where a and z are adjacent, then

γr(T + zb) < γr(T ), a contradiction. If z is adjacent to the head vertex of a K1,3,

say a, then there exists a vertex in P6, say b such that b ∈ V1 and DT (b) = ∅. Now

γr(T + ab) < γr(T ), a contradiction. If z is adjacent to the leaf vertex of a K1,3,

then γr(T + ab) < γr(T ), where a and b are the leaf vertices not adjacent to z, a

contradiction.

If 8 ≤ m ≤ 12, then by Theorem 3, Pm is not γr-EA-stable which implies that T is

not γr-EA-stable, a contradiction. Thus, each component of T2 is in A. Again we

perform the operations O1, O2 and O3 in T2 to obtain a graph T3 and check whether

each component of T3 is in A and none of the components of T3 is a Pm, m 6= 2, 4.

If so, as before either γr(T ) < n
2 or T is not γr-EA-stable. Otherwise, we repeat the

process until no such edges remain (as mentioned in the operations). Let Tk be the

final graph. We claim that Tk is either a H ◦ 3K1 or a H ◦K1 or a K2.

Suppose to the contrary that some component of Tk is a Pm, m 6= 2, 4. If m 6= 1,

then as before we get a contradiction. Suppose that m = 1. Let V (P1) = {w}. If

f(w) = 1, then every neighbor of w is either a leaf vertex of a H ◦ 3K1 or a K2. Then

joining w to a leaf vertex of a K2 or a head vertex of the K1,3, we see that γr(T + e)

reduces by 1 and hence γr(T + e) < γr(T ), a contradiction. Suppose that f(w) = 0.

If w is adjacent to the head vertex of the K1,3, then γr(T ) <
n

2
, a contradiction.
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Otherwise there exists another P1 in Tk with V (P1) = {z} such that f(z) = 0 and

both w and z are adjacent to a leaf vertex of a K1,3. Then joining the other two leaf

vertices of the said K1,3 will reduce the γr-value by 1, a contradiction. Hence, each

component of Tk is either a H ◦ 3K1 or a H ◦K1 or K2.

Now we claim that at least one leaf vertex of a K1,3 is not adjacent to a vertex in a

K2. If not, all the leaf vertices are adjacent to a K2 and the head vertex of the said

K1,3 will receive a weight 1 and all its leaf vertices will receive a weight 0 under f

which implies that γr(T ) <
n

2
, a contradiction.

Next we claim that a leaf vertex of a K1,3, say H is not adjacent to the head vertex

of a K1,3. If so, then joining the two leaf vertices of H by an edge e, we see that

γr(T + e) < γr(T ), as the sum of the weights of the vertices in H is 2 under f and in

T + e the above said weight will be 1 under any γr-function of T + e. Hence T is not

γr-EA-stable, a contradiction.

Next we claim that a vertex in a H ◦K1 is not adjacent to the head vertex of a K1,3.

Suppose to the contrary that a vertex in a H ◦K1, say x is adjacent to a head vertex

of a K1,3, say y. Let z be the leaf neighbor or support neighbor of x according as x is

a support vertex or a leaf vertex of H ◦K1. Then γr(T +zy) < γr(T ), a contradiction.

Next we claim that a leaf vertex of a H◦K1 is not adjacent to a leaf vertex of a K1,3. If

so, join the two leaf vertices of K1,3 by an edge e and any γr-function of the resultant

graph will assign 1 the leaf vertex of H ◦K1 and to the head vertex of the said K1,3

and 0 to the corresponding support vertex of H ◦ K1 and to all the leaf vertices of

the said K1,3 which implies that γr(T + e) < γr(T ), which is a contradiction to the

fact that T is γr-EA-stable.

Finally, we claim that if for some K2 with V (K2) = {a, b}, a is adjacent to a vertex

of another K2, then every neighbor of b is a vertex of some K2. Suppose to the

contrary, that some neighbor say, w of b is not a vertex of a K2. Then, w is a vertex

of some K1,3. If w is the head vertex of a K1,3, then joining w and a, we see that

γr(T + wa) < γr(T ), as f(a) + f(b) + f(w) = 3 and in T + wa, this weight will be

reduced by 1. Hence T is not γr-EA-stable, a contradiction. If w is a leaf vertex of

a K1,3, then joining the other two leaf vertices of the said K1,3 by an edge e, we see

that γr(T + e) < γr(T ) as f(a) + f(b) + f(w) = 3 and in T + e this weight will be 2

under any γr-function of T + e. Hence T is not γr-EA-stable, a contradiction. Thus,

T ∈ =.

Conversely, suppose that T ∈ =. Let f be a γr-function of T . Each time we perform

the operations O1 and O2, we see that either a subgraph K1,3 or a K2 is removed and

a weight of 2 or 1 is associated with these subgraphs. Since each component of Tk is

either a K2 or a H ◦K1 or a H ◦ 3K1, then clearly a weight of half the order of each

component is associated. Hence f(V ) = n
2 which implies that γr(T ) = n

2 . Further

since T ∈ =, |DT (x)| = 3 for every x ∈ V2 and |DT (x)| = 1 for every x ∈ V1. Hence

T is γr-EA-stable.
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