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Abstract: In this paper, we introduce the notion of normalized distance Laplacian

matrices for signed graphs corresponding to the two signed distances defined for signed

graphs. We characterize balance in signed graphs using these matrices and compare the

normalized distance Laplacian spectral radius of signed graphs with that of all-negative

signed graphs. Also we characterize the signed graphs having maximum normalized

distance Laplacian spectral radius.
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1. Introduction

A signed graph Σ = (G, σ) is an underlying graph G = (V,E) with a signature

function σ : E → {1,−1}. The concept of the signed distances and the corresponding

signed distance matrices are defined by Hameed et al., in [2]. Given a signed graph
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Σ = (G, σ), the sign of a path P in Σ is defined as σ(P ) =
∏
e∈E(P ) σ(e). The shortest

path between two given vertices u and v is denoted by P(u,v) and the collection of all

shortest paths P(u,v) by P(u,v); and d(u, v) denotes the usual distance between u and

v.

Definition 1 (Signed distance matrices [2]). Auxiliary signs are defined as:

(S1) σmax(u, v) = −1 if all shortest uv-paths are negative, and +1 otherwise.

(S2) σmin(u, v) = +1 if all shortest uv-paths are positive, and −1 otherwise.

Signed distances are:

(d1) dmax(u, v) = σmax(u, v)d(u, v) = max{σ(P(u,v)) : P(u,v) ∈ P(u,v)}d(u, v).

(d2) dmin(u, v) = σmin(u, v)d(u, v) = min{σ(P(u,v)) : P(u,v) ∈ P(u,v)}d(u, v).

And the signed distance matrices are:

(D1) Dmax(Σ) = (dmax(u, v))n×n.

(D2) Dmin(Σ) = (dmin(u, v))n×n.

Definition 2. [2] Two vertices u and v in a signed graph Σ are said to be distance-

compatible (briefly, compatible) if dmin(u, v) = dmax(u, v). And Σ is said to be (distance-

)compatible if every two vertices are compatible. Then Dmax(Σ) = Dmin(Σ) = D±(Σ).

Corresponding to the signed distances defined for signed graphs, the signed distance

Laplacian matrices are defined in [9]. The transmission tr(v) of a vertex v is defined

to be the sum of the distances from v to all other vertices in G. That is, tr(v) =∑
u∈V (G) d(v, u). The transmission matrix Tr(G) for a graph G is the diagonal matrix

with diagonal entries tr(vi).

Definition 3. [9] Signed distance Laplacian matrices for signed graphs is defined as

(L1) DLmax(Σ) = Tr(G)−Dmax(Σ).

(L2) DLmin(Σ) = Tr(G)−Dmin(Σ).

When Σ is compatible, DLmax(Σ) = DLmin(Σ) = DL±(Σ).

We now define the normalized distance Laplacian matrices for signed graphs as follows.

Definition 4. Corresponding to the two signed distance Laplacian matrices for signed

graphs, we define the two normalized distance Laplacian matrices DLmax(Σ) = (DLmax
i,j )n×n

and DLmin(Σ) = (DLmin
i,j )n×n as
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DLmax
i,j =


1 if i = j
−dmax(vi,vj)√
tr(vi)tr(vj)

if i 6= j
and DLmin

i,j =


1 if i = j
−dmin(vi,vj)√
tr(vi)tr(vj)

if i 6= j
.

For a signed graph Σ, we get, DLmax(Σ) = Tr(G)−1/2DLmax(Σ)Tr(G)−1/2 and DLmin(Σ) =

Tr(G)−1/2DLmin(Σ)Tr(G)−1/2. By substituting, from the definition of signed Laplacian ma-

trices, it can be seen that DLmax(Σ) = I − Tr(G)−1/2Dmax(Σ)Tr(G)−1/2 and DLmin(Σ) =

I − Tr(G)−1/2Dmin(Σ)Tr(G)−1/2. When Σ is compatible, DLmax(Σ) = DLmin(Σ) =

DL±(Σ).

The defintion of the normalized distance Laplacian matrices for signed graphs is anal-

ogous to the defintion of the normalized Laplacian matrix defined for signed graphs

in [5]. In [6], Li et al. gave the bounds for the frustration number and the frustration

index of signed graphs in terms of its least eigenvalue of the normalized Laplacian of

signed graphs. The normalized Laplacian matrix for graphs is introduced and stud-

ied extensively by Chung in [1] and the normalized distance Laplacian for graphs is

explored recently by Reinhart in [8] and by Pirzada in [7].

Throughout this article, unless otherwise mentioned, by a graph we mean a finite,

connected, simple graph. For any terms which are not mentioned here, the reader

may refer to [3] and [10].

2. Normalized Laplacian matrix for weighted signed graphs

In this section, we recall the definition of the adjacency matrix and the Laplacian

matrix of a weighted signed graph and then define the normalized Laplacian matrix

for a weighted signed graph. A weighted signed graph is denoted by (Σ, w) where

Σ = (G, σ) is a signed graph and w is a positive weight function defined on the edges

of Σ. For a weighted signed graph (Σ, w), w(Σ) is the product of all the weights given

to the edges of Σ. We use the notation u ∼ v when the vertices u and v are adjacent

and similar notation for the incidence of an edge on a vertex.
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Definition 5. [9] Let (Σ, w) be a weighted signed graph. Its adjacency matrix A(Σ, w) =

(aij)n is defined as the square matrix of order n = |V (G)| where

aij =

 σ(vivj)w(vivj) if vi ∼ vj
0 otherwise.

Definition 6. [9] For a weighted signed graph (Σ, w), its weighted Laplacian ma-

trix is defined as L(Σ, w) = D(Σ, w) − A(Σ, w), where the diagonal matrix D(Σ, w) is

diag
(∑

e:vi∼e w(e)
)

which is called the weighted degree matrix of (Σ, w).

Laplacian matrix L(Σ, w) of (Σ, w) can be described by means of its quadratic form

as

xTL(Σ, w)x =
∑

vivj∈E(G)

w(vivj)(xi − σ(vivj)xj)
2,

where x = (x1, . . . , xn)T ∈ Rn. Hence, L(Σ, w) is positive semi definite.

Definition 7. For a weighted signed graph (Σ, w), its normalized Laplacian matrix is

defined as L(Σ, w) = D(Σ, w)−1/2L(Σ, w)D(Σ, w)−1/2.

For an oriented edge ~ej = −−→vivk, we take vi as the tail of that edge and vk as its head

and we write t(~ej) = vi and h(~ej) = vk.

Analogous to the definition of oriented incidence matrix of a weighted signed graph,

we define a matrix H(Σ, w) = (ηviej ) whose rows are indexed by the vertices and

columns are indexed by the edges of G where

ηviej =



σ(ej)
√
w(ej)√

d(vi)
if t(~ej) = vi,

−
√
w(ej)√
d(vi)

if h(~ej) = vi,

0 otherwise.

Thus, for a weighted signed graph (Σ, w), L(Σ, w) = H(Σ, w)HT (Σ, w).

Let (Σ, w) be a connected weighted signed graph. Since L(Σ, w) is a real symmetric

matrix, the eigenvalues of L(Σ, w) are real. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues

of its normalized Laplacian matrix L(Σ, w).



R.T. Roy, K.A. Germina, S. Hameed K 449

Applying the Courant-Fischer theorem to get the eigenvalue λk of L(Σ, w),

λk = min
gk+1,gk+2,...,gn∈Rn

max
g 6=0

g⊥gk+1,gk+2,...,gn

〈g,Lg〉
〈g, g〉

Since (Σ, w) is connected, D(Σ, w)1/2 is invertible. For vectors g and gj , define the

vectors f = D(Σ, w)−1/2g and fj = D(Σ, w)1/2gj .

Note that, g ⊥ gk+1, gk+2, . . . , gn if and only if f ⊥ fk+1fk+2, . . . , fn.

Since D(Σ, w)1/2 is invertible, g 6= 0 if and only if f 6= 0 and minimizing over vectors

gk+1, gk+2, . . . , gn is equivalent to minimizing over vectors fk+1, fk+2, . . . , fn. The

vector f is viewed as function f(u) on the vertex set and is often called the harmonic

eigenfunction corresponding to λk.

Then,

λk = min
gk+1,gk+2,...,gn∈Rn

max
f 6=0

f⊥fk+1,fk+2,...,fn

〈f, Lf〉
〈D(Σ, w)1/2f,D(Σ, w)1/2f〉

= min
fk+1,fk+2,...,fn∈Rn

max
f 6=0

f⊥fk+1,fk+2,...,fn

〈f, Lf〉
〈D(Σ, w)1/2f,D(Σ, w)1/2f〉

= min
fk+1,fk+2,...,fn∈Rn

max
f 6=0

f⊥fk+1,fk+2,...,fn

∑
vivj∈E(G)

w(vivj)(f(vi)− σ(vivj)f(vj))
2

∑
u∈V (G)

f(u)2d(u)
.

The other half of the Courant-Fischer theorem gives

λk = max
g1,g2,...,gk−1∈Rn

min
g 6=0

g⊥g1,g2,...,gk−1

〈g,Lg〉
〈g, g〉

= max
f1,f2,...,fk−1∈Rn

min
f 6=0

f⊥f1,f2,...,fk−1

∑
vivj∈E(G)

w(vivj)(f(vi)− σ(vivj)f(vj))
2

∑
u∈V (G)

f(u)2d(u)
.

In particular, we get

λ1 = inf
f 6=0

∑
vivj∈E(G)

w(vivj)(f(vi)− σ(vivj)f(vj))
2

∑
u∈V (G)

f(u)2d(u)



450 Normalized distance Laplacian matrices for signed graphs

and

λn = sup
f 6=0

∑
vivj∈E(G)

w(vivj)(f(vi)− σ(vivj)f(vj))
2

∑
u∈V (G)

f(u)2d(u)
.

Thus, the normalized Laplacian matrix for a weighted signed graph is positive semi

definite. We denote, 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn as the eigenvalues of L(Σ, w).

Our next theorem compares the normalized Laplacian spectral radius of weighted

signed graphs with that of all-negative signed graphs and finds a bound for the same.

For proving these theorems, we need the following lemmas.

Lemma 1 ([4]). Let Σ = (G, σ) be a signed graph. Then the following conditions are

equivalent:

(i) Σ = (G, σ) is a signed graph such that all odd cycles are negative and all even cycles

are positive.

(ii) There exists a partition V (Σ) = V1 ∪ V2 such that every edge between V1 and V2 is

positive and every edge within V1 or V2 is negative.

(iii) (G, σ) is switching equivalent to (G,−).

Lemma 2. If λ is an eigenvalue of L(Σ, w) corresponding to the eigenvector g, then λ is

also an eigenvalue of D(Σ, w)−1L(Σ, w) corresponding to the eigenvector f = D(Σ, w)−1/2g.

Proof. To prove, λ is an eigenvalue of D(Σ, w)−1L(Σ, w), consider

D(Σ, w)−1L(Σ, w)f = D(Σ, w)−1L(Σ, w)D(Σ, w)−1/2g

= D(Σ, w)−1/2L(Σ, w)g

= D(Σ, w)−1/2λg = λf.

For weighted signed graphs (Σ, w), since the weight function w is positive, by saying

(Σ, w) is switched to (Σζ , w) by the switching function ζ, we mean that the corre-

sponding signed graphs Σ and Σζ are switching equivalent.

Lemma 3. Let (Σ, w) be switched to (Σζ , w). Then L(Σ, w) and L(Σζ , w) are cospectral.
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Proof. If (Σ, w) is switched to (Σζ , w), then the weighted Laplacian matrices L(Σ, w)

and L(Σζ , w) are similar by the switching matrix S = diag(ζ(v1)), ζ(v2)), . . . , ζ(vn)) =

S−1. That is, L(Σζ , w) = SL(Σ, w)S−1. Thus, we get L(Σζ , w) = SL(Σ, w)S−1 and

hence they are cospectral.

Theorem 1. Let (Σ, w) be a connected weighted signed graph of order n and (Σ−, w) be

the corresponding all negative weighted signed graph. Then λn(σ) ≤ λn(−) where equality

holds if and only if (Σ, w) is switching equivalent to (Σ−, w).

Proof. Let f = (f(v) : v ∈ V (G))T be the harmonic eigenfunction corresponding to

λn. Take h = (|f(v)| : v ∈ V (G))T . Now,

λn(σ) =

∑
vivj∈E(G)

w(vivj)(f(vi)− σ(vivj)f(vj))
2

∑
u∈V (G)

f(u)2d(u)

≤

∑
vivj∈E(G)

w(vivj)(|f(vi)|+ |f(vj)|)2

∑
u∈V (G)

f(u)2d(u)

≤ λn(−).

If λn(σ) = λn(−), then −σ(vivj)w(vivj)f(vi)f(vj) = w(vivj)|f(vi)||f(vj)|, for all

vivj ∈ E(G). That is, −σ(vivj)f(vi)f(vj) = |f(vi)||f(vj)|, since the edge weights

are positive. Now, L(Σ−, w) is a non negative matrix and hence f has no zero

entries. Let V1 = {v : f(v) > 0} and V2 = {v : f(v) < 0}. For a negative edge vivj ,

f(vi)f(vj) = |f(vi)||f(vj)| > 0 which imples vivj is either in V1 or in V2. For a postive

edge vivj , −f(vi)f(vj) = |f(vi)||f(vj)| which implies f(vi)f(vj) < 0 and hence vivj

is between V1 and V2. Thus by Lemma 1, (Σ, w) is switching equivalent to (Σ−, w).

Conversely, if (Σ, w) is switching equivalent to (Σ−, w), then by Lemma 3 they are

cospectral and hence λn(σ) = λn(−).

Theorem 2. Let (Σ, w) be a connected weighted signed graph of order n. Then λi ≤ 2,

for all i ≤ n, with λn = 2 if and only if (Σ, w) is switching equivalent to (Σ−, w).

Proof. Consider the matrix

M = D(Σ, w)−1/2L(Σ−, w)D(Σ, w)1/2 = D(Σ, w)−1L(Σ−, w).
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By Lemma 2, L(Σ−, w) and D(Σ, w)−1L(Σ−, w) have same set of eigenvalues. Now

the row sums of M all equals 2 and hence λn(M) = 2.

Thus, by Theorem 1, λn(σ) ≤ λn(−) = λn(M) = 2 and λn(σ) = λn(−) = 2 if and

only if (Σ, w) is switching equivalent to (Σ−, w).

3. Normalized Distance Laplacian Matrices for Signed Graphs

The characterization for balance in signed graphs using the signed distance Laplacian

matrices is established in [9] as follows.

Theorem 3 ([9]). The following properties of a signed graph Σ are equivalent.

(i) Σ is balanced.

(ii) The determinant of signed distance Laplacian matrix, det(DLmax(Σ)) = 0.

(iii) The determinant of signed distance Laplacian matrix, det(DLmin(Σ)) = 0.

(iv) DLmax(Σ) = DLmin(Σ) and the determinant of signed distance Laplacian matrix,

det(DL±(Σ)) = 0.

A similar characterization for balance in signed graphs can be proved using the nor-

malized distance Laplacian matrices as follows.

Theorem 4. A connected signed graph is balanced if and only if the determinant of its

normalized distance Laplacian matrix, det(DLmax(Σ))(or det(DLmin(Σ))) is equal to zero.

Proof. det(DLmax(Σ)) = det(Tr(G)−
1
2 ) det(DLmax(Σ)) det(Tr(G)−

1
2 ).

For a connected signed graph, tr(v) 6= 0 for any vertex v. Hence det(Tr(G)−
1
2 ) 6= 0.

Thus, det(DLmax(Σ)) = 0 if and only if det(DLmax(Σ)) = 0 if and only if Σ is

balanced.

Similarly, we can prove the case for DLmin(Σ).

Theorem 5. A signed graph Σ is balanced if and only if DLmax(Σ) = DLmin(Σ) =

DL±(Σ) and DL±(Σ) is cospectral with DL(G), where DL(G) denotes the normalized dis-

tance Laplacian matrix of the underlying graph G.
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Proof. If Σ is balanced, then Σ can be switched to the all positive signed graph

Σζ = (G,+). Then the signed distance Laplacian matrices, DLmax(Σ) = DLmin(Σ) =

DL±(Σ) and SDL±(Σ)S−1 = DL±(Σζ) by the switching matrix S [9]. Thus, using

this same matrix S we get, DL±(Σ) is similar to DL±(Σζ) (which is equal to DL(G))

and hence cospectral.

Conversely, if DL±(Σ) is cospectral with DL(G) then, det(DL±(Σ)) = det(DL(G)) =

0. Hence by Theorem 4, Σ is balanced.

Hameed et al. in [2] defined the two complete signed graphs from the distance matrices

Dmax and Dmin as follows.

Definition 8 ([2]). The associated signed complete graph KDmax

(Σ) with respect to

Dmax(Σ) is obtained by joining the non-adjacent vertices of Σ with edges having signs

σ(uv) = σmax(uv).

The associated signed complete graph KDmin

(Σ) with respect to Dmin(Σ) is obtained by

joining the non-adjacent vertices of Σ with edges having signs σ(uv) = σmin(uv).

Using the defintion of the associated signed complete graphs, we have the follow-

ing. Let Σ be a signed graph. Corresponding to the associated signed complete

graph KDmax

(Σ), we define the weighted signed complete graph (KDmax

(Σ), w), where

w(e) = d(u, v) and (KDmin

(Σ), w), where w(e) = d(u, v) for an edge e = uv.

Then, the normalized Laplacian matrices L(KDmax

(Σ), w) is same as the normalized

distance Laplacian matrix DLmax(Σ) and L(KDmin

(Σ), w) is same as the normalized

distance Laplacian matrix DLmin(Σ). That is, L(KDmax

(Σ), w) = DLmax(Σ) and

L(KDmin

(Σ), w) = DLmin(Σ).

Since the normalized Laplacian matrix of a weighted signed graph is positive semi

definte, the normalized distance Laplacian matrices DLmax(Σ) and DLmin(Σ) are

positive semi definite. We denote 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µn as the eigenvalues of

DLmax(Σ) and 0 ≤ µ′1 ≤ µ
′

2 ≤ · · · ≤ µ
′

n as the eigenvalues of DLmin(Σ).

Lemma 4. The multiplicity of 0 as an eigenvalue of Dmax(Σ) (or Dmin(Σ)) is the mul-

tiplicity of 1 as an eigenvalue of DLmax(Σ) (or DLmin(Σ)), the number of negative eigen-

values for Dmax(Σ)(or Dmin(Σ)) is the number of eigenvalues greater than 1 for DLmax(Σ)
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(or DLmin(Σ)), the number of positive eigenvalues fo Dmax(Σ) (or Dmin(Σ)) is the number

of eigenvalues less than 1 for DLmax(Σ) (or DLmin(Σ)).

Proof. Two matrices A and B are said to be congruent if there exists an invertible

matrix P such that PTAP = B. Sylvester’s law of inertia states that any two real

symmetric matrices that are congruent have the same number of positive, negative,

and zero eigenvalues.

Now, Dmax(Σ) is congruent to Tr(G)−1/2Dmax(Σ)Tr(G)−1/2 and hence they have

same number of positive, negative, and zero eigenvalues. Since DLmax(Σ) = I −

Tr(G)−1/2Dmax(Σ)Tr(G)−1/2 we get, 0 is an eigenvalue of Dmax(Σ) if and only if 1

is an eigenvalue of DLmax(Σ). Also, if λ > 0 is an eigenvalue of Dmax(Σ) then 1− λ,

which is less than 1, is an eigenvalue of DLmax(Σ) and if λ < 0 is an eigenvalue of

Dmax(Σ) then 1− λ, which is greater than 1, is an eigenvalue of DLmax(Σ).

Similarly, we can prove the result for DLmin(Σ).

Theorem 6. For an unbalanced connected signed graph Σ, µ1 < 1 < µn and µ
′
1 < 1 < µ

′
n.

Proof. We prove the theorem for DLmax(Σ) since the same type of arguments holds

for DLmin(Σ).

Note that,
∑n
i=1 µi = trace(DLmax(Σ)) = n.

Since µ1 > 0 is the smallest eigenvalue, nµ1 ≤
∑n
i=1 µi = n which implies µ1 ≤ 1.

Similarly, since µn is the largest eigenvalue,
∑n
i=1 µi ≤ nµn which implies µn ≥ 1.

Now, suppose µ1 = 1. Then all eigenvalues should also be equal to 1 since
∑n
i=1 µi = n.

That is, 1 is the only eigenvalue of DLmax(Σ) with multiplicity n. Then by Lemma 4,

0 is the only eigenvalue of Dmax(Σ) with multipilicity n which implies, Dmax(Σ) is a

nilpotent matrix. But we have Dmax(Σ) is real symmetric and hence diagonalisable.

Thus Dmax(Σ) is the zero matrix, which is a contradiction. Thus, µ1 < 1.

Similarly, if µn = 1 following the same line of arguments as above we arrive at a

contradiction. Thus 1 < µn.

The following theorems are immediate from Theorem 1 and Theorem 2.
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Theorem 7. Let Σ = (G, σ) be a connected signed graph of order n. Then µn(σ) ≤ µn(−)

and µ
′
n(σ) ≤ µ

′
n(−) where the equality holds if and only if (G, σ) is switching equivalent to

(G,−).

Theorem 8. Let Σ = (G, σ) be a connected signed graph of order n. Then µi ≤ 2, for all

i ≤ n, with µn = 2 if and only if (G, σ) is switching equivalent to (G,−). Similarly, µ
′
i ≤ 2,

for all i ≤ n, with µ
′
n = 2 if and only if (G, σ) is switching equivalent to (G,−).

A signed graph Σ is t-transmission regular if tr(v) =
∑
u∈V (G) d(v, u) = t for all

v ∈ V (G). Odd cycles C2k+1 are k(k + 1) transmission regular and even cycles C2k

are k2 transmission regular.

Theorem 9. If the signed graph Σ is t-transmission regular, then the normalized dis-

tance Laplacian eigenvalues of DLmax(Σ)(or DLmin(Σ)) are 1
t
λ, where λ is an eigenvalue of

DLmax(Σ)(or DLmin(Σ)).

The odd unbalanced cycle C−n is compatible and the signed distance Laplacian spec-

trum of C−n is given in [9]. Thus, we get, the normalized distance Laplacian spectrum

of C−n as an immediate corollary.

Theorem 10. For an odd unbalanced cycle C−n , where n = 2k+ 1, the spectrum of L± is

1− 1
k(k+1)

(
k(−1)k − 1− (−1)k

2

)
1− 1

k(k+1)

( k(−1)j

sin((2j + 1) π
2n

)
−

sin2((2j + 1) kπ
2n

)

sin2((2j + 1) π
2n

)

)
1 2 (j = 0, 1, 2, . . . , k − 1)

 .

Conclusion

In this paper, we dealt with the normalized distance Laplacian matrices for a signed

graph. We also defined the normalized Laplacian matrix for weighted signed graphs

and studied the spectral properties of the same in Section 2. Theorem 7 compares

the normalized distance Laplacian spectral radius of signed graphs with that of all-

negative signed graphs and Theorem 8 characterize those signed graphs having max-

imum normalized distance Laplacian spectral radius.
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