[1] B.D. Acharya, Spectral criterion for cycle balance in networks, J. Graph Theory 4 (1980), no. 1, 1–11.
[2] A. Anuradha and R. Balakrishnan, Skew spectrum of the Cartesian product of an oriented graph with an oriented hypercube, Combinatorial Matrix Theory and Generalized Inverses of Matrices (R.B. Bapat, S.J. Kirkland, K.M. Prasad, and
S. Puntanen, eds.), Springer, New Delhi, 2013, pp. 1–12.
[3] R.B. Bapat, D. Kalita, and S. Pati, On weighted directed graphs, Linear Algebra Appl. 436 (2012), no. 1, 99–111.
[4] M.A. Bhat, Energy of weighted digraphs, Discrete Appl. Math. 223 (2017), 1–14.
[5] Q. Cai, X. Li, and J. Song, New skew Laplacian energy of simple digraphs, Trans. Comb. 2 (2013), no. 1, 27–37.
[6] B.A. Chat, H.A. Ganie, and S. Pirzada, Bounds for the skew Laplacian spectral radius of oriented graphs, Carpathian J. Math. 35 (2019), no. 1, 31–40.
[7] B.A. Chat, H.A. Ganie, and S. Pirzada, Bounds for the skew Laplacian energy of weighted digraphs, Afrika Matematika 32 (2021), no. 5, 745–756.
[8] X. Chen, X. Li, and H. Lian, The skew energy of random oriented graphs, Linear Algebra Appl. 438 (2013), no. 11, 4547–4556.
[9] D.M. Cvetkovic, M. Doob, and H. Sachs, Spectra of Graphs, Academic Press, New York, 1980.
[10] K.C. Das and R.B. Bapat, A sharp upper bound on the spectral radius of weighted graphs, Discrete Math. 308 (2008), no. 15, 3180–3186.
[11] H.A. Ganie and B.A. Chat, Bounds for the energy of weighted graphs, Discrete Appl. Math. 268 (2019), 91–101.
[12] H.A. Ganie, B.A. Chat, and S. Pirzada, Signless Laplacian energy of a graph and energy of a line graph, Linear Algebra Appl. 544 (2018), 306–324.
[13] H.A. Ganie, B.A. Chat, and S. Pirzada, On skew Laplacian spectra and skew Laplacian energy of digraphs, Kragujevac J. Math. 43 (2019), no. 1, 87–98.
[14] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz. 103 (1978), 1–22.
[15] I. Gutman and J.-Y. Shao, The energy change of weighted graphs, Linear Algebra Appl. 435 (2011), no. 10, 2425–2431.
[16] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1985.
[17] X. Li, Y. Shi, and I. Gutman, Graph Energy, Springer, New York, 2012.
[18] I. Pena and J. Rada, Energy of digraphs, Linear Multilinear Algebra 56 (2008), no. 5, 565–579.
[19] S. Pirzada, An Introduction to Graph Theory, Universities Press, Orient Blackswan, Hyderabad, 2012.
[20] B. Shader and W. So, Skew spectra of oriented graphs, Electron. J. Combin. 16 (2009), no. 1, ID: N32.
[21] Y. Wang and B. Zhou, A note on skew spectrum of graphs, Ars Combin. 110 (2013), 481–485.
[22] G.-H. Xu and S.-C. Gong, On oriented graphs whose skew spectral radii do not exceed 2, Linear Algebra Appl. 439 (2013), no. 10, 2878–2887.